SEARCH

SEARCH BY CITATION

References

  • 1
    El Rifai W, Powell SM. Molecular biology of gastric cancer. Seminin Radiat Oncol 2002; 12: 128140.
  • 2
    Crew KD, Neugut AI. Epidemiology of upper gastrointestinal malignancies. Seminin Oncol 2004; 31: 450464.
  • 3
    Devesa SS, Blot WJ, Fraumeni JF, Jr. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 1998; 83: 20492053.
  • 4
    Devesa SS, Fraumeni JF, Jr. The rising incidence of gastric cardia cancer. J Natl Cancer Inst 1999; 91: 747749.
  • 5
    Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 2005; 97: 142146.
  • 6
    Spechler SJ. The role of gastric carditis in metaplasia and neoplasia at the gastroesophageal junction. Gastroenterology 1999; 117: 218228.
  • 7
    Brown LM, Silverman DT, Pottern LM, et al. Adenocarcinoma of the esophagus and esophagogastric junction in white men in the United States: alcohol, tobacco, and socioeconomic factors. Cancer Causes Control 1994; 5: 333340.
  • 8
    Gammon MD, Schoenberg JB, Ahsan H, et al. Tobacco, alcohol, and socioeconoic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1997; 89: 12771284.
  • 9
    Lagergren J, Bergstrom R, Lindgren A, Nyren O. The role of tobacco, snuff and alcohol use in the aetiology of cancer of the oesophagus and gastric cardia. Int J Cancer 2000; 85: 340346.
  • 10
    Kabat GC, Ng SK, Wynder EL. Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and gastric cardia. Cancer Causes Control 1993; 4: 123132.
  • 11
    Brown LM, Swanson CA, Gridley G, et al. Adenocarcinoma of the esophagus: role of obesity and diet. J Natl Cancer Inst 1995; 87: 104109.
  • 12
    Iijima K, Henry E, Moriya A, et al. Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction. Gastroenterology 2002; 122: 12481257.
  • 13
    Bartholomew B, Hill MJ. The pharmacology of dietary nitrate and the origin of urinary nitrate. Food Chem Toxicol 1984; 22: 789795.
  • 14
    Duncan C, Dougall H, Johnston P, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1995; 1: 546551.
  • 15
    McKnight GM, Smith LM, Drummond RS, et al. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut 1997; 40: 211214.
  • 16
    Spechler SJ. Carcinogenesis at the gastroesophageal junction: free radicals at the frontier. Gastroenterology 2002; 122: 15181520.
  • 17
    Fletcher J, Wirz A, Young J, et al. Unbuffered highly acidic gastric juice exists at the gastroesophageal junction after a meal. Gastroenterology 2001; 121: 775783.
  • 18
    Mayne ST, Risch HA, Dubrow R, et al. Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 2001; 10: 10551062.
  • 19
    Mark SD, Qiao YL, Dawsey SM, et al. Prospective study of serum selenium levels and incident esophageal and gastric cancers. J Natl Cancer Inst 2000; 92: 17531763.
  • 20
    Franceschi S, Bidoli E, Negri E, et al. Role of macronutrients, vitamins and minerals in the aetiology of squamous-cell carcinoma of the oesophagus. Int J Cancer 2000; 86: 626631.
  • 21
    Brown LM, Devesa SS. Epidemiologic trends in esophageal and gastric cancer in the United States. Surg Oncol Clin N Am 2002; 11: 235256.
  • 22
    Lagergren J, Bergstrom R, Nyren O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med 1999; 130: 883890.
  • 23
    Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma [see comments]. N Engl J Med 1999; 340: 825831.
  • 24
    Spechler SJ. Clinical practice. Barrett's Esophagus. N Engl J Med 2002; 346: 836842.
  • 25
    Oberg S, Peters JH, DeMeester TR, et al. Inflammation and specialized intestinal metaplasia of cardiac mucosa is a manifestation of gastroesophageal reflux disease. Ann Surg 1997; 226: 522530.
  • 26
    Csendes A, Smok G, Burdiles P, et al. ‘Carditis’: an objective histological marker for pathologic gastroesophageal reflux disease. Dis Esophagus 1998; 11: 101105.
  • 27
    Goldblum, Jr, Vicari JJ, Falk GW, et al. Inflammation and intestinal metaplasia of the gastric cardia: the role of gastroesophageal reflux and H. pylori infection. Gastroenterology 1998; 114: 633639.
  • 28
    Chen YY, Antonioli DA, Spechler SJ, et al. Gastroesophageal reflux disease versus Helicobacter pylori infection as the cause of gastric carditis. Mod Pathol 1998; 11: 950956.
  • 29
    Ye W, Held M, Lagergren J, et al. Helicobacter pylori infection and gastric atrophy: risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. J Natl Cancer Inst 2004; 96: 388396.
  • 30
    Spechler SJ, Fischbach L, Feldman M. Clinical aspects of genetic variability in Helicobacter pylori. JAMA 2000; 283: 12641266.
  • 31
    Chow WH, Blaser MJ, Blot WJ, et al. An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Cancer Res 1998; 58: 588590.
  • 32
    Hansen S, Melby KK, Aase S, et al. Helicobacter pylori infection and risk of cardia cancer and non-cardia gastric cancer. A nested case-control study. Scand J Gastroenterol 1999; 34: 353360.
  • 33
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 5770.
  • 34
    Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 1974; 71: 12861290.
  • 35
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323330.
  • 36
    Arber N, Gammon MD, Hibshoosh H, et al. Overexpression of cyclin D1 occurs in both squamous carcinomas and adenocarcinomas of the esophagus and in adenocarcinomas of the stomach. Hum Pathol 1999; 30: 10871092.
  • 37
    Weiss MM, Kuipers EJ, Hermsen MA, et al. Barrett's adenocarcinomas resemble adenocarcinomas of the gastric cardia in terms of chromosomal copy number changes, but relate to squamous cell carcinomas of the distal oesophagus with respect to the presence of high-level amplifications. J Pathol 2003; 199: 157165.
  • 38
    Arber N, Lightdale C, Rotterdam H, et al. Increased expression of the cyclin D1 gene in Barrett's esophagus. Cancer Epidemiol Biomarkers Prev 1996; 5: 457459.
  • 39
    Bani-Hani K, Martin IG, Hardie LJ, et al. Prospective study of cyclin D1 overexpression in Barrett's esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst 2000; 92: 13161321.
  • 40
    Sarbia M, Bektas N, Muller W, et al. Expression of cyclin E in dysplasia, carcinoma, and nonmalignant lesions of Barrett esophagus. Cancer 1999; 86: 25972601.
  • 41
    Geddert H, Heep HJ, Gabbert HE, Sarbia M. Expression of cyclin B1 in the metaplasia-dysplasia-carcinoma sequence of Barrett esophagus. Cancer 2002; 94: 212218.
  • 42
    Schwartz GK, Ilson D, Saltz L, et al. Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. J Clin Oncol 2001; 19: 19851992.
  • 43
    Schwartz GK, O'Reilly E, Ilson D, et al. Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 2002; 20: 21572170.
  • 44
    Motwani M, Rizzo C, Sirotnak F, et al. Flavopiridol enhances the effect of docetaxel in vitro and in vivo in human gastric cancer cells. Mol Cancer Ther 2003; 2: 549555.
  • 45
    Lundberg AS, Weinberg RA. Control of the cell cycle and apoptosis. Eur J Cancer 1999; 35: 531539.
  • 46
    Liu JJ, Chao, Jr, Jiang MC, et al. Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol Cell Biol 1995; 15: 36543663.
  • 47
    Jankowski J, Hopwood D, Wormsley KG. Flow-cytometric analysis of growth-regulatory peptides and their receptors in Barrett's oesophagus and oesophageal adenocarcinoma. Scand J Gastroenterol 1992; 27: 147154.
  • 48
    Bro MJ, Filipe MI, Linehan J, Jankowski J. Association of transforming growth factor alpha (TGFA) and its precursors with malignant change in Barrett's epithelium: biological and clinical variables. Int J Cancer 1995; 60: 2732.
  • 49
    Yacoub L, Goldman H, Odze RD. Transforming growth factor-alpha, epidermal growth factor receptor, and MiB-1 expression in Barrett's-associated neoplasia: correlation with prognosis. Mod Pathol 1997; 10: 105112.
  • 50
    van Dekken H, Geelen E, Dinjens WN, et al. Comparative genomic hybridization of cancer of the gastroesophageal junction: deletion of 14Q31-32.1 discriminates between esophageal (Barrett's) and gastric cardia adenocarcinomas. Cancer Res 1999; 59: 748752.
  • 51
    Jankowski J, McMenemin R, Hopwood D, et al. Abnormal expression of growth regulatory factors in Barrett's oesophagus. Clin Sci (Colch) 1991; 81: 663668.
  • 52
    Jankowski J, Coghill G, Hopwood D, Wormsley KG. Oncogenes and onco-suppressor gene in adenocarcinoma of the oesophagus. Gut 1992; 33: 10331038.
  • 53
    Flejou JF, Paraf F, Muzeau F, et al. Expression of c-erbB-2 oncogene product in Barrett's adenocarcinoma: pathological and prognostic correlations. J Clin Pathol 1994; 47: 2326.
  • 54
    Brien TP, Odze RD, Sheehan CE, et al. HER-2/neu gene amplification by FISH predicts poor survival in Barrett's esophagus-associated adenocarcinoma. Hum Pathol 2000; 31: 3539.
  • 55
    El Rayes BF, LoRusso PM. Targeting the epidermal growth factor receptor. Br J Cancer 2004; 91: 418424.
  • 56
    Cooper GM. Cellular transforming genes. Science 1982; 217: 801806.
  • 57
    Sommerer F, Vieth M, Markwarth A, et al. Mutations of BRAF and KRAS2 in the development of Barrett's adenocarcinoma. Oncogene 2004; 23: 554558.
  • 58
    Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J Clin Oncol 1999; 17: 36313652.
  • 59
    Lord RV, O'Grady R, Sheehan C, et al. K-ras codon 12 mutations in Barrett's oesophagus and adenocarcinomas of the oesophagus and oesophagogastric junction. J Gastroenterol Hepatol 2000; 15: 730736.
  • 60
    Trautmann B, Wittekind C, Strobel D, et al. K-ras point mutations are rare events in premalignant forms of Barrett's oesophagus. Eur J Gastroenterol Hepatol 1996; 8: 799804.
  • 61
    Meltzer SJ, Mane SM, Wood PK, et al. Activation of c-Ki-ras in human gastrointestinal dysplasias determined by direct sequencing of polymerase chain reaction products. Cancer Res 1990; 50: 36273630.
  • 62
    Dy GK, Bruzek LM, Croghan GA, et al. A phase I trial of the novel farnesyl protein transferase inhibitor, BMS-214662, in combination with paclitaxel and carboplatin in patients with advanced cancer. Clin Cancer Res 2005; 11: 18771883.
  • 63
    Kim MA, Lee HS, Yang HK, Kim WH. Clinicopathologic and protein expression differences between cardia carcinoma and noncardia carcinoma of the stomach. Cancer 2005; 103: 14391446.
  • 64
    Hamelin R, Flejou JF, Muzeau F, et al. TP53 gene mutations and p53 protein immunoreactivity in malignant and premalignant Barrett's esophagus. Gastroenterology 1994; 107: 10121018.
  • 65
    Galipeau PC, Prevo LJ, Sanchez CA, et al. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett's) tissue. J Natl Cancer Inst 1999; 91: 20872095.
  • 66
    Meltzer SJ, Yin J, Huang Y, et al. Reduction to homozygosity involving p53 in esophageal cancers demonstrated by the polymerase chain reaction. Proc Natl Acad Sci USA 1991; 88: 49764980.
  • 67
    Taniere P, Martel-Planche G, Maurici D, et al. Molecular and clinical differences between adenocarcinomas of the esophagus and of the gastric cardia. Am J Pathol 2001; 158: 3340.
  • 68
    Yanagi M, Keller G, Mueller J, et al. Comparison of loss of heterozygosity and microsatellite instability in adenocarcinomas of the distal esophagus and proximal stomach. Virchows Arch 2000; 437: 605610.
  • 69
    Marsman WA, Birjmohun RS, Van Rees BP, et al. Loss of heterozygosity and immunohistochemistry of adenocarcinomas of the esophagus and gastric cardia. Clin Cancer Res 2004; 10: 84798485.
  • 70
    Blount PL, Ramel S, Raskind WH, et al. 17p allelic deletions and p53 protein overexpression in Barrett's adenocarcinoma. Cancer Res 1991; 51:54825486.
  • 71
    Barrett MT, Sanchez CA, Prevo LJ, et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 1999; 22: 106109.
  • 72
    Casson AG, Mukhopadhyay T, Cleary KR, et al. p53 gene mutations in Barrett's epithelium and esophageal cancer. Cancer Res 1991; 51: 44954499.
  • 73
    Lin J, Beerm DG. Molecular biology of upper gastrointestinal malignancies. Seminin Oncol 2004; 31: 476486.
  • 74
    Barrett MT, Sanchez CA, Galipeau PC, et al. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett's esophagus. Oncogene 1996; 13: 18671873.
  • 75
    Wong DJ, Barrett MT, Stoger R, et al. p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res 1997; 57: 26192622.
  • 76
    Sarbia M, Geddert H, Klump B, et al. Hypermethylation of tumor suppressor genes (p16INK4A, p14ARF and APC) in adenocarcinomas of the upper gastrointestinal tract. Int J Cancer 2004; 111: 224228.
  • 77
    Dolan K, Garde J, Walker SJ, et al. LOH at the sites of the DCC, APC, and TP53 tumor suppressor genes occurs in Barrett's metaplasia and dysplasia adjacent to adenocarcinoma of the esophagus. Hum Pathol 1999; 30: 15081514.
  • 78
    Eads CA, Lord RV, Kurumboor SK, et al. Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res 2000; 60: 50215026.
  • 79
    Reid BJ, Prevo LJ, Galipeau PC, et al. Rabinovitch PS. Predictors of progression in Barrett's esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol 2001; 96: 28392848.
    Direct Link:
  • 80
    Cawley HM, Meltzer SJ, De Benedetti VM, et al. Anti-p53 antibodies in patients with Barrett's esophagus or esophageal carcinoma can predate cancer diagnosis. Gastroenterology 1998; 115: 1927.
  • 81
    Zhang ZW, Newcomb P, Hollowood A, et al. Age-associated increase of codon 72 Arginine p53 frequency in gastric cardia and non-cardia adenocarcinoma. Clin Cancer Res 2003; 9: 21512156.
  • 82
    Kawakami K, Brabender J, Lord RV, et al. Hypermethylated APC DNA in Plasma and Prognosis of Patients With Esophageal Adenocarcinoma. J Natl Cancer Inst 2000; 92: 18051811.
  • 83
    Hetts SW. To die or not to die: an overview of apoptosis and its role in disease. JAMA 1998; 279: 300307.
  • 84
    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75: 11691178.
  • 85
    Younes M, Schwartz MR, Ertan A, et al. Fas ligand expression in esophageal carcinomas and their lymph node metastases. Cancer 2000; 88: 524528.
  • 86
    Lacronique V, Mignon A, Fabre M, et al. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nat Med 1996; 2: 8086.
  • 87
    Aoki K, Akyurek LM, San H, et al. Restricted expression of an adenoviral vector encoding Fas ligand (CD95L) enhances safety for cancer gene therapy. Mol Ther 2000; 1: 555565.
  • 88
    Elder DJ, Halton DE, Hague A, Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin Cancer Res 1997; 3: 16791683.
  • 89
    Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83: 493501.
  • 90
    Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomas. Cancer Res 1998; 58: 29292934.
  • 91
    Buskens CJ, Sivula A, Van Rees BP, et al. Comparison of cyclooxygenase 2 expression in adenocarcinomas of the gastric cardia and distal oesophagus. Gut 2003; 52: 16781683.
  • 92
    Shirvani VN, Ouatu-Lascar R, Kaur BS, et al. Cyclooxygenase 2 Expression in Barrett's Esophagus and Adenocarcinoma: Ex Vivo Induction by Bile Salts and Acid Exposure. Gastroenterology 2000; 118: 487496.
  • 93
    Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787791.
  • 94
    Lord RV, Salonga D, Danenberg KD, et al. Telomerase reverse transcriptase expression is increased early in the Barrett's metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg 2000; 4: 135142.
  • 95
    Morales CP, Lee EL, Shay JW. In situ hybridization for the detection of telomerase RNA in the progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer 1998; 83: 652659.
  • 96
    Shammas MA, Koley H, Beer DG, et al. Growth arrest, apoptosis, and telomere shortening of Barrett's-associated adenocarcinoma cells by a telomerase inhibitor. Gastroenterology 2004; 126: 13371346.
  • 97
    Kleespies A, Guba M, Jauch KW, Bruns CJ. Vascular endothelial growth factor in esophageal cancer. J Surg Oncol 2004; 87: 95104.
  • 98
    Lord RV, Park JM, Wickramasinghe K, et al. Vascular endothelial growth factor and basic fibroblast growth factor expression in esophageal adenocarcinoma and Barrett esophagus. J Thorac Cardiovasc Surg 2003; 125: 246253.
  • 99
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 23352342.
  • 100
    Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 1996; 61: 514523.
  • 101
    Swami S, Kumble S, Triadafilopoulos G. E-cadherin expression in gastroesophageal reflux disease, Barrett's esophagus, and esophageal adenocarcinoma: an immunohistochemical and immunoblot study. Am J Gastroenterol 1995; 90: 18081813.
  • 102
    Washington K, Chiappori A, Hamilton K, et al. Expression of beta-catenin, alpha-catenin, and E-cadherin in Barrett's esophagus and esophageal adenocarcinomas. Mod Pathol 1998; 11: 805813.
  • 103
    Bailey T, Biddlestone L, Shepherd N, et al. Altered cadherin and catenin complexes in the Barrett's esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation. Am J Pathol 1998; 152: 135144.
  • 104
    Seery JP, Syrigos KN, Karayiannakis AJ, et al. Abnormal expression of the E-cadherin-catenin complex in dysplastic Barrett's oesophagus. Acta Oncol 1999; 38: 945948.
  • 105
    Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295: 23872392.
  • 106
    Salmela MT, Karjalainen-Lindsberg ML, Puolakkainen P, Saarialho-Kere U. Upregulation and differential expression of matrilysin (MMP-7) and metalloelastase (MMP-12) and their inhibitors TIMP-1 and TIMP-3 in Barrett's oesophageal adenocarcinoma. Br J Cancer 2001; 85: 383392.
  • 107
    Miao X, Yu C, Tan W, et al. A functional polymorphism in the matrix metalloproteinase-2 gene promoter (-1306C/T) is associated with risk of development but not metastasis of gastric cardia adenocarcinoma. Cancer Res 2003; 63: 39873990.
  • 108
    Wagenaar-Miller RA, Gorden L, Matrisian LM. Matrix metalloproteinases in colorectal cancer:is it worth talking about? Cancer Metastasis Rev 2004; 23: 119135.
  • 109
    Shaheen NJ, Provenzale D, Sandler RS. Upper endoscopy as a screening and surveillance tool in esophageal adenocarcinoma: a review of the evidence. Am J Gastroenterol 2002; 97: 13191327.
    Direct Link:
  • 110
    Inadomi JM, Sampliner R, Lagergren J, et al. Screening and surveillance for Barrett esophagus in high-risk groups: a cost-utility analysis. Ann Intern Med 2003; 138: 176186.
  • 111
    Dulai GS, Guha S, Kahn KL, et al. Preoperative prevalence of Barrett's esophagus in esophageal adenocarcinoma: a systematic review. Gastroenterology 2002; 122: 2633.
  • 112
    Cameron AJ, Ott BJ, Payne WS. The incidence of adenocarcinoma in columnar-lined (Barrett's) esophagus. N Engl J Med 1985; 313: 857859.
  • 113
    Van der Veen AH, Dees J, Blankensteijn JD, van Blankenstein M. Adenocarcinoma in Barrett's oesophagus: an overrated risk. Gut 1989; 30: 1418.
  • 114
    Eckardt VF, Kanzler G, Bernhard G. Life expectancy and cancer risk in patients with Barrett's esophagus: a prospective controlled investigation. Am J Med 2001; 111: 3337.
  • 115
    Anderson LA, Murray LJ, Murphy SJ, et al. Mortality in Barrett's oesophagus: results from a population based study. Gut 2003; 52: 10811084.
  • 116
    Streitz JM, Jr., Andrews CW, Jr., Ellis FH, Jr. Endoscopic surveillance of Barrett's esophagus. Does it help? J Thorac Cardiovasc Surg 1993; 105: 383387.
  • 117
    Peters JH, Clark GW, Ireland AP, et al. Outcome of adenocarcinoma arising in Barrett's esophagus in endoscopically surveyed and nonsurveyed patients. J Thorac Cardiovasc Surg 1994; 108: 813821.
  • 118
    Corley DA, Levin TR, Habel LA, et al. Surveillance and survival in Barrett's adenocarcinomas: a population-based study. Gastroenterology 2002; 122: 633640.
  • 119
    Fountoulakis A, Zafirellis KD, Dolan K, et al. Effect of surveillance of Barrett's oesophagus on the clinical outcome of oesophageal cancer. Br J Surg 2004; 91: 9971003.
  • 120
    Provenzale D, Schmitt C, Wong JB. Barrett's esophagus: a new look at surveillance based on emerging estimates of cancer risk. Am J Gastroenterol 1999; 94: 20432053.
    Direct Link:
  • 121
    Soni A, Sampliner RE, Sonnenberg A. Screening for high-grade dysplasia in gastroesophageal reflux disease: is it cost-effective? Am J Gastroenterol 2000; 95: 20862093.
    Direct Link:
  • 122
    Sonnenberg A, Soni A, Sampliner RE. Medical decision analysis of endoscopic surveillance of Barrett's oesophagus to prevent oesophageal adenocarcinoma. Aliment Pharmacol Ther 2002; 16: 4150.
  • 123
    Gerson LB, Groeneveld PW, Triadafilopoulos G. Cost-effectiveness model of endoscopic screening and surveillance in patients with gastroesophageal reflux disease. Clin Gastroenterol Hepatol 2004; 2: 868879.
  • 124
    Spechler SJ. Should patients with GERD be screened once at least for Barrett's epithelium? A balancing view: to screen or not to screen: scoping out the issues. Am J Gastroenterol 2004; 99: 22952296.
    Direct Link:
  • 125
    Sampliner RE. Updated guidelines for the diagnosis, surveillance, and therapy of Barrett's esophagus. Am J Gastroenterol 2002; 97: 18881895.
    Direct Link:
  • 126
    Souza RF, Shewmake KL, Shen Y, et al. Differences in ERK activation in squamous mucosa in patients who have gastroesophageal reflux disease with and without Barrett's esophagus. Am J Gastroenterol 2005; 100: 551559.
    Direct Link:
  • 127
    Fitzgerald RC, Omary MB, Triadafilopoulos G. Dynamic effects of acid on Barrett's esophagus. An ex vivo proliferation and differentiation model. J Clin Invest 1996; 98: 21202128.
  • 128
    Ouatu-Lascar R, Fitzgerald RC, Triadafilopoulos G. Differentiation and proliferation in Barrett's esophagus and the effects of acid suppression. Gastroenterology 1999; 117: 327335.
  • 129
    El Serag HB, Aguirre TV, Davis S, et al. Proton pump inhibitors are associated with reduced incidence of dysplasia in Barrett's esophagus. Am J Gastroenterol 2004; 99: 18771883.
    Direct Link:
  • 130
    Peters FT, Ganesh S, Kuipers EJ, et al. Effect of elimination of acid reflux on epithelial cell proliferative activity of Barrett esophagus. Scand J Gastroenterol 2000; 35: 12381244.
  • 131
    Umansky M, Yasui W, Hallak A, et al. Proton pump inhibitors reduce cell cycle abnormalities in Barrett's esophagus. Oncogene 2001; 20: 79877991.
  • 132
    Haigh CR, Attwood SE, Thompson DG, et al. Gastrin induces proliferation in Barrett's metaplasia through activation of the CCK2 receptor. Gastroenterology 2003; 124: 615625.
  • 133
    Abdalla SI, Lao-Sirieix P, Novelli MR, et al. Gastrin-induced cyclooxygenase-2 expression in Barrett's carcinogenesis. Clin Cancer Res 2004; 10: 47844792.
  • 134
    DeMeester SR, DeMeester TR. Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann Surg 2000; 231: 303321.
  • 135
    McCallum RW PSDKFHBS. Role of anti-reflux surgery against dysplasia in Barrett's esophagus. Gastroenterology 100. 1991.
  • 136
    Katz D, Rothstein R, Schned A, et al. The development of dysplasia and adenocarcinoma during endoscopic surveillance of Barrett's esophagus. Am J Gastroenterol 1998; 93: 536541.
    Direct Link:
  • 137
    Theisen J, Nehra D, Citron D, et al. Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. J Gastrointest Surg 2000; 4: 5054.
  • 138
    Kauer WK, Peters JH, DeMeester TR, et al. Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 1995; 222: 525531.
  • 139
    Wetscher GJ, Hinder RA, Smyrk T, et al. Gastric acid blockade with omeprazole promotes gastric carcinogenesis induced by duodenogastric reflux. Dig Dis Sci 1999; 44: 11321135.
  • 140
    Farrow DC, Vaughan TL, Sweeney C, et al. Gastroesophageal reflux disease, use of H2 receptor antagonists, and risk of esophageal and gastric cancer. Cancer Causes Control 2000; 11: 231238.
  • 141
    Spechler SJ, Lee E, Ahnen D, et al. Long-term outcome of medical and surgical therapies for gastroesophageal reflux disease: follow-up of a randomized controlled trial. JAMA 2001; 285: 23312338.
  • 142
    Ye W, Chow WH, Lagergren J, Yin L, et al. Risk of adenocarcinomas of the esophagus and gastric cardia in patients with gastroesophageal reflux diseases and after antireflux surgery. Gastroenterology 2001; 121: 12861293.
  • 143
    Corey KE, Schmitz SM, Shaheen NJ. Does a surgical antireflux procedure decrease the incidence of esophageal adenocarcinoma in Barrett's esophagus? A meta-analysis. Am J Gastroenterol 2003; 98: 23902394.
    Direct Link:
  • 144
    Fong LY, Pegg AE, Magee PN. Alpha-difluoromethylornithine inhibits N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in zinc-deficient rats: effects on esophageal cell proliferation and apoptosis. Cancer Res 1998; 58: 53805388.
  • 145
    Hixson LJ, Garewal HS, McGee DL, et al. Ornithine decarboxylase and polyamines in colorectal neoplasia and mucosa. Cancer Epidemiol Biomarkers Prev 1993; 2: 369374.
  • 146
    Rozhin J, Wilson PS, Bull AW, Nigro ND. Ornithine decarboxylase activity in the rat and human colon. Cancer Res 1984; 44: 32263230.
  • 147
    Tempero M. Bile acids, ornithine decarboxylase, and cell proliferation in colon cancer: a review. Dig Dis 1986; 4: 4956.
  • 148
    Erdman SH, Ignatenko NA, Powell MB, et al. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 1999; 20: 17091713.
  • 149
    Nowels K, Homma Y, Seidenfeld J, Oyasu R. Prevention of inhibitory effects of alpha-difluoromethylornithine on rat urinary bladder carcinogenesis by exogenous putrescine. Cancer Biochem Biophys 1986; 8: 257263.
  • 150
    Thompson HJ, Ronan AM, Ritacco KA, Meeker LD. Effect of tamoxifen and D,L-2-difluoromethylornithine on the growth, ornithine decarboxylase activity and polyamine content of mammary carcinomas induced by 1-methyl-1-nitrosourea. Carcinogenesis 1986; 7: 837840.
  • 151
    Verma AK. Inhibition of tumor promotion by DL-alpha-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase. Basic Life Sci 1990; 52: 195204.
  • 152
    Schweitzer VG. Ototoxicity of chemotherapeutic agents. Otolaryngol Clin North Am 1993; 26: 759789.
  • 153
    Love RR, Carbone PP, Verma AK, et al. Randomized phase I chemoprevention dose-seeking study of alpha-difluozromethylornithine. J Natl Cancer Inst 1993; 85: 732737.
  • 154
    Meyskens FL, Jr., Gerner EW, Emerson S, et al. Effect of alpha-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J Natl Cancer Inst 1998; 90: 12121218.
  • 155
    Meyskens FL, Jr., Gerner EW. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 1999; 5: 945951.
  • 156
    Mitchell MF, Tortolero-Luna G, Lee JJ, et al. Phase I dose de-escalation trial of alpha-difluoromethylornithine in patients with grade 3 cervical intraepithelial neoplasia. Clin Cancer Res 1998; 4: 303310.
  • 157
    Garewal HS, Gerner EW, Sampliner RE, Roe D. Ornithine decarboxylase and polyamine levels in columnar upper gastrointestinal mucosae in patients with Barrett's esophagus. Cancer Res 1988; 48: 32883291.
  • 158
    Gray MR, Wallace HM, Goulding H, et al. Mucosal polyamine metabolism in the columnar lined oesophagus. Gut 1993; 34: 584587.
  • 159
    Garewal HS, Sampliner R, Gerner E, et al. Ornithine decarboxylase activity in Barrett's esophagus: a potential marker for dysplasia. Gastroenterology 1988; 94: 819821.
  • 160
    Garewal HS, Sampliner RE, Fennerty MB. Chemopreventive studies in Barrett's esophagus: a model premalignant lesion for esophageal adenocarcinoma. J Natl Cancer Inst Monogr 1992; 5154.
  • 161
    Lao CD, Backoff P, Shotland LI, et al. Irreversible ototoxicity associated with difluoromethylornithine. Cancer Epidemiol Biomarkers Prev 2004; 13: 12501252.
  • 162
    Takashima T, Fujiwara Y, Higuchi K, et al. PPAR-gamma ligands inhibit growth of human esophageal adenocarcinoma cells through induction of apoptosis, cell cycle arrest and reduction of ornithine decarboxylase activity. Int J Oncol 2001; 19: 465471.
  • 163
    Simmons DL, Levy DB, Yannoni Y, Erikson RL. Identification of a phorbol ester-repressible v-src-inducible gene. Proc Natl Acad Sci U S A 1989; 86: 11781182.
  • 164
    Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 11831188.
  • 165
    Tucker ON, Dannenberg AJ, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 1999; 59: 987990.
  • 166
    Steinbach G, Lynch PM, Phillips RK, et al. The effect of Celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 342: 19461952.
  • 167
    Ding XZ, Tong WG, Adrian TE. Blockade of cyclooxygenase-2 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Anticancer Res 2000; 20: 26252631.
  • 168
    Kawamori T, Rao CV, Seibert K, Reddy BS. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 1998; 58: 409412.
  • 169
    Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 1993; 328: 13131316.
  • 170
    Thun MJ, Namboodiri MM, Calle EE, et al. Aspirin use and risk of fatal cancer [see comments]. Cancer Res 1993; 53: 13221327.
  • 171
    Farrow DC, Vaughan TL, Hansten PD, et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 1998; 7: 97102.
  • 172
    Greenberg ER, Baron JA, Freeman DHJ, et al. Reduced risk of large-bowel adenomas among aspirin users. The Polyp Prevention Study Group. J Natl Cancer Inst 1993; 85: 912916.
  • 173
    Molina MA, Sitja-Arnau M, Lemoine MG, et al. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 1999; 59: 43564362.
  • 174
    Piazza GA, Rahm AL, Krutzsch M, et al. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 1995; 55: 31103116.
  • 175
    Souza RF, Shewmake K, Beer D.G., et al. Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinoma cells. Cancer Res 2000; 60: 57675772.
  • 176
    Buttar NS, Wang KK, Anderson MA, et al. The effect of selective cyclooxygenase-2 inhibition in Barrett's esophagus epithelium: an in vitro study. J Natl Cancer Inst 2002; 94: 422429.
  • 177
    Buttar NS, Wang KK, Leontovich O, et al. Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett's esophagus. Gastroenterology 2002; 122: 11011112.
  • 178
    Oyama K, Fujimura T, Ninomiya I, et al. A COX-2 inhibitor prevents the esophageal inflammation-metaplasia-adenocarcinoma sequence in rats. Carcinogenesis 2005; 26: 565570.
  • 179
    Kaur BS, Khamnehei N, Iravani M, et al. Rofecoxib inhibits cyclooxygenase 2 expression and activity and reduces cell proliferation in Barrett's esophagus. Gastroenterology 2002; 123: 6067.
  • 180
    Aggarwal S, Taneja N, Lin L, et al. Indomethacin-induced apoptosis in esophageal adenocarcinoma cells involves upregulation of Bax and translocation of mitochondrial cytochrome C independent of COX-2 expression [In Process Citation]. Neoplasia 2000; 2: 346356.
  • 181
    Raj A, Jankowski J. Acid suppression and chemoprevention in Barrett's oesophagus. Dig Dis 2004; 22: 171180.
  • 182
    Jankowski J, Sharma P. Review article: approaches to Barrett's oesophagus treatment-the role of proton pump inhibitors and other interventions. Aliment Pharmacol Ther 2004; 19 Suppl 1: 5459.