organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Helical supra­molecular assembly of N2,N2′-bis­­[3-(morpholin-4-yl)prop­yl]-N1,N1′-(1,2-phenyl­ene)dioxalamide di­methyl sulfoxide monosolvate

aInstituto de Farmacobiologia, Universidad de la Cañada, Carretera Teotitlán-San Antonio Nanahuatipan Km 1.7 s/n, Paraje Titlacuatitla, CP 68540, Teotitlán de Flores Magon, Oaxaca, Mexico, bUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, México DF 07340, Mexico, and cFacultad de Ciencias Químicas, Universidad de Colima, Carretera Coquimatlán-Colima, Coquimatlán Colima, Mexico 28400
*Correspondence e-mail: fjmartin@ucol.mx

(Received 10 August 2012; accepted 22 October 2012; online 13 December 2012)

In the title compound, C24H36N6O6·C2H6OS, the carbonyl groups are in an anti­periplanar conformation, with O=C—C=O torsion angles of 178.59 (15) and −172.08 (16)°. An intra­molecular hydrogen-bonding pattern is depicted by four N—H⋯O inter­actions, which form two adjacent S(5)S(5) motifs, and an N—H⋯N inter­action, which forms an S(6) ring motif. Inter­molecular N—H⋯O hydrogen bonding and C—H⋯O soft inter­actions allow the formation of a meso-helix. The title compound is the first example of a helical 1,2-phenyl­enedioxalamide. The oxalamide traps one mol­ecule of dimethyl sulfoxide through N—H⋯O hydrogen bonding. C—H⋯O soft inter­actions give rise to the two-dimensional structure.

Comment

In supra­molecular chemistry, the design and synthesis of model mol­ecules for donor–acceptor inter­action studies continues to be an area of inter­est (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., pp. 27-36. Wiltshire: John Wiley & Sons Ltd.]). Hydrogen bonding (HB) is the most important noncovalent inter­action used in the design of host–guest systems. HB is particularly important from a biological point of view because of its involvement in several biological processes, such as the stabilization of the double helix of DNA (Kool, 1997[Kool, E. T. (1997). Chem. Rev. 97, 1473-1487.]), peptide three-dimensional structures (helices, sheets or turns; Sewald & Hans-Dieter, 2002[Sewald, N. & Hans-Dieter, J. (2002). Peptides: Chemistry and Biology, pp. 36-38. Germany: Wiley-VCH Verlag GmbH.]), enzyme–substrate inter­actions (Bugg, 2004[Bugg, T. (2004). Introduction to Enzyme and Coenzyme Chemistry, pp. 20-21. Oxford: Blackwell Publishing Ltd.]), recognition among proteins (Keskin et al., 2008[Keskin, O., Gursoy, A., Ma, B. & Nussinov, R. (2008). Chem. Rev. 108, 1225-1244.]) and drug–acceptor inter­actions (Sarker & Nahar, 2007[Sarker, S. D. & Nahar, L. (2007). Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, pp. 30-31. London: John Wiley & Sons Ltd.]). The development of simple hydrogen-bonding motifs for anion recognition, that are easy to make and functionalize, has led to the design and synthesis of amide-, pyrrole- and urea-based hosts with conventional hydrogen-bond donors (Brooks et al., 2006[Brooks, S. J., Edwards, P. R., Gale, P. A. & Light, M. E. (2006). New J. Chem. 30, 65-70.], 2007[Brooks, S., García-Garrido, S. E. & Light, M. E. (2007). Chem. Eur. J. 13, 3320-3329.]). The supra­molecular versatility of oxalamides has been demonstrated previously as formers of columns, sheets, tapes, helixes and layers (González-González, Martínez-Martínez, García-Báez et al., 2011[Gonzalez-Gonzalez, J. S., Martínez-Martínez, F. J., García-Báez, E. V., Franco-Hernández, O. M. & Padilla-Martínez, I. I. (2011). Acta Cryst. E67, o398.]; González-González, Martínez-Martínez, Peraza-Campos et al., 2011[González-González, J. S., Martínez-Martínez, F. J., Peraza-Campos, A. L., Rosales-Hoz, M. J., García-Báez, E. V. & Padilla-Martínez, I. I. (2011). CrystEngComm, 13, 4748-4761.]). In this context, the N—H and C=O groups of oxalamides can be exploited as recognition sites in the design of mol­ecular hosts. In this contribution, we report the mol­ecular structure and the helical supra­molecular assembly of the complex, (I)[link] (Fig. 1[link]), formed between N2,N2′-bis­[2-(morpholin-4-yl)prop­yl]-N1,N1′-(1,2-phenyl­ene)dioxalamide and dimethyl sulfoxide (DMSO).

[Scheme 1]

The title compound forms triclinic crystals (P[\overline{1}], Z = 2). Selected bond lengths and angles are in the normal ranges found in related structures (Martínez-Martínez et al., 1998[Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401-406.]). The carbonyl groups are anti­periplanar, with O8—C8—C9—O9 and O28—C28—C29—O29 torsion angles of 178.59 (15) and −172.08 (16)°, respectively. The oxalamide group is almost planar, with N7—C8—C9—N10 and N27—C28—C29—N30 torsion angles of −177.62 (13) and −170.71 (14)°, respectively. These values are in agreement with those reported for oxalamides (Bernés et al., 2010[Bernés, S., Hernández, G., Vázquez, J., Tovar, A. & Gutiérrez, R. (2010). Acta Cryst. E66, o2988.]). Both oxalyl arms are twisted from the mean plane of the phenyl­ene ring and adopt an anti­clinal conformation, with C6—C1—N7—C8 and C1—C6—N27—C28 torsion angles of −137.65 (16) and 125.88 (16)°, respectively. The N7—H and N27—H amide groups point towards the cavity; thus, the two oxalamide groups are cis-positioned between them, in relation to the mean plane of the phenyl­ene ring. According to graph-set notation (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), four S(5) rings are formed between amide NH and carbonyl groups, through N7—H7⋯O9, N10—H10⋯O8, N27—H27⋯O29 and N30—H30⋯O28 inter­actions, and one S(6) ring is formed between an amide NH group and the N atom of one morpholine residue, through N30—H30⋯N34 inter­actions, displaying only one N—H stretch maximum, at 3272 cm−1. N⋯A distances and N—H⋯A angles (A = O and N) are in the ranges of intra­molecular HB (Taylor & Kennard, 1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]; Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]), in agreement with similar structures (Desseyn et al., 2004[Desseyn, H. O., Perlepes, S. P., Clou, K., Blaton, N., Veken, B. J., Dommisse, R. & Hansen, P. E. (2004). J. Phys. Chem. A, 108, 5175-5182.]; Martín et al., 2002[Martín, S., Beitia, J. I., Ugalde, M., Vitoria, P. & Cortés, R. (2002). Acta Cryst. E58, o913-o915.]; Blay et al., 2003[Blay, G., Fernández, I., Pedro, J. R., Ruiz-García, R., Muñoz, M. C., Cano, J. & Carrasco, R. (2003). Eur. J. Org. Chem. pp. 1627-1630.]) and also in agreement with values reported for intra­molecular HB in other systems (Zhu et al., 2007[Zhu, Y.-Y., Wu, J., Li, C., Zhu, J., Hou, J.-H., Li, C.-Z., Jiang, X.-K. & Li, Z.-T. (2007). Cryst. Growth Des. 7, 1490-1496.]; Yang & Gellman, 1998[Yang, J. & Gellman, S. H. (1998). J. Am. Chem. Soc. 120, 9090-9091.]). The geometric parameters associated with HB inter­actions are summarized in Table 1[link]. The S(5)S(5)S(6) intra­molecular hydrogen-bonded side arm is twisted from the mean aromatic ring plane with N30—C31—C32—C33 and C31—C32—C33—N34 torsion angles of 54.54 (18) and −70.39 (18)°, respectively, whereas the S(5)S(5) side arm is twisted to the opposite side, with N10—C11—C12—C13 and C11—C12—C13—N14 torsion angles values of −168.49 (14) and 56.32 (19)°, respectively. One mol­ecule of DMSO is located outside the cavity formed by the pair of oxalamide side arms and is bonded to the dioxalamide mol­ecule by means of N7—H7⋯O1i and N27—H27⋯O1i HB inter­actions and C40—H40C⋯O29i and C41—H41C⋯O29i soft inter­actions to form a 1:1 complex (all symmetry codes are as in Table 1[link]). C—H⋯O inter­actions are weak HB inter­actions classified between electrostatic and van der Waals limits (Desiraju, 2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); herein they are called `soft inter­actions', as suggested by Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]).

The zero-dimensional array is obtained by pairing of two dioxalamide mol­ecules (Fig. 2[link]) through self-complementary strong N10—H10⋯O8ii hydrogen bonding, to form the R22(10) motif characteristic of oxalamides. This motif is developed as a one-dimensional meso-helix by C35—H35A⋯O29iv soft inter­action, forming an R22(18) ring motif along the (001) direction. In the crystal lattice, a perfect alignment of the helical mol­ecules of the same chirality in the meso-helix is observed (Fig. 3[link]).

The turn of the helix, measured as the spacing between the aromatic rings on neighbouring homochiral mol­ecules, is 16.328 (2) Å, which matches the exact value of the lattice c parameter. Adjacent meso-helices are inter­linked through C4—H4⋯O37iii soft inter­actions to form an infinite sheet on the [441] family of planes separated by 5.329 (2) Å. DMSO mol­ecules not only act as a template to form the cavity between the two oxalamide arms, but also facilitate the development of the two-dimensional structure, linking the meso-helices through C40—H40B⋯O28(−x + 1, −y + 1, −z + 1) soft inter­actions, and fill the voids left between the layers.

The softness of DMSO is not capable of inter­rupting the formation of the typical R22(10) (N—H⋯O) ring motif of oxalamides, in contrast to that observed with the use of 2-(4-nitro­phen­yl)acetic acid (Arman et al., 2012[Arman, H. D., Kaulgud, T., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2012). J. Chem. Crystallogr. 42, 673-679.]). As a final remark, it is worth mentioning that a search of the Cambridge Structural Database (CSD, Version 5.33, November 2011; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for the 1,2-fenilenedioxalyl moiety produced only one hit, viz. for ethyl 1,2-fenilenedioxalamate (Martín et al., 2002[Martín, S., Beitia, J. I., Ugalde, M., Vitoria, P. & Cortés, R. (2002). Acta Cryst. E58, o913-o915.]). Thus, the title compound is the first example of a 1,2-fenilenedioxalamide crystal structure which, in addition, presents a meso-helix supra­molecular architecture.

[Figure 1]
Figure 1
The mol­ecular structure of the title DMSO-solvated complex, (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Two mol­ecules of the title DMSO-solvated complex are paired through self-complementary strong N10—H10⋯O8(−x + 1, −y + 1, −z) hydrogen bonding to form the R22(10) motif characteristic of oxalamides.
[Figure 3]
Figure 3
The linkage of the title DMSO-solvated complex dimer through C35—H35A⋯O29iv soft inter­actions developing a meso-helix along the c-axis direction. H atoms and the DMSO solvent molecule have been omitted for clarity.

Experimental

A solution of diethyl 1,2-phenyl­enedioxalamate (0.5 g, 1.6 mmol) in methanol (30 ml) and 3-(morpholin-4-yl)propyl­amine (0.474 ml, 3.2 mmol) was refluxed for 24 h. The suspension was filtered off and the resulting solid was washed with acetone (3 ml) and dried to yield 0.49 g (61%) of a white solid (m.p. 438–440 K). Good quality crystals were grown from a DMSO solution by slow evaporation. IR ν (neat) (cm−1): 3272 (N—H), 1667 (C=O). 1H NMR (300 MHz, DMSO-d6): δ 7.27 (m, 2H), 7.59 (m, 2H), 10.52 (s, 2H, Ar–NH), 8.87 (t, 2H, NH–CH2), 3.24 (m, 4H, NH–CH2), 1.64 (m, 4H, NH–CH2–CH2), 2.32 (m, 4H, CH2–N), 2.30 [m, 8H, N–(CH2)2], 3.56 [m, 8H, O–(CH2)2]. 13C NMR (75.46 MHz, DMSO-d6): δ 130.5 (C1,6), 126.2 (C2,5), 126.8 (C3,4), 159.3 (C8), 160.1 (C9), 38.9 (C11), 25.6 (C12), 57.0 (C13), 53.9 (N–CH2), 66.8 (CH2—O). ESI–MS (m/z): calculated 504.27, found 526.9 [M + Na]+.

Crystal data
  • C24H36N6O6·C2H6OS

  • Mr = 582.72

  • Triclinic, [P \overline 1]

  • a = 8.6704 (8) Å

  • b = 11.0052 (10) Å

  • c = 16.3277 (15) Å

  • α = 107.425 (2)°

  • β = 98.036 (2)°

  • γ = 91.517 (2)°

  • V = 1468.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 173 K

  • 0.30 × 0.26 × 0.22 × 0.12 (radius) mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: for a sphere (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Tmin = 0.861, Tmax = 0.862

  • 11574 measured reflections

  • 5722 independent reflections

  • 5081 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.04

  • 5722 reflections

  • 539 parameters

  • All H-atom parameters refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯AD—HH⋯ADAD—H⋯A
N7—H7⋯O90.830 (18)2.23 (2)2.6620 (18)113.1 (16)
N7—H7⋯O1i0.830 (18)2.064 (18)2.7896 (17)145.8 (19)
N10—H10⋯O80.840 (18)2.372 (19)2.7224 (18)105.8 (15)
N10—H10⋯O8ii0.840 (18)2.177 (18)2.9134 (18)146.2 (17)
N27—H27⋯O290.879 (18)2.329 (19)2.7155 (18)106.7 (14)
N27—H27⋯O1i0.879 (18)1.996 (18)2.7734 (17)146.7 (17)
N30—H30⋯O280.829 (18)2.370 (19)2.6924 (19)103.9 (15)
N30—H30⋯N340.829 (18)2.061 (18)2.7774 (18)144.5 (17)
C4—H4⋯O37iii0.963 (19)2.569 (18)3.224 (2)125.5 (13)
C11—H11A⋯N140.960 (17)2.541 (17)2.962 (2)106.6 (12)
C35—H35A⋯O29iv0.95 (2)2.59 (2)3.472 (2)155.1 (15)
C40—H40B⋯O28iv0.97 (3)2.34 (3)3.290 (2)166.7 (19)
C40—H40C⋯O29i0.96 (2)2.45 (2)3.345 (2)155.0 (16)
C41—H41B⋯O29i1.08 (3)2.58 (3)3.527 (3)146 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+1, -z+1.

All H atoms were found by Fourier difference synthesis and refined. The DMSO molecule is disordered over two orientations, although the S atom could be located and refined to occupancies of 0.931 (2) (for S1A) and 0.0692 (2) (for S1B). The C and O atoms bonded to the very low-occupancy minor-orientation S1B atom were omitted from the model.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In supramolecular chemistry, the design and synthesis of model molecules for donor–acceptor interaction studies continues being an area of interest (Steed & Atwood, 2009). Hydrogen bonding (HB) is the most important noncovalent interaction used in the design of host–guest systems. HB is particularly important from a biological point of view, because of its participation in several biological processes such as the stabilization of the double helix of DNA (Kool, 1997), peptide three-dimensional structures (helices, sheets or turns) (Sewald & Hans-Dieter, 2002), enzyme–substrate interactions (Bugg, 2004), recognition among proteins (Keskin et al., 2008) and drug-acceptor interactions (Sarker & Nahar, 2007). The development of simple hydrogen-bonding motifs for anion recognition, that are easy to make and functionalize, has lead to the design and synthesis of amide, pyrrole and urea-based hosts with conventional hydrogen-bond donors (Brooks et al., 2006; Brooks et al., 2007). The supramolecular versatility of oxalamides has been demonstrated previously as formers of columns, sheets, tapes, helixes and layers (González-González, Martínez-Martínez, García-Báez et al., 2011; González-González, Martínez-Martínez, Peraza-Campos et al., 2011). In this context, the N—H and CO groups of oxalamides can be exploited as recognition sites in the design of molecular hosts. In this contribution, we report the molecular structure and the helical supramolecular assembly complex, (I) (Fig. 1), formed between N2,N2'-bis[2-(morpholin-4-yl)propyl]-N1,N1'-(1,2-phenylene)dioxalamide and dimethyl sulfoxide (DMSO).

The title compound forms triclinic crystals (P1, Z = 2). Selected bond lengths and angles are listed in Table 1 and are in the normal range found in related structures (Martínez-Martínez et al., 1998). The carbonyl groups are antiperiplanar, with O8—C8—C9—O9 and O28—C28—C29—O29 torsion angles of 178.62 (19) and -171.9 (2)°, respectively. The oxalamide group is almost planar, with N7—C8—C9—N10 and N27—C28—C29—N30 torsion angles of -177.76 (17) and -170.66 (16)°, respectively. These values are in agreement with those reported for oxalamides (Bernés et al., 2010). Both oxalyl arms are twisted from the mean plane of the phenylene ring and adopt an anticlinal conformation with C6—C1—N7—C8 and C1—C6—N27—C28 torsion angles of 137.6 (2) and -126.0 (2)°, respectively. The N7—H and N27—H amide groups point towards the cavity, thus the two oxalamidyl groups are cis-positioned between them, in relation to the mean plane of the phenylene ring. According to graph-set notation (Bernstein et al., 1995), four S(5) rings are formed between amide NH and carbonyl groups, through N7—H7···O9, N10—H10···O8, N27—H27···O29 and N30—H30···O28 interactions, and one S(6) ring is formed between an amide NH group and the N atom of one morpholine residue, through N30—H30···N34 interactions, displaying only one N—H stretch maximum, at 3272 cm-1. N···A distances and N—H···A angles (A = O and N) are in the range of intramolecular hydrogen bonding (HB) (Taylor & Kennard, 1982; Desiraju, 1996), in agreement with similar structures (Desseyn et al., 2004; Martín et al., 2002; Blay et al., 2003) and also in agreement with values reported for intramolecular HB in other systems (Zhu et al., 2007; Yang & Gellman, 1998). The geometric parameters associated with HB interactions are summarized in Table 2. The S(5)S(5)S(6) intramolecular hydrogen-bonded side arm is twisted from the mean aromatic ring plane with N30—C31—C32—C33 and C31—C32—C33—N34 torsion angles values of 54.4 (2) and -70.5 (2)°, respectively, whereas the S(5)S(5) side arm is twisted to the opposite side, with N10—C11—C12—C13 and C11—C12—C13—N14 torsion angles values of -168.58 (16) and 56.5 (2)°, respectively. One molecule of DMSO is situated outside the cavity formed by the pair of oxalamide side arms and bonded to the dioxalamide molecule by means of N7—H7···O1 and N27—H27···O1 HB interactions and C40—H40C···O29 and C41—H41C···O29 soft interactions to form a 1:1 complex. C—H···O interactions are weak HB interactions classified between electrostatic and van der Waals limits (Desiraju, 2002), herein they are called `soft interactions', as suggested by Desiraju (1996).

The zero-dimensional array is given by pairing of two molecules complex (I) (Fig. 2) through self-complementary strong N10—H10···O8 hydrogen bonding, to form the R22(10) motif characteristic of oxalamides. This motif is developed in one-dimensional meso-helix by C35—H35A···O29 soft interaction forming an R22(18) ring motif along the (001) direction. In the crystal lattice, the perfect alignment of the helical molecules of the same chirality in the meso-helix is observed (Fig. 3).

The turn of the helix measured as the spacing between the aromatic rings on neighbouring homochiral molecules is 16.328 (2) Å, which match the exact value of the lattice c parameter. Adjacent meso-helices are interlinked through C4—H4···O37 soft interactions to form an infinite sheet on the [441] family of planes separated by 5.329 (2) Å. DMSO molecules not only act as a template to form the cavity between the two oxalamide arms, but also facilitate the development of the second dimension linking the meso-helices through C40—H40B···O28 soft interactions and fill the voids left between the layers.

The softness of DMSO is not capable interrupting the formation of the typical R22(10) (N—H···O) ring motif of oxalamides, in contrast to that observed with the use of the 2-(4-nitrophenyl)acetic acid (Arman et al., 2012). As a final remark, is worth mentioning that a search was performed in the Cambridge Structural Database (CSD, Version 5.33, November 2011; Allen, 2002) for the 1,2-fenilenedioxalyl moiety and the only hit found was for the crystal structure of ethyl 1,2-fenilenedioxalamate (Martín et al., 2002). Thus, the title compound is the first example of a 1,2-fenilenedioxalamide crystal structure which, in addition, presents a meso-helix supramolecular architecture.

Related literature top

For related literature, see: Allen (2002); Arman et al. (2012); Bernés et al. (2010); Bernstein et al. (1995); Blay et al. (2003); Brooks et al. (2006, 2007); Bugg (2004); Desiraju (1996, 2002); Desseyn et al. (2004); González-González, Martínez-Martínez, Peraza-Campos, Rosales-Hoz, García-Báez & Padilla-Martínez (2011); Keskin et al. (2008); Kool (1997); Martín et al. (2002); Martínez-Martínez, Padilla-Martínez, Brito, Geniz, Rojas, Saavedra, Höpfl, Tlahuextl & Contreras (1998); Sarker & Nahar (2007); Sewald & Hans-Dieter (2002); Sheldrick (2008); Steed & Atwood (2009); Taylor & Kennard (1982); Yang & Gellman (1998); Zhu et al. (2007).

Experimental top

A solution of diethyl 1,2-phenylenedioxalamate (0.5 g, 1.6 mmol) in methanol (30 ml) and 3-(morpholin-4-yl)propylamine (0.474 ml, 3.2 mmol) was refluxed for 24 h. The suspension was filtered off and the resulting solid was washed with acetone (3 ml) and dried to yield 0.49 g (61%) of a white solid (m.p. 238–440 K). Good quality crystals were grown from DMSO solution by slow evaporation. IR ν (neat) (cm-1): 3272 (N—H), 1667 (CO). 1H NMR (300 MHz, DMSOd-6): δ 7.27 (m, 2H), 7.59 (m, 2H), 10.52 (s, 2H, Ar–NH), 8.87 (t, 2H, NH–CH2), 3.24 (m, 4H, NH–CH2), 1.64 (m, 4H, NH–CH2–CH2), 2.32 (m, 4H, CH2–N), 2.30 [m, 8H, N–(CH2)2], 3.56 [m, 8H, O–(CH2)2]. 13C NMR (75.46 MHz, DMSOd-6): δ 130.5 (C1,6), 126.2 (C2,5), 126.8 (C3,4), 159.3 (C8), 160.1 (C9), 38.9 (C11), 25.6 (C12), 57.0 (C13), 53.9 (N–CH2), 66.8 (CH2—O). ESI–MS (m/z): calculated 504.27, found 526.9 [M + Na]+.

Refinement top

All H atoms were found by Fourier difference synthesis and refined. The DMSO S atom is disordered over two positions with occupancies of 0.931 (2) and 0.069 (2). The disorder was treated using PART 1, PART 2 and PART 0 SHELXL97 (Sheldrick, 2008) instructions.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
The molecular structure of the title DMSO-solvated complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Two molecules of the title DMSO-solvated complex are paired through self-complementary strong N10—H10···O8 hydrogen bonding to form the R22(10) motif characteristic of oxalamides.

The linkage of the title DMSO-solvated complex dimer through C35—H35A···O29 soft interactions developing a meso helix along the direction of the c axis. H atoms have been omitted for clarity.
N2,N2'-bis[2-(morpholin-4-yl)propyl]- N1,N1'-(1,2-phenylene)dioxalamide dimethyl sulfoxide monosolvate top
Crystal data top
C24H36N6O6·C2H6OSZ = 2
Mr = 582.72F(000) = 624
Triclinic, P1Dx = 1.318 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6704 (8) ÅCell parameters from 600 reflections
b = 11.0052 (10) Åθ = 20–25°
c = 16.3277 (15) ŵ = 0.16 mm1
α = 107.425 (2)°T = 173 K
β = 98.036 (2)°Block, yellow
γ = 91.517 (2)°0.30 × 0.26 × 0.22 × 0.12 (radius) mm
V = 1468.0 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
5081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: for a sphere
(Dwiggins, 1975)
h = 1010
Tmin = 0.861, Tmax = 0.862k = 1213
11574 measured reflectionsl = 1920
5722 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.6256P]
where P = (Fo2 + 2Fc2)/3
5722 reflections(Δ/σ)max = 0.001
539 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C24H36N6O6·C2H6OSγ = 91.517 (2)°
Mr = 582.72V = 1468.0 (2) Å3
Triclinic, P1Z = 2
a = 8.6704 (8) ÅMo Kα radiation
b = 11.0052 (10) ŵ = 0.16 mm1
c = 16.3277 (15) ÅT = 173 K
α = 107.425 (2)°0.30 × 0.26 × 0.22 × 0.12 (radius) mm
β = 98.036 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
5722 independent reflections
Absorption correction: for a sphere
(Dwiggins, 1975)
5081 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.021
11574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099All H-atom parameters refined
S = 1.04Δρmax = 0.41 e Å3
5722 reflectionsΔρmin = 0.28 e Å3
539 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O80.53574 (12)0.60848 (11)0.10601 (7)0.0264 (3)
O90.17690 (13)0.50921 (11)0.15060 (7)0.0262 (3)
O170.37434 (15)0.17201 (13)0.08340 (9)0.0391 (4)
O280.64360 (13)0.75925 (12)0.47845 (8)0.0302 (4)
O290.25116 (12)0.65877 (11)0.46500 (7)0.0252 (3)
O371.02189 (14)0.80083 (12)0.67308 (9)0.0385 (4)
N70.38959 (15)0.70657 (12)0.21044 (8)0.0187 (4)
N100.31850 (16)0.40636 (12)0.04669 (9)0.0225 (4)
N140.10812 (15)0.18090 (12)0.00197 (8)0.0227 (4)
N270.42871 (15)0.79070 (12)0.39127 (8)0.0188 (3)
N300.46105 (15)0.65750 (13)0.56521 (9)0.0215 (4)
N340.71514 (14)0.73241 (12)0.69766 (8)0.0207 (4)
C10.48849 (16)0.81794 (14)0.25568 (10)0.0185 (4)
C20.56534 (17)0.88637 (15)0.21224 (10)0.0213 (5)
C30.66111 (18)0.99471 (15)0.25899 (11)0.0231 (5)
C40.68062 (18)1.03634 (15)0.34891 (10)0.0221 (4)
C50.60312 (17)0.96937 (15)0.39263 (10)0.0212 (5)
C60.50729 (16)0.85992 (14)0.34636 (10)0.0180 (4)
C80.41987 (17)0.61291 (14)0.14196 (9)0.0194 (4)
C90.29006 (17)0.50367 (14)0.11262 (10)0.0196 (4)
C110.21399 (19)0.29092 (15)0.01338 (11)0.0237 (5)
C120.0849 (2)0.29545 (17)0.05828 (11)0.0274 (5)
C130.0393 (2)0.18562 (17)0.07818 (10)0.0258 (5)
C150.1936 (2)0.29349 (17)0.03148 (12)0.0303 (5)
C160.2704 (2)0.28347 (19)0.10682 (13)0.0369 (6)
C180.2899 (2)0.06255 (19)0.05283 (14)0.0357 (6)
C190.21447 (19)0.06680 (16)0.02420 (11)0.0267 (5)
C280.50291 (17)0.74814 (14)0.45403 (10)0.0201 (4)
C290.39051 (17)0.68233 (14)0.49543 (10)0.0198 (4)
C310.37658 (18)0.60791 (16)0.62106 (11)0.0235 (5)
C320.49037 (18)0.58436 (16)0.69399 (11)0.0235 (5)
C330.59856 (19)0.70112 (16)0.74713 (10)0.0238 (5)
C350.83681 (19)0.64169 (16)0.68605 (13)0.0282 (5)
C360.9470 (2)0.67591 (18)0.63104 (15)0.0364 (6)
C380.9057 (2)0.89093 (17)0.68587 (14)0.0342 (6)
C390.7904 (2)0.86114 (16)0.73967 (12)0.0299 (5)
S1A0.03282 (4)0.22525 (4)0.69145 (3)0.0201 (1)0.931 (2)
O10.13537 (12)0.21701 (11)0.70381 (7)0.0256 (3)
C400.0296 (2)0.1563 (2)0.57760 (12)0.0359 (6)
C410.0781 (3)0.3874 (2)0.69737 (18)0.0477 (8)
S1B0.0121 (11)0.3196 (8)0.6628 (6)0.055 (3)0.069 (2)
H20.553 (2)0.8566 (17)0.1505 (12)0.025 (4)*
H30.7147 (19)1.0425 (16)0.2299 (11)0.020 (4)*
H40.748 (2)1.1113 (17)0.3810 (11)0.022 (4)*
H50.6172 (19)0.9953 (16)0.4560 (12)0.022 (4)*
H70.304 (2)0.6964 (18)0.2256 (12)0.029 (5)*
H100.392 (2)0.4154 (18)0.0200 (12)0.030 (5)*
H11A0.1675 (19)0.2798 (15)0.0609 (11)0.016 (4)*
H11B0.277 (2)0.2198 (18)0.0084 (12)0.026 (4)*
H12A0.127 (2)0.2889 (18)0.1108 (12)0.029 (5)*
H12B0.037 (2)0.3779 (19)0.0421 (12)0.030 (5)*
H13A0.121 (2)0.1896 (17)0.1243 (12)0.027 (5)*
H13B0.011 (2)0.1042 (18)0.0995 (11)0.024 (4)*
H15A0.279 (2)0.3041 (19)0.0144 (13)0.039 (5)*
H15B0.123 (2)0.3694 (19)0.0496 (12)0.031 (5)*
H16A0.192 (2)0.2795 (18)0.1533 (13)0.033 (5)*
H16B0.334 (2)0.355 (2)0.1251 (13)0.040 (5)*
H18A0.364 (2)0.011 (2)0.0377 (13)0.039 (5)*
H18B0.205 (2)0.0586 (18)0.0998 (12)0.031 (5)*
H19A0.157 (2)0.0075 (18)0.0427 (11)0.024 (4)*
H19B0.300 (2)0.0644 (17)0.0731 (12)0.028 (5)*
H270.327 (2)0.7744 (17)0.3771 (12)0.027 (5)*
H300.553 (2)0.6837 (18)0.5860 (12)0.026 (5)*
H31A0.317 (2)0.5292 (19)0.5866 (12)0.030 (5)*
H31B0.305 (2)0.6694 (17)0.6469 (11)0.024 (4)*
H32A0.428 (2)0.5591 (18)0.7342 (12)0.030 (5)*
H32B0.551 (2)0.5113 (17)0.6699 (11)0.022 (4)*
H33A0.540 (2)0.7767 (19)0.7655 (12)0.030 (5)*
H33B0.651 (2)0.6867 (17)0.8013 (12)0.025 (4)*
H35A0.790 (2)0.5578 (19)0.6568 (12)0.030 (5)*
H35B0.892 (2)0.6453 (18)0.7439 (13)0.034 (5)*
H36A1.028 (2)0.6189 (19)0.6228 (13)0.037 (5)*
H36B0.886 (2)0.675 (2)0.5718 (14)0.044 (6)*
H38A0.848 (2)0.8922 (19)0.6298 (13)0.036 (5)*
H38B0.962 (2)0.975 (2)0.7173 (13)0.042 (6)*
H39A0.846 (2)0.8695 (19)0.7996 (13)0.034 (5)*
H39B0.707 (2)0.9221 (19)0.7458 (12)0.034 (5)*
H40A0.001 (3)0.059 (3)0.5650 (16)0.066 (7)*
H40B0.132 (3)0.169 (2)0.5635 (13)0.043 (6)*
H40C0.045 (2)0.1964 (19)0.5472 (13)0.035 (5)*
H41A0.072 (3)0.442 (3)0.7620 (18)0.070 (8)*
H41B0.005 (3)0.414 (3)0.6513 (18)0.072 (8)*
H41C0.186 (3)0.391 (2)0.6899 (16)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.0256 (6)0.0259 (6)0.0243 (6)0.0022 (5)0.0091 (5)0.0006 (5)
O90.0270 (6)0.0253 (6)0.0255 (6)0.0015 (5)0.0092 (5)0.0046 (5)
O170.0332 (7)0.0382 (7)0.0491 (8)0.0076 (6)0.0181 (6)0.0127 (6)
O280.0213 (6)0.0423 (7)0.0339 (7)0.0003 (5)0.0026 (5)0.0228 (6)
O290.0214 (5)0.0296 (6)0.0251 (6)0.0032 (4)0.0004 (4)0.0115 (5)
O370.0247 (6)0.0297 (7)0.0607 (9)0.0060 (5)0.0067 (6)0.0141 (6)
N70.0191 (6)0.0204 (7)0.0170 (6)0.0002 (5)0.0049 (5)0.0054 (5)
N100.0256 (7)0.0203 (7)0.0210 (7)0.0013 (5)0.0077 (5)0.0037 (5)
N140.0259 (7)0.0214 (7)0.0201 (7)0.0011 (5)0.0031 (5)0.0057 (5)
N270.0193 (6)0.0198 (6)0.0167 (6)0.0019 (5)0.0025 (5)0.0051 (5)
N300.0184 (6)0.0258 (7)0.0219 (7)0.0022 (5)0.0017 (5)0.0108 (6)
N340.0215 (6)0.0181 (6)0.0225 (7)0.0009 (5)0.0031 (5)0.0063 (5)
C10.0184 (7)0.0176 (7)0.0191 (7)0.0043 (6)0.0031 (6)0.0047 (6)
C20.0235 (8)0.0231 (8)0.0189 (8)0.0040 (6)0.0049 (6)0.0078 (6)
C30.0237 (8)0.0216 (8)0.0278 (9)0.0027 (6)0.0080 (6)0.0116 (7)
C40.0215 (7)0.0167 (7)0.0269 (8)0.0009 (6)0.0033 (6)0.0053 (6)
C50.0237 (8)0.0202 (8)0.0187 (8)0.0022 (6)0.0030 (6)0.0044 (6)
C60.0186 (7)0.0169 (7)0.0202 (7)0.0035 (5)0.0049 (6)0.0070 (6)
C80.0222 (7)0.0203 (8)0.0170 (7)0.0019 (6)0.0023 (6)0.0080 (6)
C90.0219 (7)0.0201 (8)0.0179 (7)0.0012 (6)0.0023 (6)0.0079 (6)
C110.0290 (8)0.0179 (8)0.0227 (8)0.0019 (6)0.0049 (7)0.0037 (7)
C120.0351 (9)0.0279 (9)0.0203 (8)0.0036 (7)0.0041 (7)0.0097 (7)
C130.0308 (8)0.0275 (9)0.0172 (8)0.0020 (7)0.0000 (7)0.0060 (7)
C150.0345 (9)0.0229 (9)0.0325 (10)0.0034 (7)0.0052 (8)0.0070 (7)
C160.0361 (10)0.0357 (10)0.0363 (11)0.0082 (8)0.0110 (8)0.0043 (8)
C180.0339 (10)0.0340 (10)0.0464 (12)0.0054 (8)0.0157 (9)0.0186 (9)
C190.0267 (8)0.0221 (8)0.0311 (9)0.0009 (7)0.0039 (7)0.0081 (7)
C280.0233 (8)0.0187 (7)0.0183 (8)0.0014 (6)0.0048 (6)0.0052 (6)
C290.0231 (7)0.0165 (7)0.0189 (8)0.0011 (6)0.0041 (6)0.0039 (6)
C310.0217 (8)0.0269 (8)0.0252 (8)0.0012 (7)0.0045 (6)0.0127 (7)
C320.0242 (8)0.0265 (8)0.0243 (8)0.0012 (7)0.0066 (6)0.0132 (7)
C330.0266 (8)0.0261 (8)0.0198 (8)0.0032 (7)0.0044 (6)0.0083 (7)
C350.0220 (8)0.0204 (8)0.0410 (10)0.0013 (6)0.0028 (7)0.0086 (8)
C360.0237 (8)0.0263 (9)0.0571 (13)0.0005 (7)0.0133 (9)0.0069 (9)
C380.0337 (9)0.0235 (9)0.0447 (11)0.0048 (7)0.0029 (8)0.0116 (8)
C390.0349 (9)0.0200 (8)0.0310 (10)0.0011 (7)0.0030 (8)0.0033 (7)
S1A0.0172 (2)0.0196 (2)0.0239 (2)0.0025 (2)0.0024 (2)0.0074 (2)
O10.0214 (5)0.0300 (6)0.0243 (6)0.0040 (4)0.0062 (4)0.0053 (5)
C400.0313 (10)0.0466 (12)0.0290 (10)0.0066 (9)0.0122 (8)0.0065 (9)
C410.0379 (11)0.0256 (10)0.0763 (17)0.0078 (9)0.0077 (11)0.0120 (11)
S1B0.066 (6)0.037 (5)0.065 (6)0.005 (4)0.021 (5)0.017 (4)
Geometric parameters (Å, º) top
S1A—C411.788 (2)C28—C291.540 (2)
S1A—O11.5039 (11)C31—C321.526 (2)
S1A—C401.7809 (19)C32—C331.525 (2)
S1B—C401.993 (10)C35—C361.512 (3)
S1B—C411.039 (10)C38—C391.510 (3)
S1B—O11.859 (9)C2—H20.951 (19)
S1B—H41B1.11 (4)C3—H30.957 (18)
O8—C81.2274 (18)C4—H40.963 (19)
O9—C91.2254 (19)C5—H50.976 (19)
O17—C181.423 (3)C11—H11A0.960 (17)
O17—C161.424 (3)C11—H11B0.974 (19)
O28—C281.2202 (19)C12—H12A0.962 (18)
O29—C291.2298 (18)C12—H12B0.99 (2)
O37—C361.430 (3)C13—H13B0.995 (19)
O37—C381.425 (2)C13—H13A0.971 (18)
N7—C81.3371 (19)C15—H15B0.97 (2)
N7—C11.417 (2)C15—H15A1.012 (19)
N10—C91.328 (2)C16—H16A0.958 (19)
N10—C111.456 (2)C16—H16B0.97 (2)
N14—C131.467 (2)C18—H18B0.998 (18)
N14—C191.460 (2)C18—H18A0.97 (2)
N14—C151.463 (2)C19—H19A0.961 (19)
N27—C61.424 (2)C19—H19B1.004 (18)
N27—C281.343 (2)C31—H31B0.972 (18)
N30—C291.322 (2)C31—H31A0.97 (2)
N30—C311.459 (2)C32—H32B0.984 (18)
N34—C351.464 (2)C32—H32A1.001 (19)
N34—C331.473 (2)C33—H33B0.995 (19)
N34—C391.465 (2)C33—H33A0.98 (2)
N7—H70.830 (18)C35—H35B0.99 (2)
N10—H100.840 (18)C35—H35A0.95 (2)
N27—H270.879 (18)C36—H36B1.03 (2)
N30—H300.829 (18)C36—H36A0.951 (19)
C1—C61.397 (2)C38—H38B0.99 (2)
C1—C21.393 (2)C38—H38A0.98 (2)
C2—C31.385 (2)C39—H39B0.99 (2)
C3—C41.385 (2)C39—H39A1.01 (2)
C4—C51.388 (2)C40—H40B0.97 (3)
C5—C61.392 (2)C40—H40C0.96 (2)
C8—C91.541 (2)C40—H40A1.05 (3)
C11—C121.515 (2)C41—H41B1.08 (3)
C12—C131.525 (3)C41—H41C0.96 (3)
C15—C161.508 (3)C41—H41A1.06 (3)
C18—C191.508 (3)
O1—S1A—C40104.66 (7)C13—C12—H12A107.8 (12)
O1—S1A—C41106.01 (10)C13—C12—H12B110.2 (11)
C40—S1A—C4197.54 (12)H13A—C13—H13B107.4 (15)
O1—S1B—C4085.1 (4)N14—C13—H13A109.9 (11)
O1—S1B—C41128.5 (7)C12—C13—H13A110.5 (11)
C40—S1B—C41121.3 (7)C12—C13—H13B108.0 (11)
C41—S1B—H41B60.1 (15)N14—C13—H13B107.4 (11)
O1—S1B—H41B142.5 (16)H15A—C15—H15B107.3 (17)
C40—S1B—H41B124.0 (16)N14—C15—H15A111.8 (12)
C16—O17—C18108.97 (14)C16—C15—H15A107.2 (11)
C36—O37—C38108.90 (13)C16—C15—H15B109.8 (11)
C1—N7—C8125.64 (13)N14—C15—H15B109.7 (11)
C9—N10—C11121.27 (14)C15—C16—H16B110.1 (12)
C15—N14—C19108.92 (13)O17—C16—H16A108.1 (12)
C13—N14—C19110.08 (13)O17—C16—H16B105.7 (12)
C13—N14—C15111.82 (14)C15—C16—H16A109.5 (11)
C6—N27—C28123.04 (13)H16A—C16—H16B111.6 (17)
C29—N30—C31122.74 (13)O17—C18—H18B109.6 (11)
C33—N34—C39111.71 (13)C19—C18—H18A111.0 (12)
C33—N34—C35112.25 (13)H18A—C18—H18B110.3 (17)
C35—N34—C39108.39 (13)O17—C18—H18A106.6 (12)
C8—N7—H7114.6 (13)C19—C18—H18B107.5 (10)
C1—N7—H7119.8 (14)H19A—C19—H19B107.9 (15)
C11—N10—H10119.3 (13)N14—C19—H19A109.0 (11)
C9—N10—H10119.0 (14)C18—C19—H19B107.8 (10)
C28—N27—H27118.2 (13)C18—C19—H19A109.9 (11)
C6—N27—H27118.7 (13)N14—C19—H19B111.5 (11)
C29—N30—H30121.3 (13)C32—C31—H31B108.5 (10)
C31—N30—H30114.7 (13)C32—C31—H31A110.1 (12)
N7—C1—C2121.86 (14)N30—C31—H31B109.8 (11)
C2—C1—C6119.66 (14)N30—C31—H31A109.3 (11)
N7—C1—C6118.48 (14)H31A—C31—H31B108.8 (15)
C1—C2—C3120.00 (14)H32A—C32—H32B106.5 (16)
C2—C3—C4120.53 (15)C31—C32—H32A108.1 (10)
C3—C4—C5119.80 (15)C33—C32—H32A108.0 (11)
C4—C5—C6120.19 (14)C33—C32—H32B110.7 (10)
N27—C6—C5120.17 (14)C31—C32—H32B109.7 (10)
C1—C6—C5119.83 (14)C32—C33—H33A111.3 (11)
N27—C6—C1120.00 (14)N34—C33—H33B110.5 (10)
O8—C8—C9122.06 (13)N34—C33—H33A106.8 (12)
N7—C8—C9111.30 (13)C32—C33—H33B109.6 (11)
O8—C8—N7126.63 (15)H33A—C33—H33B106.3 (15)
N10—C9—C8113.24 (13)C36—C35—H35A108.7 (11)
O9—C9—N10125.86 (15)H35A—C35—H35B109.8 (17)
O9—C9—C8120.86 (14)N34—C35—H35B108.4 (11)
N10—C11—C12113.53 (14)N34—C35—H35A109.4 (11)
C11—C12—C13111.46 (15)C36—C35—H35B111.4 (11)
N14—C13—C12113.34 (13)H36A—C36—H36B110.3 (17)
N14—C15—C16110.94 (16)O37—C36—H36B108.3 (13)
O17—C16—C15111.85 (16)C35—C36—H36B110.0 (11)
O17—C18—C19111.82 (17)O37—C36—H36A106.4 (12)
N14—C19—C18110.72 (14)C35—C36—H36A111.1 (13)
O28—C28—N27125.74 (15)C39—C38—H38A108.6 (11)
N27—C28—C29112.80 (13)O37—C38—H38B106.2 (11)
O28—C28—C29121.46 (14)O37—C38—H38A110.8 (12)
O29—C29—C28121.55 (14)H38A—C38—H38B110.4 (17)
N30—C29—C28112.43 (13)C39—C38—H38B109.3 (11)
O29—C29—N30126.02 (15)H39A—C39—H39B107.6 (16)
N30—C31—C32110.38 (13)C38—C39—H39A109.4 (11)
C31—C32—C33113.61 (15)C38—C39—H39B111.0 (11)
N34—C33—C32112.28 (13)N34—C39—H39B107.7 (11)
N34—C35—C36109.19 (15)N34—C39—H39A111.0 (12)
O37—C36—C35110.65 (17)S1A—C40—H40A105.0 (14)
O37—C38—C39111.71 (16)S1A—C40—H40B109.4 (12)
N34—C39—C38110.11 (15)S1A—C40—H40C109.0 (12)
C1—C2—H2119.2 (11)H40A—C40—H40B111 (2)
C3—C2—H2120.8 (12)H40A—C40—H40C112.5 (19)
C4—C3—H3118.7 (10)H40B—C40—H40C109.9 (18)
C2—C3—H3120.8 (10)S1B—C40—H40B106.6 (13)
C5—C4—H4120.1 (10)S1B—C40—H40C73.1 (13)
C3—C4—H4120.1 (10)S1B—C40—H40A136.5 (14)
C6—C5—H5118.4 (11)S1A—C41—H41A105.7 (18)
C4—C5—H5121.4 (11)S1A—C41—H41B109.5 (17)
C12—C11—H11A108.6 (10)S1B—C41—H41C129.3 (15)
C12—C11—H11B109.6 (11)H41A—C41—H41B112 (2)
H11A—C11—H11B109.9 (16)H41A—C41—H41C107 (2)
N10—C11—H11A107.7 (10)H41B—C41—H41C117 (2)
N10—C11—H11B107.5 (11)S1A—C41—H41C104.8 (14)
C11—C12—H12B110.2 (11)S1B—C41—H41A119.6 (16)
C11—C12—H12A110.1 (11)S1B—C41—H41B63.3 (18)
H12A—C12—H12B107.0 (16)
C18—O17—C16—C1558.2 (2)C39—N34—C35—C3659.01 (18)
C16—O17—C18—C1958.57 (19)N7—C1—C6—N270.4 (2)
C38—O37—C36—C3560.2 (2)C2—C1—C6—N27179.80 (14)
C36—O37—C38—C3958.5 (2)N7—C1—C2—C3179.93 (14)
C8—N7—C1—C6137.65 (16)C6—C1—C2—C30.7 (2)
C1—N7—C8—O81.4 (3)N7—C1—C6—C5179.70 (14)
C8—N7—C1—C243.0 (2)C2—C1—C6—C50.3 (2)
C1—N7—C8—C9177.00 (14)C1—C2—C3—C40.4 (2)
C11—N10—C9—C8176.20 (13)C2—C3—C4—C50.3 (2)
C11—N10—C9—O91.4 (3)C3—C4—C5—C60.7 (2)
C9—N10—C11—C1289.77 (18)C4—C5—C6—N27179.53 (14)
C19—N14—C13—C12174.58 (14)C4—C5—C6—C10.4 (2)
C15—N14—C13—C1264.21 (18)N7—C8—C9—O90.1 (2)
C15—N14—C19—C1855.40 (18)N7—C8—C9—N10177.62 (13)
C19—N14—C15—C1655.15 (18)O8—C8—C9—O9178.59 (15)
C13—N14—C19—C18178.32 (14)O8—C8—C9—N100.9 (2)
C13—N14—C15—C16177.03 (14)N10—C11—C12—C13168.49 (14)
C6—N27—C28—O282.3 (3)C11—C12—C13—N1456.32 (19)
C28—N27—C6—C554.0 (2)N14—C15—C16—O1757.85 (19)
C6—N27—C28—C29177.02 (13)O17—C18—C19—N1458.55 (19)
C28—N27—C6—C1125.88 (16)O28—C28—C29—N308.6 (2)
C31—N30—C29—C28173.34 (14)O28—C28—C29—O29172.08 (16)
C29—N30—C31—C32177.84 (15)N27—C28—C29—O298.6 (2)
C31—N30—C29—O295.9 (3)N27—C28—C29—N30170.71 (14)
C33—N34—C35—C36177.14 (14)N30—C31—C32—C3354.54 (18)
C39—N34—C33—C32165.05 (14)C31—C32—C33—N3470.39 (18)
C35—N34—C39—C3857.35 (18)N34—C35—C36—O3761.52 (19)
C33—N34—C39—C38178.47 (14)O37—C38—C39—N3458.1 (2)
C35—N34—C33—C3272.96 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O90.830 (18)2.23 (2)2.6620 (18)113.1 (16)
N7—H7···O1i0.830 (18)2.064 (18)2.7896 (17)145.8 (19)
N10—H10···O80.840 (18)2.372 (19)2.7224 (18)105.8 (15)
N10—H10···O8ii0.840 (18)2.177 (18)2.9134 (18)146.2 (17)
N27—H27···O290.879 (18)2.329 (19)2.7155 (18)106.7 (14)
N27—H27···O1i0.879 (18)1.996 (18)2.7734 (17)146.7 (17)
N30—H30···O280.829 (18)2.370 (19)2.6924 (19)103.9 (15)
N30—H30···N340.829 (18)2.061 (18)2.7774 (18)144.5 (17)
C4—H4···O37iii0.963 (19)2.569 (18)3.224 (2)125.5 (13)
C11—H11A···N140.960 (17)2.541 (17)2.962 (2)106.6 (12)
C35—H35A···O29iv0.95 (2)2.59 (2)3.472 (2)155.1 (15)
C40—H40B···O28iv0.97 (3)2.34 (3)3.290 (2)166.7 (19)
C40—H40C···O29i0.96 (2)2.45 (2)3.345 (2)155.0 (16)
C41—H41B···O29i1.08 (3)2.58 (3)3.527 (3)146 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H36N6O6·C2H6OS
Mr582.72
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.6704 (8), 11.0052 (10), 16.3277 (15)
α, β, γ (°)107.425 (2), 98.036 (2), 91.517 (2)
V3)1468.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.26 × 0.22 × 0.12 (radius)
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionFor a sphere
(Dwiggins, 1975)
Tmin, Tmax0.861, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
11574, 5722, 5081
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.04
No. of reflections5722
No. of parameters539
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.41, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
O8—C81.2274 (18)N10—C91.328 (2)
O17—C161.424 (3)N27—C61.424 (2)
O28—C281.2202 (19)N27—C281.343 (2)
O29—C291.2298 (18)N30—C291.322 (2)
N7—C81.3371 (19)N30—C311.459 (2)
N7—C11.417 (2)C8—C91.541 (2)
C1—N7—C8125.64 (13)N7—C8—C9111.30 (13)
C9—N10—C11121.27 (14)O8—C8—N7126.63 (15)
C15—N14—C19108.92 (13)N10—C9—C8113.24 (13)
C6—N27—C28123.04 (13)O9—C9—N10125.86 (15)
C29—N30—C31122.74 (13)O9—C9—C8120.86 (14)
C33—N34—C39111.71 (13)N14—C13—C12113.34 (13)
C33—N34—C35112.25 (13)O28—C28—N27125.74 (15)
C35—N34—C39108.39 (13)N27—C28—C29112.80 (13)
N7—C1—C2121.86 (14)O28—C28—C29121.46 (14)
N7—C1—C6118.48 (14)O29—C29—C28121.55 (14)
N27—C6—C5120.17 (14)N30—C29—C28112.43 (13)
N27—C6—C1120.00 (14)O29—C29—N30126.02 (15)
O8—C8—C9122.06 (13)N34—C33—C32112.28 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O90.830 (18)2.23 (2)2.6620 (18)113.1 (16)
N7—H7···O1i0.830 (18)2.064 (18)2.7896 (17)145.8 (19)
N10—H10···O80.840 (18)2.372 (19)2.7224 (18)105.8 (15)
N10—H10···O8ii0.840 (18)2.177 (18)2.9134 (18)146.2 (17)
N27—H27···O290.879 (18)2.329 (19)2.7155 (18)106.7 (14)
N27—H27···O1i0.879 (18)1.996 (18)2.7734 (17)146.7 (17)
N30—H30···O280.829 (18)2.370 (19)2.6924 (19)103.9 (15)
N30—H30···N340.829 (18)2.061 (18)2.7774 (18)144.5 (17)
C4—H4···O37iii0.963 (19)2.569 (18)3.224 (2)125.5 (13)
C11—H11A···N140.960 (17)2.541 (17)2.962 (2)106.6 (12)
C35—H35A···O29iv0.95 (2)2.59 (2)3.472 (2)155.1 (15)
C40—H40B···O28iv0.97 (3)2.34 (3)3.290 (2)166.7 (19)
C40—H40C···O29i0.96 (2)2.45 (2)3.345 (2)155.0 (16)
C41—H41B···O29i1.08 (3)2.58 (3)3.527 (3)146 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by CONACYT grant 83378, SIP–IPN (Secretaría de Investigación y Postgrado del Instituto Politécnico Nacional) and FRABA Universidad de Colima 797/12.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals
First citationArman, H. D., Kaulgud, T., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2012). J. Chem. Crystallogr. 42, 673–679.  Web of Science CSD CrossRef CAS
First citationBernés, S., Hernández, G., Vázquez, J., Tovar, A. & Gutiérrez, R. (2010). Acta Cryst. E66, o2988.  Web of Science CSD CrossRef IUCr Journals
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBlay, G., Fernández, I., Pedro, J. R., Ruiz-García, R., Muñoz, M. C., Cano, J. & Carrasco, R. (2003). Eur. J. Org. Chem. pp. 1627–1630.  Web of Science CSD CrossRef
First citationBrooks, S. J., Edwards, P. R., Gale, P. A. & Light, M. E. (2006). New J. Chem. 30, 65–70.  Web of Science CSD CrossRef CAS
First citationBrooks, S., García-Garrido, S. E. & Light, M. E. (2007). Chem. Eur. J. 13, 3320–3329.  Web of Science CSD CrossRef PubMed CAS
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBugg, T. (2004). Introduction to Enzyme and Coenzyme Chemistry, pp. 20–21. Oxford: Blackwell Publishing Ltd.
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS
First citationDesseyn, H. O., Perlepes, S. P., Clou, K., Blaton, N., Veken, B. J., Dommisse, R. & Hansen, P. E. (2004). J. Phys. Chem. A, 108, 5175–5182.  Web of Science CSD CrossRef CAS
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationGonzalez-Gonzalez, J. S., Martínez-Martínez, F. J., García-Báez, E. V., Franco-Hernández, O. M. & Padilla-Martínez, I. I. (2011). Acta Cryst. E67, o398.  Web of Science CSD CrossRef IUCr Journals
First citationGonzález-González, J. S., Martínez-Martínez, F. J., Peraza-Campos, A. L., Rosales-Hoz, M. J., García-Báez, E. V. & Padilla-Martínez, I. I. (2011). CrystEngComm, 13, 4748–4761.
First citationKeskin, O., Gursoy, A., Ma, B. & Nussinov, R. (2008). Chem. Rev. 108, 1225–1244.  Web of Science CrossRef PubMed CAS
First citationKool, E. T. (1997). Chem. Rev. 97, 1473–1487.  CrossRef PubMed CAS Web of Science
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationMartín, S., Beitia, J. I., Ugalde, M., Vitoria, P. & Cortés, R. (2002). Acta Cryst. E58, o913–o915.  Web of Science CSD CrossRef IUCr Journals
First citationMartínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406.
First citationSarker, S. D. & Nahar, L. (2007). Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, pp. 30–31. London: John Wiley & Sons Ltd.
First citationSewald, N. & Hans-Dieter, J. (2002). Peptides: Chemistry and Biology, pp. 36–38. Germany: Wiley-VCH Verlag GmbH.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., pp. 27–36. Wiltshire: John Wiley & Sons Ltd.
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CrossRef CAS Web of Science
First citationYang, J. & Gellman, S. H. (1998). J. Am. Chem. Soc. 120, 9090–9091.  Web of Science CrossRef CAS
First citationZhu, Y.-Y., Wu, J., Li, C., Zhu, J., Hou, J.-H., Li, C.-Z., Jiang, X.-K. & Li, Z.-T. (2007). Cryst. Growth Des. 7, 1490–1496.  Web of Science CSD CrossRef CAS

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds