E-mail a Wiley Online Library Link

Matthew J. Hollander, Ashish Agrawal, Michael S. Bresnehan, Michael LaBella, Kathleen A. Trumbull, Randal Cavalero, David W. Snyder, Suman Datta and Joshua A. Robinson Heterogeneous integration of hexagonal boron nitride on bilayer quasi-free-standing epitaxial graphene and its impact on electrical transport properties (Phys. Status Solidi A 6/2013) physica status solidi (a) 210

Version of Record online: 18 JUN 2013 | DOI: 10.1002/pssa.201370034

Thumbnail image of graphical abstract

In recent years, hexagonal boron nitride (h-BN) has gained interest as a material for use in graphene electronics due to its unique properties and the possibility for enhanced carrier transport compared to conventional dielectric materials on graphene. In this issue, researchers at the Pennsylvania State University have studied the integration of h-BN with epitaxial graphene on SiC for the first time, showing improved transport by 2x. They utilize temperature and carrier density dependent scattering models in order to understand the source of this enhanced transport and to show the unique challenges for graphene on SiC due to the presence of step-edges. Read more on pages 1062–1070. The front cover graphics show a height map of a graphene Hall cross, displaying the presence of step-edges in the substrate (center) over top of a Raman map showing the 2D peak full width half max and indicating the presence of bilayer and multi-layer graphene (background).

Complete the form below and we will send an e-mail message containing a link to the selected article on your behalf

Required = Required Field