SEARCH

SEARCH BY CITATION

References

  • Aiyagari, R. (1994), “Uninsured idiosyncratic risk and aggregate saving. Quarterly Journal of Economics, 109, 659684. DOI: 10.2307/2118417
  • Aruoba, S., J. Fernandez-Villaverde, and J. Rubio-Ramírez (2006), “Comparing solution methods for dynamic equilibrium economies. Journal of Economic Dynamics and Control, 30, 24772508. DOI: 10.1016/j.jedc.2005.07.008
  • Asmussen, S. and P. Glynn (2007), Stochastic Simulation: Algorithms and Analysis. Springer, New York .
  • Barro, R. (2009), “Rare disasters, asset prices, and welfare costs. American Economic Review, 99, 243264. DOI: 10.1257/aer.99.1.243
  • Brown, P. (1993), Measurement, Regression, and Calibration. Clarendon Press, Oxford .
  • Charnes, A., W. Cooper, and R. Ferguson (1955), “Optimal estimation of executive compensation by linear programming. Management Science, 1, 138151. DOI: 10.1287/mnsc.1.2.138
  • Christiano, L. and D. Fisher (2000), “Algorithms for solving dynamic models with occasionally binding constraints. Journal of Economic Dynamics and Control, 24, 11791232. DOI: 10.1016/S0165-1889(99)00016-0
  • Creel, M. (2008), “Using parallelization to solve a macroeconomic model: A parallel parameterized expectations algorithm. Computational Economics, 32, 343352. DOI: 10.1007/s10614-008-9142-6
  • Davidson, R. and J. MacKinnon (1993), Estimation and Inference in Econometrics. Oxford University Press, New York .
  • Den Haan, W. (1990), “The optimal inflation path in a Sidrauski-type model with uncertainty. Journal of Monetary Economics, 25, 389409. DOI: 10.1016/0304-3932(90)90060-H
  • Den Haan, W. (2010), “Comparison of solutions to the incomplete markets model with aggregate uncertainty. Journal of Economic Dynamics and Control, 34, 427. DOI: 10.1016/j.jedc.2008.12.010
  • Den Haan, W. and A. Marcet (1990), “Solving the stochastic growth model by parameterized expectations. Journal of Business and Economic Statistics, 8, 3134. DOI: 10.2307/1391746
  • Dielman, T. (2005), “Least absolute value: Recent contributions. Journal of Statistical Computation and Simulation, 75, 263286. DOI: 10.1080/0094965042000223680
  • Eckart, C. and G. Young (1936), “The approximation of one matrix by another of lower rank. Psychometrika, 1, 211218. DOI: 10.1007/BF02288367
  • Eldén, L. (2007), Matrix Methods in Data Mining and Pattern Recognition. SIAM, Philadelphia . DOI: 10.1137/1.9780898718867
  • Fair, R. and J. Taylor (1983), “Solution and maximum likelihood estimation of dynamic nonlinear rational expectation models. Econometrica, 51, 11691185. DOI: 10.2307/1912057
  • Ferris, M., O. Mangasarian, and S. Wright (2007), Linear Programming With MATLAB. MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia , Pennsylvania . DOI: 10.1137/1.9780898718775
  • Gaspar, J. and K. Judd (1997), “Solving large scale rational expectations models. Macroeconomic Dynamics, 1, 4575.
  • Geweke, J. (1996), “Monte Carlo simulation and numerical integration.” In Handbook of Computational Economics (H.Amman, D.Kendrick, and J.Rust, eds.), 733800, Elsevier Science, Amsterdam .
  • Golub, G. and C. Van Loan (1996), Matrix Computations. The John Hopkins University Press, Baltimore , Maryland .
  • Hadi, A. and R. Ling (1998), “Some cautionary notes on the use of principal components regression. American Statistician, 52, 1519. DOI: 10.2307/2685559
  • Heer, B. and A. Maussner (2008), “Computation of business cycle models: A comparison of numerical methods. Macroeconomic Dynamics, 12, 641663. DOI: 10.1017/S1365100508070363
  • Hoerl, A. and R. Kennard (1970), “Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 6982. DOI: 10.2307/1267352
  • Judd, K. (1992), “Projection methods for solving aggregate growth models. Journal of Economic Theory, 58, 41052. DOI: 10.1016/0022-0531(92)90061-L
  • Judd, K. (1998), Numerical Methods in Economics. MIT Press, Cambridge , Massachusetts .
  • Judd, K. and S. Guu (1993), “Perturbation solution methods for economic growth models.” In Economic and Financial Modeling With Mathematica (H.Varian, ed.), 80103, Springer-Verlag, Santa Clara , California .
  • Judd, K., L. Maliar, and S. Maliar (2009), “Numerically stable stochastic simulation methods for solving dynamic economic models.” Working Paper 15296, NBER.
  • Judd, K., L. Maliar, and S. Maliar (2010), “A cluster-grid projection method: Solving problems with high dimensionality.” Working Paper 15965, NBER.
  • Judd, K., L. Maliar, and S. Maliar (2011), “One-node quadrature beats Monte Carlo: A generalized stochastic simulation algorithm.” Working Paper 16708, NBER.
  • Juillard, M. and S. Villemot (2011), “Multi-country real business cycle models: Accuracy tests and testing bench. Journal of Economic Dynamics and Control, 35, 178185. DOI: 10.1016/j.jedc.2010.09.011
  • Koenker, R. and G. Bassett (1978), “Regression quantiles. Econometrica, 46, 3350. DOI: 10.2307/1913643
  • Kollmann, R., S. Kim, and J. Kim (2011), “Solving the multi-country real business cycle model using a perturbation method. Journal of Economic Dynamics and Control, 35, 203206. DOI: 10.1016/j.jedc.2010.09.012
  • Kollmann, R., S. Maliar, B. Malin, and P. Pichler (2011), “Comparison of solutions to the multi-country real business cycle model. Journal of Economic Dynamics and Control, 35, 186202. DOI: 10.1016/j.jedc.2010.09.013
  • Krueger, D. and F. Kubler (2004), “Computing equilibrium in OLG models with production. Journal of Economic Dynamics and Control, 28, 14111436. DOI: 10.1016/S0165-1889(03)00111-8
  • Krusell, P. and A. Smith (1998), “Income and wealth heterogeneity in the macroeconomy. Journal of Political Economy, 106, 868896. DOI: 10.1086/250034
  • Maliar, L. and S. Maliar (2003a), “The representative consumer in the neoclassical growth model with idiosyncratic shocks. Review of Economic Dynamics, 6, 362380. DOI: 10.1016/S1094-2025(03)00003-6
  • Maliar, L. and S. Maliar (2003b), “Parameterized expectations algorithm and the moving bounds. Journal of Business and Economic Statistics, 21, 8892. DOI: 10.1198/073500102288618793
  • Maliar, L. and S. Maliar (2005), “Solving nonlinear stochastic growth models: Iterating on value function by simulations. Economics Letters, 87, 135140. DOI: 10.1016/j.econlet.2004.10.009
  • Maliar, L., S. Maliar, and F. Valli (2010), “Solving the incomplete markets model with aggregate uncertainty using the Krusell–Smith algorithm. Journal of Economic Dynamics and Control, 34, 4249. DOI: 10.1016/j.jedc.2009.03.009
  • Maliar, L., S. Maliar, and S. Villemot (2011), “Taking perturbation to the accuracy frontier: A hybrid of local and global solutions.” Dynare, Working Paper 6.
  • Maliar, S., L. Maliar, and K. Judd (2011), “Solving the multi-country real business cycle model using ergodic set methods. Journal of Economic Dynamic and Control, 35, 207228. DOI: 10.1016/j.jedc.2010.09.014
  • Malin, B., D. Krueger, and F. Kubler (2011), “Solving the multi-country real business cycle model using a Smolyak-collocation method. Journal of Economic Dynamics and Control, 35, 229239. DOI: 10.1016/j.jedc.2010.09.015
  • Marcet, A. (1988), “Solving non-linear models by parameterizing expectations.” Unpublished manuscript, Carnegie Mellon University, Graduate School of Industrial Administration .
  • Marcet, A. and G. Lorenzoni (1999), “The parameterized expectation approach: Some practical issues.” In Computational Methods for Study of Dynamic Economies (R.Marimon and A.Scott, eds.), 143171, Oxford University Press, New York .
  • Marimon, R. and A. Scott (1999), Computational Methods for Study of Dynamic Economies. Oxford University Press, New York .
  • Miranda, M. and P. Fackler (2002), Applied Computational Economics and Finance. MIT Press, Cambridge , Massachusetts .
  • Miranda, M. and P. Helmberger (1988), “The effects of commodity price stabilization programs. American Economic Review, 78, 4658.
  • Narula, S. and J. Wellington (1982), “The minimum sum of absolute errors regression: A state of the art survey. International Statistical Review, 50, 317326. DOI: 10.2307/1402501
  • Pichler, P. (2011), “Solving the multi-country real business cycle model using a monomial rule Galerkin method. Journal of Economic Dynamics and Control, 35, 240251. DOI: 10.1016/j.jedc.2010.09.009
  • Portnoy, S. and R. Koenker (1997), “The Gaussian hare and the Laplacian tortoise: Computability of squared error versus absolute-error estimators. Statistical Science, 12, 279296. DOI: 10.1214/ss/1030037960
  • Rust, J. (1996), “Numerical dynamic programming in economics.” In Handbook of Computational Economics (H.Amman, D.Kendrick, and J.Rust, eds.), 619722, Elsevier Science, Amsterdam .
  • Santos, M. (1999), “Numerical solution of dynamic economic models.” In Handbook of Macroeconomics (J.Taylor and M.Woodford, eds.), 312382, Elsevier Science, Amsterdam .
  • Smith, A. (1993), “Estimating nonlinear time-series models using simulated vector autoregressions. Journal of Applied Econometrics, 8, S63S84. DOI: 10.1002/jae.3950080506
  • Taylor, J. and H. Uhlig (1990), “Solving nonlinear stochastic growth models: A comparison of alternative solution methods. Journal of Business and Economic Statistics, 8, 117. DOI: 10.2307/1391742
  • Tits, A., P. Absil, and W. Woessner (2006), “Constraint reduction for linear programs with many inequality constraints. SIAM Journal on Optimization, 17, 119146. DOI: 10.1137/050633421
  • Wagner, H. (1959), “Linear programming techniques for regression analysis. American Statistical Association Journal, 54, 206212. DOI: 10.2307/2282146
  • Wang, L., M. Gordon, and J. Zhu (2006), “Regularized least absolute deviations regression and an efficient algorithm for parameter tuning.” In Proceedings of the Sixth International Conference on Data Mining, 690700, IEEE Computer Society, Los Alamitos , California . DOI: 10.1109/ICDM.2006.134
  • Wright, B. and J. Williams (1984), “The welfare effects of the introduction of storage. Quarterly Journal of Economics, 99, 169192. DOI: 10.2307/1885726