Get access
Molecular Ecology

A universal molecular method for identifying underground plant parts to species

Authors


Dr C. R. Linder. Fax: 1-512-471-3878; E-mail: rlinder@mail.utexas.edu

Abstract

As part of a large project to determine rooting depth and resource uptake on the Edwards Plateau of central Texas, we developed a DNA-based technique that allows the below-ground parts of all plants to be identified to the level of genus and usually to species. Identification is achieved by comparing DNA sequences of the internal transcribed spacer (ITS) region of the 18S–26S nuclear ribosomal DNA repeat, derived from below-ground plant material, with a reference ITS region database for plants at a site. The method works throughout plants because the plant ITS region can be PCR amplified using a set of universal primers. Congeneric species can usually be identified because the ITS region evolves relatively rapidly. In our study, all roots were easily identified to the level of genus; most congeneric species were identified solely by ITS sequence differences but some required a combination of ITS sequence data and above-ground surveys of species at a site. In addition to showing the feasibility and efficacy of our technique, we compare it with another DNA-based technique used to identify below-ground plant parts. Finally, we also describe a DNA extraction and purification technique that reliably provides high-quality DNA of sufficient quantity from roots so that PCR can be readily accomplished. Our technique should allow the below-ground parts of plants in any system to be identified and thereby open new possibilities for the study of below-ground plant communities.

Get access to the full text of this article

Ancillary