SEARCH

SEARCH BY CITATION

Keywords:

  • Fire-return interval;
  • Fruit production;
  • Reproductive allocation;
  • Resprouting;
  • Scrubby flatwood;
  • Seedling recruitment

Abstract. In periodically burned ecosystems, fire frequency may be an important selective pressure for the evolution of plant reproductive allocation patterns. We evaluated this hypothesis for Florida (USA) scrub plants by developing three models of reproductive effort with time since last fire given assumptions concerning seed dormancy and seedling establishment. We then examined reproductive effort of five woody, resprouting shrubs at sites representing nine times since last fire (ranging from 0–64 yr). All species showed significant patterns with time since fire in percentage of stems reproductive and fruit production. Stems of all species needed to attain a minimum size before flowering. Four species had the greatest level of reproductive effort (fruit biomass/above-ground biomass) within 5 yr post-fire and best fit the Early Peak Model of reproductive effort (i.e. between-fire seedling recruitment or seed dormancy). A fifth species best fit the Broad Peak Model (i.e. immediate post-fire seedling establishment), peaking in reproductive effort at 7 yr post-fire. Both of these models are based on somewhat variable fire-return intervals, suggesting that the frequency of scrub fires may have been too unpredictable to select for reproductive allocation patterns precisely reflecting particular fire-return intervals. Early peaks in post-fire reproductive effort may be a bet-hedging strategy to allow for greater chances of seedling establishment and survival.