SEARCH

SEARCH BY CITATION

References

  • Arcidiacono, P., P. Bayer, J. Blevins, and P. Ellickson (2010), “Estimation of dynamic discrete choice models in continuous time.” Working paper, Duke University , Durham .
  • Basar, T. and J. Olsder (1999), Dynamic Noncooperative Game Theory, second edition. Society for Industrial and Applied Mathematics, Philadelphia .
  • Bellman, R. (1957), Dynamic Programming. Princeton University Press, Princeton .
  • Benkard, L. (2004), “A dynamic analysis of the market for wide-bodied commercial aircraft. Review of Economic Studies, 71 (3), 581611. DOI: 10.1111/j.1467-937X.2004.00297.x
    Direct Link:
  • Berry, S. and A. Pakes (1993), “Some applications and limitations of recent advances in empirical industrial organization: Merger analysis. American Economic Review, 83 (2), 247252.
  • Bertsekas, D. and J. Tsitsiklis (1997), Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont .
  • Besanko, D. and U. Doraszelski (2004), “Capacity dynamics and endogenous asymmetries in firm size. Rand Journal of Economics, 35 (1), 2349. DOI: 10.2307/1593728
  • Besanko, D., U. Doraszelski, Y. Kryukov, and M. Satterthwaite (2010), “Learning-by-doing, organizational forgetting, and industry dynamics. Econometrica, 78 (2), 453508. DOI: 10.3982/ECTA6994
  • Besanko, D., U. Doraszelski, L. Lu, and M. Satterthwaite (2010a), “Lumpy capacity investment and disinvestment dynamics. Operations Research, 58 (4), 11781193. DOI: 10.1287/opre.1100.0823
  • Besanko, D., U. Doraszelski, L. Lu, and M. Satterthwaite (2010b), “On the role of demand and strategic uncertainty in capacity investment and disinvestment dynamics. International Journal of Industrial Organization, 28 (4), 383389. DOI: 10.1016/j.ijindorg.2010.02.013
  • Borkovsky, R., U. Doraszelski, and Y. Kryukov (2010), “A user's guide to solving dynamic stochastic games using the homotopy method. Operations Research, 58 (4), 11161132. DOI: 10.1287/opre.1100.0843
  • Breton, M. (1991), “Algorithms for stochastic games.” In Stochastic Games and Related Topics: In Honor of Professor L.S. Shapley (T. Raghavan, T. Ferguson, T. Parthasarathy, and O. Vrieze, eds.), 4557, Kluwer Academic Publishers, Dordrecht .
  • Caplin, A. and B. Nalebuff (1991), “Aggregation and imperfect competition: On the existence of equilibrium. Econometrica, 59 (1), 2559. DOI: 10.2307/2938239
  • Chen, J. (2009), “The effects of mergers with dynamic capacity accumulation. International Journal of Industrial Organization, 27, 92109. DOI: 10.1016/j.ijindorg.2008.05.002
  • Chen, J., U. Doraszelski, and J. Harrington (2009), “Avoiding market dominance: Product compatibility in markets with network effects. Rand Journal of Economics, 40 (3), 455485. DOI: 10.1111/j.1756-2171.2009.00073.x
  • de Roos, N. (2004), “A model of collusion timing. International Journal of Industrial Organization, 22, 351387. DOI: 10.1016/j.ijindorg.2003.10.003
  • Dockner, E., S. Jorgensen, N. Van Long, and G. Sorger (2000), Differential Games in Economics and Management Science. Cambridge University Press, Cambridge .
  • Doraszelski, U. and K. Judd (2007), “Dynamic stochastic games with sequential state-to-state transitions.” Working paper, Harvard University , Cambridge .
  • Doraszelski, U. and S. Markovich (2007), “Advertising dynamics and competitive advantage. Rand Journal of Economics, 38 (3), 557592. DOI: 10.1111/j.0741-6261.2007.00101.x
  • Doraszelski, U. and A. Pakes (2007), “A framework for applied dynamic analysis in IO.” In Handbook of Industrial Organization, Vol. 3 (M. Armstrong and R. Porter, eds.), 18871966, North-Holland, Amsterdam .
  • Doraszelski, U. and M. Satterthwaite (2010), “Computable Markov-perfect industry dynamics. Rand Journal of Economics, 41 (2), 215243. DOI: 10.1111/j.1756-2171.2010.00097.x
  • Elfving, G. (1937), “Zur Theorie der Markoffschen Ketten. Acta Societatis Scientiarum Fennicae Nova Series A, 2 (8), 117.
  • Ericson, R. and A. Pakes (1995), “Markov-perfect industry dynamics: A framework for empirical work. Review of Economic Studies, 62, 5382. DOI: 10.2307/2297841
  • Escobar, J. (2008), “Existence of pure and behavior strategy stationary Markov equilibrium in dynamic stochastic games.” Working paper, Stanford University , Stanford .
  • Federgruen, A. (1978), “On N-person stochastic games with denumerable state space. Advances in Applied Probability, 10, 452471. DOI: 10.2307/1426945
  • Feinberg, E. (2004), “Continuous time discounted jump Markov decision processes: A discrete-event approach. Mathematics of Operations Reserach, 29 (3), 492524. DOI: 10.1287/moor.1040.0089
  • Ferris, M., K. Judd, and K. Schmedders (2007), “Solving dynamic games with Newton's method.” Working paper, University of Wisconsin , Madison .
  • Fershtman, C. and A. Pakes (2000), “A dynamic oligopoly with collusion and price wars. Rand Journal of Economics, 31, 207236. DOI: 10.2307/2601038
  • Fershtman, C. and A. Pakes (2011), “Dynamic games with asymmetric information: A framework for empirical work.” Working paper, Harvard University , Cambridge .
  • Filar, J. and K. Vrieze (1997), Competitive Markov Decision Processes. Springer, New York .
  • Fink, A. (1964), “Equilibrium in a stochastic n-person game. Journal of Science of the Hiroshima University Series A-I, 28, 8993.
  • Gowrisankaran, G. (1999a), “A dynamic model of endogenous horizontal mergers. Rand Journal of Economics, 30 (1), 5683. DOI: 10.2307/2556046
  • Gowrisankaran, G. (1999b), “Efficient representation of state spaces for some dynamic models. Journal of Economic Dynamics and Control, 23, 10771098. DOI: 10.1016/S0165-1889(98)00057-8
  • Herings, J. and R. Peeters (2004), “Stationary equilibria in stochastic games: Structure, selection, and computation. Journal of Economic Theory, 118, 3260. DOI: 10.1016/j.jet.2003.10.001
  • Howard, R. (1960), Dynamic Programming and Markov Processes. MIT Press, Cambridge .
  • Isaacs, R. (1954), Differential Games. John Wiley & Sons, New York .
  • Judd, K. (1998), Numerical Methods in Economics. MIT Press, Cambridge .
  • Kryukov, Y. (2008), “Dynamic R&D and the effectiveness of policy intervention in the pharmaceutical industry.” Working paper, Carnegie Mellon University , Pittsburgh .
  • Langohr, P. (2003), “Competitive convergence and divergence: Capability and position dynamics.” Working paper, Northwestern University , Evanston .
  • Markovich, S. (2008), “Snowball: A dynamic oligopoly model with indirect network effects. Journal of Economic Dynamics and Control, 32, 909938. DOI: 10.1016/j.jedc.2007.04.005
  • Maskin, E. and J. Tirole (2001), “Markov perfect equilibrium, I: Observable actions. Journal of Economic Theory, 100, 191219. DOI: 10.1006/jeth.2000.2785
  • Mehra, R. (2003), “The equity premium: Why is it a puzzle? Financial Analysis Journal, 59 (1), 5469. DOI: 10.2469/faj.v59.n1.2503
  • Mertens, J. (2002), “Stochastic games.” In Handbook of Game Theory, Vol. 3 (R. Aumann and S. Hart, eds.), 18101832, Elsevier, Amsterdam .
  • Ortega, J. and W. Rheinboldt (1970), Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York .
  • Pakes, A. (1994), “Dynamic structural models, problems, and prospects: mixed continuous discrete controls and market interactions.” In Advances in Econometrics: Sixth World Congress, Vol. 2 (C. Sims, ed.), Cambridge University Press, Cambridge . DOI: 10.1017/CCOL0521444608.005
  • Pakes, A., G. Gowrisankaran, and P. McGuire (1993), “Implementing the Pakes–McGuire algorithm for computing Markov perfect equilibria in Gauss.” Working paper, Yale University , New Haven .
  • Pakes, A. and P. McGuire (1994), “Computing Markov-perfect Nash equilibria: Numerical implications of a dynamic differentiated product model. Rand Journal of Economics, 25 (4), 555589. DOI: 10.2307/2555975
  • Pakes, A. and P. McGuire (2001), “Stochastic algorithms, symmetric Markov perfect equilibrium, and the “curse” of dimensionality. Econometrica, 69 (5), 12611281. DOI: 10.1111/1468-0262.00241
  • Ryan, S. (2006), “The costs of environmental regulation in a concentrated industry.” Working paper, MIT , Cambridge .
  • Shapley, L. (1953), “Stochastic games. Proceedings of the National Academy of Sciences, 39, 10951100. DOI: 10.1073/pnas.39.10.1095
  • Simon, L. and M. Stinchcombe (1989), “Extensive form games in continuous time: Pure strategies. Econometrica, 57 (5), 11711214. DOI: 10.2307/1913627
  • Singer, B. and S. Spilerman (1976), “The representation of social processes by Markov models. American Journal of Sociology, 82 (1), 154. DOI: 10.1086/226269
  • Sobel, M. (1971), “Noncooperative stochastic games. Annals of Mathematical Statistics, 42 (6), 19301935. DOI: 10.1214/aoms/1177693059
  • Starr, A. and Y. Ho (1969), “Nonzero-sum differential games. Journal of Optimization Theory and Applications, 3 (3), 184206. DOI: 10.1007/BF00929443
  • Whitt, W. (1980), “Representation and approximation of noncooperative sequential games. SIAM Journal of Control and Optimization, 18 (1), 3348. DOI: 10.1137/0318003