• 1
    National Center for Health Statistics, Division of Vital Statistics, Centers for Disease Control. Available at: Accessed January 2006.
  • 2
    Surveillance, Epidemiology, and End Results (SEER) Program ( SEER*Stat Database: Incidence—SEER 9 Regs Public-Use, Nov 2004 Sub (1973-2002), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2005, based on the November 2004 submission.
  • 3
    Ries LAG, Eisner MP, Kosary CL, et al. (eds). SEER Cancer Statistics Review, 1975-2002. Bethesda, MD: National Cancer Institute. Available at:
  • 4
    Surveillance, Epidemiology, and End Results (SEER) Program ( SEER*Stat Database: Incidence—SEER 12 Regs Public-Use, Nov 2004 Sub for Expanded Races (1992-2002), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2005, based on the November 2004 submission.
  • 5
    Surveillance, Epidemiology, and End Results (SEER) Program ( SEER*Stat Database: Incidence—SEER 11 Regs Public-Use, Nov 2004 Sub for Hispanics (1992-2002), National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2005, based on the November 2004 submission.
  • 6
    US Census Bureau. Available at: Accessed September 2005.
  • 7
    World Health Organization. International Statistical Classification of Diseases, Injuries, and Causes of Death. Vol. 1, 10th Rev. Geneva: WHO, 1992.
  • 8
    World Health Organization. International Statistical Classification of Diseases, Injuries, and Causes of Death. Vol. 1, 9th Rev. Geneva: WHO, 1975.
  • 9
    World Health Organization. International Statistical Classification of Diseases, Injuries, and Causes of Death. Vol. 1, 8th Rev. Geneva: WHO, 1967.
  • 10
    Fritz A, Percy C, Jack A, et al Radioimmunotherapy of non-Hodgkin's lymphoma with 90 Y-DOTA humanized anti-CD22 IgG (90 Y-epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med 2003; 44: 20002018.
  • 138
    Linden O, Hindorf C, Cavallin-Stahl E, et al. Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated, 90 Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res 2005; 11: 52155222.
  • 139
    Chen S, Yu L, Jiang C, et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 2005; 23: 15381547.
  • 140
    Sharkey RM, Pykett MJ, Siegel JA, et al. Radioimmunotherapy of the GW-39 human colonic tumor xenograft with 131 I-labeled murine monoclonal antibody to carcinoembryonic antigen. Cancer Res 1987; 47: 56725677.
  • 141
    Blumenthal RD, Sharkey RM, Haywood L, et al. Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131 I-labeled monoclonal antibodies. Cancer Res 1992; 52: 60366044.
  • 142
    Liersch T, Meller J, Kulle B, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131 I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 2005; 23: 67636770.
  • 143
    Reardon DA, Akabani G, Coleman RE, et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 2006; 24: 115122.
  • 144
    Alvarez RD, Huh WK, Khazaeli MB, et al. A phase I study of combined modality 90 Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 2002; 8: 28062811.
  • 145
    Mahe MA, Fumoleau P, Fabbro M, et al. A phase II study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin Cancer Res 1999; 5: 3249s3253s.
  • 146
    DeNardo SJ, Kukis DL, Kroger LA, et al. Synergy of taxol and radioimmunotherapy with yttrium-90-labeled chimeric L6 antibody: efficacy and toxicity in breast cancer xenografts. Proc Natl Acad Sci USA 1997; 94: 40004004.
  • 147
    Tschmelitsch J, Barendswaard E, Williams C, et al. Enhanced antitumor activity of combination radioimmunotherapy (131 I-labeled monoclonal antibody A33) with chemotherapy (fluorouracil). Cancer Res 1997; 57: 21812186.
  • 148
    Clarke K, Lee FT, Brechbiel MW, et al. Therapeutic efficacy of anti-Lewis(y) humanized 3S193 radioimmunotherapy in a breast cancer model: enhanced activity when combined with taxol chemotherapy. Clin Cancer Res 2000; 6: 36213628.
  • 149
    Burke PA, DeNardo SJ, Miers LA, et al. Combined modality radioimmunotherapy. Promise and peril. Cancer 2002; 94(suppl): 13201331.
  • 150
    Gold DV, Modrak DE, Schutsky K, Cardillo TM. Combined 90 yttrium-DOTA-labeled PAM4 antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft. Int J Cancer 2004; 109: 618626.
  • 151
    Gold DV, Schutsky K, Modrak D, Cardillo TM. Low-dose radioimmunotherapy (90 Y-PAM4) combined with gemcitabine for the treatment of experimental pancreatic cancer. Clin Cancer Res 2003; 9: 3929S3937S.
  • 152
    Graves SS, Dearstyne E, Lin Y, et al. Combination therapy with pretarget CC49 radioimmunotherapy and gemcitabine prolongs tumor doubling time in a murine xenograft model of colon cancer more effectively than either monotherapy. Clin Cancer Res 2003; 9: 37123721.
  • 153
    Kraeber-Bodere F, Sai-Maurel C, Campion L, et al. Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Mol Cancer Ther 2002; 1: 267274.
  • 154
    Baumann M, Krause M. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 2004; 72: 257266.
  • 155
    Mathé G, Loc TB, Bernard J. Effet sur la leucémie 1210 de la souris d'une combinaison par diazotation d'A-méthoptérine et de γ-globulines de hamsters porteurs de cette leucémie par hétérogreffe. C R Acad Sci (Paris) 1958; 246: 16261628.
  • 156
    Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 2001; 7: 14901496.
  • 157
    Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 2005; 104: 14421452.
  • 158
    Chevallier P, Roland V, Mahe B, et al. Administration of mylotarg 4 days after beginning of a chemotherapy including intermediate-dose aracytin and mitoxantrone (MIDAM regimen) produces a high rate of complete hematologic remission in patients with CD33+ primary resistant or relapsed acute myeloid leukemia. Leuk Res 2005; 29: 10031007.
  • 159
    Amadori S, Suciu S, Stasi R, et al. Gemtuzumab ozogamicin (Mylotarg®) as single-agent treatment for frail patients 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a phase 2 study of the European Organisation for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell'Adulto Leukemia Groups. Leukemia 2005; 19: 17681773.
  • 160
    Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood 2005; 106: 11831188.
  • 161
    Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nature Biotechnol 2005; 23: 11371146.
  • 162
    Chen J, Jaracz S, Zhao X, et al. Antibody-cytotoxic agent conjugates for cancer therapy. Expert Opin Drug Deliv 2005; 2: 873890.
  • 163
    Govindan SV, Griffiths GL, Hansen HJ, et al. Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies. Technol Cancer Res Treat 2005; 4: 375391.
  • 164
    Smith SV. Technology evaluation: cantuzumab mertansine, ImmunoGen. Curr Opin Mol Ther 2004; 6: 666674.
  • 165
    Law CL, Cerveny CG, Gordon KA, et al. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin Cancer Res 2004; 10: 78427851.
  • 166
    Torgov MY, Alley SC, Cerveny CG, et al. Generation of an intensely potent anthracycline by a monoclonal antibody-beta-galactosidase conjugate. Bioconjug Chem 2005; 16: 717721.
  • 167
    Hamann PR, Hinman LM, Beyer CF, et al. A calicheamicin conjugate with a fully humanized anti-MUC1 antibody shows potent antitumor effects in breast and ovarian tumor xenografts. Bioconjug Chem 2005; 16: 354360.
  • 168
    Burton JD, Ely S, Reddy PK, et al. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 2004; 10: 66066611.
  • 169
    Griffiths GL, Mattes MJ, Stein R, et al. Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin Cancer Res 2003; 9: 65676571.
  • 170
    Sapra P, Stein R, Pickett J, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res 2005; 11: 52575264.
  • 171
    Chang CH, Sapra P, Vanama SS, et al. Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood 2005; 106: 43084314.
  • 172
    Jedema I, Barge RM, van der Velden VH, et al. Internalization and cell cycle-dependent killing of leukemic cells by gemtuzumab ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 2004; 18: 316325.
  • 173
    Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204: 216237.
  • 174
    Naito K, Takeshita A, Shigeno K, et al. Calicheamicin conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin CMA-676) shows cytocidal effects on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 2000; 14: 14361443.
  • 175
    Hamann PR, Hinman LM, Beyer CF, et al. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug Chem 2005; 16: 346353.
  • 176
    Hamann PR, Hinman LM, Beyer CF, et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem 2002; 13: 4046.
  • 177
    Sharma SK, Bagshawe KD, Begent RH. Advances in antibody-directed enzyme prodrug therapy. Curr Opin Investig Drugs 2005; 6: 611615.
  • 178
    Francis RJ, Sharma SK, Springer C, et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br J Cancer 2002; 87: 600607.
  • 179
    Mayer A, Sharma SK, Tolner B, et al. Modifying an immunogenic epitope on a therapeutic protein: a step towards an improved system for antibody-directed enzyme prodrug therapy (ADEPT). Br J Cancer 2004; 90: 24022410.
  • 180
    Cortez-Retamozo V, Backmann N, Senter PD, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 2004; 64: 28532857.
  • 181
    Eklund JW, Kuzel TM. Denileukin diftitox: a concise clinical review. Expert Rev Anticancer Ther 2005; 5: 3338.
  • 182
    Frankel AE, Kreitman RJ, Sausville EA. Targeted toxins. Clin Cancer Res 2000; 6: 326334.
  • 183
    Pastan I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother 2003; 52: 338341.
  • 184
    Newton DL, Hansen HJ, Mikulski SM, et al. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood 2001; 97: 528535.
  • 185
    Vitetta ES, Fulton RJ, May RD, et al. Redesigning nature's poisons to create anti-tumor reagents. Science 1987; 238: 10981104.
  • 186
    Gadina M, Newton DL, Rybak SM, et al. Humanized immunotoxins. Ther Immunol 1994; 1: 5964.
  • 187
    Amlot PL, Stone MJ, Cunningham D, et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 1993; 82: 26242633.
  • 188
    Sausville EA, Headlee D, Stetler-Stevenson M, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood 1995; 85: 34573465.
  • 189
    Stone MJ, Sausville EA, Fay JW, et al. A phase I study of bolus versus continuous infusion of the anti-CD19 immunotoxin, IgG-HD37-dgA, in patients with B-cell lymphoma. Blood 1996; 88: 11881197.
  • 190
    Smallshaw JE, Ghetie V, Rizo J, et al. Genetic engineering of an immunotoxin to eliminate vascular leak in mice. Nat Biotechnol 2003; 21: 387391.
  • 191
    Kreitman RJ, Squires DR, Stetler-Stevenson M, et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 2005; 23: 67196729.
  • 192
    Posey JA, Khazaeli MB, Bookman MA, et al. A Phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE-40) in patients with advanced solid tumors. Clin Cancer Res 2002; 8: 30923099.
  • 193
    Hellstrom I, Garrigues HJ, Garrigues U, Hellstrom KE. Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Le(y)-related surface antigens. Cancer Res 1990; 50: 21832190.
  • 194
    Wittes RE. Cancer weapons, out of reach. The Washington Post. June 28, 2004.
  • 195
    Saltz LB, Lenz H, Hochster HS, et al. Randomized phase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer. J Clin Oncol 2005; 23: 248s.