metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Controllable assembly of a three-dimensional metal–organic supra­molecular framework including ππ stacking inter­actions

aCollege of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: caihua-1109@163.com

(Received 19 November 2012; accepted 28 November 2012; online 13 December 2012)

The mixed-ligand metal–organic complex poly[(μ3-phthal­ato)[μ2-3-(pyridin-2-yl)-1H-pyrazol-1-ido]dicopper(II)], [Cu2(C8H4O4)(C8H6N3)2]n, has been synthesized by the reaction of copper(II) acetate with 2-(1H-pyrazol-3-yl)pyridine (HL) and phthalic acid. The binuclear chelating–bridging L units are further linked by bridging phthalate ligands into a two-dimensional network parallel to the (010) plane. The two-dimensional networks are extended into a three-dimensional supra­molecular architecture via ππ stacking inter­actions.

Comment

The rapid development in the crystal engineering of metal-directed supra­molecular architectures assembled by means of coordinative forces, and other weak co-operative inter­actions such as hydrogen bonding and aromatic stacking, continues to attract considerable inter­est in the design of new crystalline materials (Ye et al., 2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]). As is widely known, the assembly of such materials can be influenced significantly by the reaction temperature, metal–ligand ratio, anion type, acidity and even the solvent, leading to the formation of a variety of inter­esting coordination complexes (Du et al., 2006[Du, M., Jiang, X. J. & Zhao, X. J. (2006). Inorg. Chem. 45, 3998-4006.]). In this regard, further exploration and appropriate experimental results may guide chemists from spontaneous assembly to the controllable preparation of metallosupra­molecular systems. With regard to the organic ligands suitable for designing new metal–organic supra­molecular structures, dicarboxyl­ates such as the rigid aromatic phthalate, isophthalate and terephthalate anions have been widely utilized (Ye et al., 2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]).

N-Donor building blocks, such as the traditionally em­ployed 2-(1H-pyrazol-3-yl)pyridine (HL), have been extensively studied in coordination chemistry. HL, first reported by Tisler et al. (1980[Tisler, M., Stanovnik, B. & Versek, B. (1980). Vestn. Slov. Kem. Drus. 27, 65-72.]), is a multifunctional ligand having several coordination modes. For a long time, HL was considered a simple bidentate chelating ligand (Sugiyarto & Goodwin, 1988[Sugiyarto, K. H. & Goodwin, H. A. (1988). Aust. J. Chem. 41, 1645-1663.]) similar to 2,2-bipyridine. However, in 1997, Ward and co-workers (Jones et al., 1997[Jones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997). Polyhedron, 16, 1567-1571.]) observed another coordination mode, where it acted as a tridentate bridging ligand via deprotonation of the pyrazole NH group and coordination of the pyrazole N atom to a second metal ion. The coordination chemistry of HL as a tridentate bridging ligand with CuII cations has been studied by several researchers to date (Jeffery et al., 1997[Jeffery, J. C., Jones, P. L., Mann, K. L. V., Psillakis, E., McCleverty, J. A. & Ward, M. D. (1997). Chem. Commun. pp. 175-176.]; Mann et al., 1999[Mann, K. L. V., Psillakis, E., Jeffery, J. C., Rees, L. H., Harden, N. M., McCleverty, J. A., Ward, M. D., Gatteschi, D., Totti, F., Mabbs, F. E., McInnes, E. J. L., Riedi, P. C. & Smith, G. M. (1999). J. Chem. Soc. Dalton Trans. pp. 339-348.]; Chandrasekhar et al., 2005[Chandrasekhar, V., Nagarajan, L., Gopal, K., Baskar, V. & Kogerler, P. (2005). Dalton Trans. pp. 3143-3145.]; Hu et al., 2006[Hu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162-173.]), but to the best of our knowledge, only three structurally related CuII complexes with deprotonated HL and aromatic acids have been reported (Hu et al., 2006[Hu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162-173.]).

[Scheme 1]
As a systematic investigation of the coordination chemistry of HL with CuII, we report here the preparation and structural characterization of the title novel CuII complex, (I)[link].

The structure of (I)[link] is a two-dimensional layer constructed by the dicarboxyl­ate ligands linking binuclear Cu2(L)2 units in which there are dual pyrazolate bridges. As shown in Fig. 1[link], there are two independent CuII cations (Cu1 and Cu2) in the asymmetric unit. Atom Cu1 is four-coordinated by three N atoms of two distinct L ligands and one carboxyl­ate O atom from a phthalate dianion to form a distorted square-planar geometry, with cis angles around the CuII centre ranging from 80.89 (10) to 96.45 (10)° (Table 1[link]). Atom Cu2 has a distorted square-pyramidal coordination geometry with three N atoms from the same two L ligands that coordinate to atom Cu1 and two O atoms from different carboxyl­ate groups, one of which is in the apical position. Two L ligands bridge the two CuII centres to form an approximately planar Cu2(L)2 binuclear unit. Within this binuclear unit, the Cu1⋯Cu2 distance is 3.988 (1) Å, and the two planar Cu2(L)2 units are further bridged by bidentate (O1 and O2) and monodentate (O4) phthalate O atoms to form a two-dimensional layer parallel to the (010) plane. It should be noted that the phthalate dianions adopt two kinds of coordination mode in this two-dimensional pattern.

Within the two-dimensional layer, neighbouring parallel aromatic rings of L are 3.686 (2) and 3.898 (2) Å apart, indicating the presence of centroid–centroid ππ stacking inter­actions that further stabilize the crystal structure (Fig. 2[link]). The benzene rings, located on both sides of the coordination layers, show strong inter­layer ππ stacking inter­actions (Fig. 3[link]); the centroid–centroid distances here are 3.674 (2) Å. These ππ inter­actions extend the two-dimensional layer network into a three-dimensional framework.

The structure of (I)[link] thus shows that the assembly of this complex is directed by the stereochemical preference of the CuII cations, and fulfilling this requirement necessitates deproton­ation of the pyrazole groups to form a planar binuclear Cu2(L)2 unit.

[Figure 1]
Figure 1
A view of the local coordination of the CuII cations in (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x + 1, −y + [{3\over 2}], z + [{1\over 2}]; (ii) x, −y + [{3\over 2}], z + [{1\over 2}].]
[Figure 2]
Figure 2
A perspective view of the two-dimensional layered framework parallel to the (010) plane. Dashed lines indicate ππ inter­actions.
[Figure 3]
Figure 3
The three-dimensional structure of (I)[link] formed through ππ stacking inter­actions (dashed lines; L linkers are shown as simple rods for clarity).

Experimental

A mixture containing Cu(OAc)2·H2O (19.9 mg, 0.10 mmol), HL (14.5 mg, 0.10 mmol), phthalic acid (16.8 mg, 0.10 mmol) and H2O (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated at 413 K for 3 d and then cooled to room temperature at a rate of 5 K h−1. Blue block-shaped crystals of (I)[link] suitable for X-ray analysis were obtained in 60% yield. Analysis calculated for (I)[link]: C 49.74, H 2.78, N 14.50%; found: C 49.61, H 2.84, N 14.59%.

Crystal data
  • [Cu2(C8H4O4)(C8H6N3)2]

  • Mr = 579.51

  • Monoclinic, P 21 /c

  • a = 7.752 (2) Å

  • b = 20.566 (7) Å

  • c = 14.141 (4) Å

  • β = 99.639 (6)°

  • V = 2222.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.610, Tmax = 0.695

  • 12705 measured reflections

  • 4813 independent reflections

  • 3469 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.07

  • 4813 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O11.9663 (19)
Cu1—N61.968 (2)
Cu1—N21.972 (2)
Cu1—N12.042 (2)
Cu2—N31.960 (2)
Cu2—O4i1.984 (2)
Cu2—N51.987 (2)
Cu2—N42.036 (2)
Cu2—O2ii2.335 (2)
O1—Cu1—N691.03 (9)
O1—Cu1—N2168.38 (9)
N6—Cu1—N296.45 (10)
O1—Cu1—N191.58 (9)
N6—Cu1—N1177.34 (10)
N2—Cu1—N180.89 (10)
N3—Cu2—O4i90.75 (9)
N3—Cu2—N596.21 (10)
O4i—Cu2—N5164.89 (9)
N3—Cu2—N4176.46 (10)
O4i—Cu2—N492.44 (9)
N5—Cu2—N481.05 (10)
N3—Cu2—O2ii99.98 (10)
O4i—Cu2—O2ii93.18 (9)
N5—Cu2—O2ii98.78 (9)
N4—Cu2—O2ii78.31 (9)
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Although all H atoms were visible in difference maps, they were subsequently placed in geometrically calculated positions, with C—H = 0.93 Å, and included in the final refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg et al., 2005[Brandenburg, K. & Berndt, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rapid development in crystal engineering of metal-directed supramolecular architectures assembled by means of coordinative forces, and other weak cooperative interactions such as hydrogen bonding and aromatic stacking, continues to attract considerable interest in the design of new crystalline materials (Ye et al., 2005). As is widely known, the assembly of such materials can be influenced significantly by the reaction temperature, metal–ligand ratio, anion type, acidity and even the solvent, leading to the formation of a variety of interesting coordination complexes (Du et al., 2006). In this regard, further exploration and appropriate experimental results may guide chemists from spontaneous assembly to the controllable preparation of metallosupramolecular systems. With regard to the organic ligands suitable for designing new metal–organic supramolecular structures, dicarboxylates such as the rigid aromatic phthalate, isophthalate and terephthalate anions have been widely utilized (Ye et al., 2005).

N-Donor building blocks, such as the traditionally employed 2-(1H-pyrazol-3-yl)pyridine, have been extensively studied in coordination chemistry. 2-(1H-Pyrazol-3-yl)pyridine (HL), first reported by Tisler et al. (1980), is a multifunctional ligand having several coordination modes. For a long time, HL was considered as a simple bidentate chelating ligand (Sugiyarto & Goodwin, 1988) similar to 2,2-bipyridine. However, in 1997, Ward and co-workers (Jones et al., 1997) observed another coordination mode, where it acted as a terdentate bridging ligand via deprotonation of the pyrazole NH group and coordination of the pyrazole N atom to a second metal ion. The coordination chemistry of HL as a terdentate bridging ligand with CuII cations has been studied by several researchers to date (Jeffery et al., 1997; Mann et al., 1999; Chandrasekhar et al., 2005; Hu et al., 2006), but to the best of our knowledge, only three structurally related CuII complexes with deprotonation of HL and aromatic acids have been reported (Hu et al., 2006). As a systematic investigation of the coordination chemistry of HL with CuII, we report here the preparation and structural characterization of the title novel CuII complex, (I).

The structure of (I) is a two-dimensional layer constructed by the dicarboxylate ligands linking binuclear Cu2(L)2 units with pyrazolate bridges. As shown in Fig. 1, there are two independent CuII cations (Cu1 and Cu2) in the asymmetric unit. Atom Cu1 is four-coordinated by three N atoms of two distinct L ligands and one carboxylate O atom from a phthalate dianion to form a distorted square[-planar?] geometry, with angles around the CuII centre ranging from 80.89 (10) to 96.45 (10)° (Table 1). Atom Cu2 has a distorted square-pyramidal coordination geometry with three N atoms from two distinct L ligands and two O atoms from different carboxylate groups. Two L ligands bridge the two CuII centres to form an approximately planar Cu2(L)2 binuclear unit. Within this binuclear unit, the Cu1···Cu2 distance is 3.988 (1) Å and the two planar Cu2(L)2 units are further bridged by bidentate (O1 and O2) and monodentate (O4) phthalate O atoms to form a two-dimensional layer parallel to the (010) plane. It should be noted that the phthalate dianions adopt two kinds of coordination mode in this two-dimensional pattern.

Within the two-dimensional layer, neighbouring parallel aromatic rings of L are 3.686 (2) and 3.898 (2) Å apart, indicating the presence of centroid-to-centroid ππ stacking interactions that further stabilize the crystal structure (Fig. 2). The benzene rings, located on both sides of the coordination layers, show strong interlayer ππ stacking interactions (Fig. 3); the centroid-to-centroid distances here are 3.674 (2) Å. These ππ interactions extend the two-dimensional layer network into a three-dimensional framework.

The structure of (I) thus shows that the assembly of this complex is directed by the stereochemical preference of the CuII cations: fulfilling this requirement necessitates deprotonation of the pyrazole groups to form a planar binuclear Cu2(L)2 unit.

Related literature top

For related literature, see: Chandrasekhar et al. (2005); Du et al. (2006); Hu et al. (2006); Jeffery et al. (1997); Jones et al. (1997); Mann et al. (1999); Sugiyarto & Goodwin (1988); Tisler et al. (1980); Ye et al. (2005).

Experimental top

A mixture containing Cu(OAc)2.H2O (19.9 mg, 0.10 mmol), HL (14.5 mg, 0.10 mmol), phthalic acid (16.8 mg, 0.10 mmol) and ????? [Text missing] (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated at 413 K for 3 d and then cooled to room temperature at a rate of 5 K h-1. Blue block-shaped crystals of (I) suitable for X-ray analysis were obtained in 60% yield. Analysis, calculated for (I): C 49.74, H 2.78, N 14.50%; found: C 49.61, H 2.84, N 14.59%.

Refinement top

Although all H atoms were visible in difference maps, they were subsequently placed in geometrically calculated positions, with C—H = 0.93 Å, and included in the final refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2 (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg et al., 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. A view of the local coordination of the CuII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, -y + 3/2, z + 1/2; (ii) x + 1, -y + 3/2, z + 1/2.]

Fig. 2. A perspective view of the two-dimensional layered framework parallel to the (010) plane. Dashed lines indicate ππ interactions [Added text OK?].

Fig. 3. The three-dimensional structure of (I) formed through ππ stacking interactions (dashed lines; L linkers are shown as simple rods for clarity).
poly[(µ3-phthalato)[µ2-3-(pyridin-2-yl)-1H-pyrazol-1- ido]dicopper(II)] top
Crystal data top
[Cu2(C8H4O4)(C8H6N3)2]F(000) = 1168
Mr = 579.51Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4370 reflections
a = 7.752 (2) Åθ = 2.5–28.4°
b = 20.566 (7) ŵ = 1.96 mm1
c = 14.141 (4) ÅT = 296 K
β = 99.639 (6)°Block, blue
V = 2222.7 (12) Å30.28 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4813 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.610, Tmax = 0.695k = 2625
12705 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.8398P]
where P = (Fo2 + 2Fc2)/3
4813 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2(C8H4O4)(C8H6N3)2]V = 2222.7 (12) Å3
Mr = 579.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.752 (2) ŵ = 1.96 mm1
b = 20.566 (7) ÅT = 296 K
c = 14.141 (4) Å0.28 × 0.22 × 0.20 mm
β = 99.639 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4813 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3469 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.695Rint = 0.024
12705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
4813 reflectionsΔρmin = 0.36 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76108 (4)0.759298 (16)0.57840 (2)0.02923 (10)
Cu21.05463 (4)0.805560 (16)0.82856 (2)0.02947 (10)
O10.6334 (2)0.68530 (9)0.51198 (14)0.0315 (4)
O20.8618 (3)0.68147 (11)0.43756 (18)0.0504 (6)
O30.3944 (3)0.67498 (10)0.30964 (14)0.0379 (5)
O40.2065 (2)0.62158 (9)0.38407 (15)0.0353 (5)
N10.6539 (3)0.82191 (11)0.47260 (17)0.0340 (6)
N20.8424 (3)0.84219 (11)0.64051 (17)0.0316 (5)
N30.9415 (3)0.86178 (11)0.72439 (17)0.0338 (6)
N41.1584 (3)0.74380 (11)0.93560 (17)0.0299 (5)
N50.9626 (3)0.72221 (11)0.76932 (16)0.0299 (5)
N60.8685 (3)0.70246 (11)0.68402 (17)0.0336 (6)
C10.5582 (4)0.80677 (16)0.3870 (2)0.0415 (8)
H10.54220.76320.37010.050*
C20.4833 (5)0.85353 (17)0.3237 (2)0.0485 (9)
H20.41700.84150.26530.058*
C30.5071 (5)0.91833 (17)0.3474 (2)0.0501 (9)
H30.45700.95050.30540.060*
C40.6069 (5)0.93459 (16)0.4347 (2)0.0450 (8)
H40.62570.97790.45210.054*
C50.6783 (4)0.88528 (14)0.4958 (2)0.0349 (7)
C60.7846 (4)0.89583 (14)0.5904 (2)0.0352 (7)
C70.8445 (5)0.95050 (15)0.6410 (2)0.0475 (9)
H70.82390.99370.62310.057*
C80.9427 (4)0.92699 (14)0.7249 (2)0.0441 (8)
H81.00100.95260.77430.053*
C91.2500 (4)0.76037 (16)1.0207 (2)0.0384 (7)
H91.28070.80381.03190.046*
C101.3011 (4)0.71566 (17)1.0928 (2)0.0464 (8)
H101.36640.72851.15110.056*
C111.2530 (4)0.65144 (17)1.0764 (2)0.0468 (8)
H111.28490.62031.12380.056*
C121.1568 (4)0.63395 (15)0.9889 (2)0.0417 (8)
H121.12310.59090.97680.050*
C131.1113 (4)0.68106 (14)0.9196 (2)0.0322 (7)
C141.0087 (4)0.66960 (14)0.8242 (2)0.0323 (7)
C150.9430 (5)0.61432 (15)0.7750 (2)0.0481 (9)
H150.95450.57140.79590.058*
C160.8565 (5)0.63704 (14)0.6877 (2)0.0461 (8)
H160.79850.61100.63870.055*
C170.6653 (4)0.59072 (13)0.42102 (19)0.0278 (6)
C180.7891 (4)0.54115 (16)0.4341 (2)0.0395 (7)
H180.90650.55120.45380.047*
C190.7391 (4)0.47669 (15)0.4179 (2)0.0414 (8)
H190.82240.44380.42730.050*
C200.5647 (4)0.46185 (14)0.3878 (2)0.0380 (7)
H200.53000.41870.37880.046*
C210.4416 (4)0.51109 (14)0.3710 (2)0.0333 (7)
H210.32500.50070.34910.040*
C220.4901 (3)0.57597 (13)0.38658 (18)0.0264 (6)
C230.7249 (4)0.65767 (14)0.4558 (2)0.0301 (6)
C240.3562 (4)0.62900 (13)0.35832 (19)0.0283 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03229 (19)0.02369 (18)0.0296 (2)0.00350 (14)0.00082 (15)0.00080 (14)
Cu20.03007 (19)0.02453 (18)0.0315 (2)0.00157 (14)0.00162 (14)0.00052 (14)
O10.0322 (11)0.0287 (11)0.0322 (11)0.0028 (8)0.0019 (9)0.0031 (8)
O20.0377 (13)0.0532 (15)0.0639 (16)0.0163 (11)0.0188 (12)0.0109 (12)
O30.0422 (12)0.0364 (12)0.0325 (11)0.0004 (10)0.0010 (9)0.0087 (9)
O40.0281 (11)0.0312 (11)0.0447 (13)0.0025 (9)0.0004 (9)0.0028 (9)
N10.0370 (14)0.0314 (14)0.0323 (14)0.0059 (11)0.0018 (11)0.0033 (10)
N20.0365 (14)0.0239 (12)0.0316 (13)0.0022 (10)0.0029 (11)0.0030 (10)
N30.0396 (14)0.0258 (13)0.0330 (14)0.0044 (11)0.0021 (11)0.0015 (10)
N40.0281 (12)0.0304 (13)0.0306 (13)0.0012 (10)0.0036 (10)0.0001 (10)
N50.0345 (13)0.0266 (12)0.0261 (12)0.0001 (10)0.0027 (10)0.0002 (10)
N60.0384 (14)0.0255 (13)0.0333 (14)0.0034 (10)0.0042 (11)0.0002 (10)
C10.0478 (19)0.0381 (17)0.0349 (18)0.0093 (15)0.0039 (15)0.0025 (14)
C20.055 (2)0.051 (2)0.0353 (18)0.0070 (17)0.0038 (16)0.0071 (16)
C30.061 (2)0.046 (2)0.0396 (19)0.0061 (17)0.0001 (17)0.0161 (16)
C40.061 (2)0.0333 (17)0.0375 (19)0.0025 (16)0.0005 (16)0.0056 (14)
C50.0382 (17)0.0314 (16)0.0339 (17)0.0004 (13)0.0025 (13)0.0046 (13)
C60.0443 (18)0.0258 (15)0.0338 (17)0.0004 (13)0.0015 (14)0.0035 (12)
C70.065 (2)0.0227 (15)0.049 (2)0.0000 (15)0.0071 (17)0.0023 (14)
C80.059 (2)0.0260 (16)0.0424 (19)0.0042 (15)0.0064 (16)0.0035 (14)
C90.0391 (17)0.0421 (18)0.0320 (17)0.0000 (14)0.0001 (14)0.0028 (14)
C100.049 (2)0.059 (2)0.0296 (17)0.0013 (17)0.0006 (15)0.0011 (15)
C110.055 (2)0.051 (2)0.0331 (18)0.0074 (17)0.0031 (16)0.0113 (16)
C120.053 (2)0.0320 (17)0.0392 (18)0.0043 (15)0.0057 (16)0.0056 (14)
C130.0301 (15)0.0344 (17)0.0320 (16)0.0054 (12)0.0051 (13)0.0006 (12)
C140.0384 (17)0.0253 (15)0.0319 (16)0.0038 (12)0.0022 (13)0.0031 (12)
C150.066 (2)0.0237 (16)0.048 (2)0.0012 (15)0.0094 (17)0.0031 (14)
C160.061 (2)0.0261 (16)0.0441 (19)0.0055 (15)0.0105 (17)0.0023 (14)
C170.0287 (14)0.0296 (15)0.0242 (14)0.0003 (12)0.0019 (12)0.0014 (11)
C180.0285 (16)0.0446 (19)0.0433 (19)0.0046 (14)0.0002 (14)0.0032 (15)
C190.0426 (18)0.0346 (17)0.0451 (19)0.0131 (14)0.0019 (15)0.0021 (14)
C200.0513 (19)0.0269 (16)0.0338 (17)0.0028 (14)0.0013 (15)0.0047 (13)
C210.0337 (16)0.0326 (16)0.0309 (16)0.0022 (13)0.0027 (13)0.0065 (12)
C220.0276 (14)0.0302 (15)0.0200 (14)0.0011 (11)0.0003 (11)0.0018 (11)
C230.0272 (15)0.0318 (16)0.0289 (15)0.0016 (12)0.0020 (12)0.0010 (12)
C240.0316 (15)0.0271 (15)0.0224 (14)0.0006 (12)0.0068 (12)0.0040 (11)
Geometric parameters (Å, º) top
Cu1—O11.9663 (19)C4—H40.9300
Cu1—N61.968 (2)C5—C61.465 (4)
Cu1—N21.972 (2)C6—C71.372 (4)
Cu1—N12.042 (2)C7—C81.385 (4)
Cu2—N31.960 (2)C7—H70.9300
Cu2—O4i1.984 (2)C8—H80.9300
Cu2—N51.987 (2)C9—C101.381 (4)
Cu2—N42.036 (2)C9—H90.9300
Cu2—O2ii2.335 (2)C10—C111.381 (5)
O1—C231.283 (3)C10—H100.9300
O2—C231.234 (3)C11—C121.381 (5)
O2—Cu2iii2.335 (2)C11—H110.9300
O3—C241.235 (3)C12—C131.381 (4)
O4—C241.283 (3)C12—H120.9300
O4—Cu2iv1.984 (2)C13—C141.466 (4)
N1—C11.346 (4)C14—C151.385 (4)
N1—C51.350 (4)C15—C161.383 (4)
N2—C61.347 (4)C15—H150.9300
N2—N31.362 (3)C16—H160.9300
N3—C81.341 (4)C17—C181.391 (4)
N4—C91.335 (4)C17—C221.397 (4)
N4—C131.350 (4)C17—C231.508 (4)
N5—C141.345 (3)C18—C191.389 (4)
N5—N61.363 (3)C18—H180.9300
N6—C161.350 (4)C19—C201.381 (4)
C1—C21.374 (4)C19—H190.9300
C1—H10.9300C20—C211.385 (4)
C2—C31.379 (5)C20—H200.9300
C2—H20.9300C21—C221.394 (4)
C3—C41.384 (5)C21—H210.9300
C3—H30.9300C22—C241.512 (4)
C4—C51.386 (4)
O1—Cu1—N691.03 (9)C6—C7—C8104.5 (3)
O1—Cu1—N2168.38 (9)C6—C7—H7127.7
N6—Cu1—N296.45 (10)C8—C7—H7127.7
O1—Cu1—N191.58 (9)N3—C8—C7110.0 (3)
N6—Cu1—N1177.34 (10)N3—C8—H8125.0
N2—Cu1—N180.89 (10)C7—C8—H8125.0
N3—Cu2—O4i90.75 (9)N4—C9—C10122.6 (3)
N3—Cu2—N596.21 (10)N4—C9—H9118.7
O4i—Cu2—N5164.89 (9)C10—C9—H9118.7
N3—Cu2—N4176.46 (10)C9—C10—C11118.5 (3)
O4i—Cu2—N492.44 (9)C9—C10—H10120.8
N5—Cu2—N481.05 (10)C11—C10—H10120.8
N3—Cu2—O2ii99.98 (10)C12—C11—C10119.3 (3)
O4i—Cu2—O2ii93.18 (9)C12—C11—H11120.4
N5—Cu2—O2ii98.78 (9)C10—C11—H11120.4
N4—Cu2—O2ii78.31 (9)C11—C12—C13119.2 (3)
C23—O1—Cu1110.63 (17)C11—C12—H12120.4
C23—O2—Cu2iii148.3 (2)C13—C12—H12120.4
C24—O4—Cu2iv107.64 (17)N4—C13—C12121.5 (3)
C1—N1—C5118.4 (3)N4—C13—C14113.5 (2)
C1—N1—Cu1127.5 (2)C12—C13—C14125.1 (3)
C5—N1—Cu1114.1 (2)N5—C14—C15109.3 (3)
C6—N2—N3107.8 (2)N5—C14—C13116.9 (3)
C6—N2—Cu1114.85 (19)C15—C14—C13133.8 (3)
N3—N2—Cu1137.33 (18)C16—C15—C14104.7 (3)
C8—N3—N2107.6 (2)C16—C15—H15127.6
C8—N3—Cu2125.7 (2)C14—C15—H15127.6
N2—N3—Cu2126.60 (17)N6—C16—C15110.2 (3)
C9—N4—C13118.9 (3)N6—C16—H16124.9
C9—N4—Cu2126.5 (2)C15—C16—H16124.9
C13—N4—Cu2114.18 (19)C18—C17—C22119.7 (3)
C14—N5—N6108.8 (2)C18—C17—C23117.3 (3)
C14—N5—Cu2114.13 (19)C22—C17—C23122.6 (2)
N6—N5—Cu2137.00 (18)C19—C18—C17120.7 (3)
C16—N6—N5107.0 (2)C19—C18—H18119.7
C16—N6—Cu1126.7 (2)C17—C18—H18119.7
N5—N6—Cu1126.18 (18)C20—C19—C18119.6 (3)
N1—C1—C2122.2 (3)C20—C19—H19120.2
N1—C1—H1118.9C18—C19—H19120.2
C2—C1—H1118.9C19—C20—C21120.1 (3)
C1—C2—C3119.6 (3)C19—C20—H20119.9
C1—C2—H2120.2C21—C20—H20119.9
C3—C2—H2120.2C20—C21—C22120.9 (3)
C2—C3—C4118.8 (3)C20—C21—H21119.6
C2—C3—H3120.6C22—C21—H21119.6
C4—C3—H3120.6C21—C22—C17118.9 (3)
C3—C4—C5119.0 (3)C21—C22—C24119.6 (2)
C3—C4—H4120.5C17—C22—C24121.3 (2)
C5—C4—H4120.5O2—C23—O1122.5 (3)
N1—C5—C4122.0 (3)O2—C23—C17121.4 (3)
N1—C5—C6113.5 (3)O1—C23—C17115.8 (2)
C4—C5—C6124.5 (3)O3—C24—O4124.2 (3)
N2—C6—C7110.0 (3)O3—C24—C22118.8 (3)
N2—C6—C5116.5 (3)O4—C24—C22116.9 (2)
C7—C6—C5133.5 (3)
N6—Cu1—O1—C2389.56 (19)Cu1—N2—C6—C53.0 (4)
N2—Cu1—O1—C23140.2 (4)N1—C5—C6—N20.1 (4)
N1—Cu1—O1—C2390.93 (19)C4—C5—C6—N2179.5 (3)
O1—Cu1—N1—C19.3 (3)N1—C5—C6—C7178.2 (4)
N2—Cu1—N1—C1179.6 (3)C4—C5—C6—C72.2 (6)
O1—Cu1—N1—C5167.5 (2)N2—C6—C7—C80.2 (4)
N2—Cu1—N1—C53.6 (2)C5—C6—C7—C8178.2 (4)
O1—Cu1—N2—C646.6 (6)N2—N3—C8—C70.1 (4)
N6—Cu1—N2—C6176.4 (2)Cu2—N3—C8—C7177.9 (2)
N1—Cu1—N2—C63.6 (2)C6—C7—C8—N30.0 (4)
O1—Cu1—N2—N3131.4 (4)C13—N4—C9—C101.0 (5)
N6—Cu1—N2—N31.6 (3)Cu2—N4—C9—C10173.5 (2)
N1—Cu1—N2—N3178.5 (3)N4—C9—C10—C111.0 (5)
C6—N2—N3—C80.3 (3)C9—C10—C11—C120.4 (5)
Cu1—N2—N3—C8177.8 (2)C10—C11—C12—C130.1 (5)
C6—N2—N3—Cu2177.9 (2)C9—N4—C13—C120.5 (4)
Cu1—N2—N3—Cu20.1 (4)Cu2—N4—C13—C12173.8 (2)
O4i—Cu2—N3—C818.9 (3)C9—N4—C13—C14178.9 (3)
N5—Cu2—N3—C8174.5 (3)Cu2—N4—C13—C145.6 (3)
O2ii—Cu2—N3—C874.5 (3)C11—C12—C13—N40.1 (5)
O4i—Cu2—N3—N2163.8 (2)C11—C12—C13—C14179.4 (3)
N5—Cu2—N3—N22.7 (2)N6—N5—C14—C150.5 (3)
O2ii—Cu2—N3—N2102.8 (2)Cu2—N5—C14—C15178.0 (2)
O4i—Cu2—N4—C917.5 (2)N6—N5—C14—C13179.9 (2)
N5—Cu2—N4—C9176.2 (3)Cu2—N5—C14—C132.6 (3)
O2ii—Cu2—N4—C975.2 (2)N4—C13—C14—N55.5 (4)
O4i—Cu2—N4—C13169.7 (2)C12—C13—C14—N5173.9 (3)
N5—Cu2—N4—C133.4 (2)N4—C13—C14—C15175.3 (3)
O2ii—Cu2—N4—C1397.6 (2)C12—C13—C14—C155.4 (6)
N3—Cu2—N5—C14177.4 (2)N5—C14—C15—C160.3 (4)
O4i—Cu2—N5—C1465.7 (4)C13—C14—C15—C16179.7 (3)
N4—Cu2—N5—C140.4 (2)N5—N6—C16—C150.2 (4)
O2ii—Cu2—N5—C1476.2 (2)Cu1—N6—C16—C15177.4 (2)
N3—Cu2—N5—N66.1 (3)C14—C15—C16—N60.1 (4)
O4i—Cu2—N5—N6110.9 (4)C22—C17—C18—C193.3 (5)
N4—Cu2—N5—N6176.2 (3)C23—C17—C18—C19169.9 (3)
O2ii—Cu2—N5—N6107.2 (3)C17—C18—C19—C200.5 (5)
C14—N5—N6—C160.4 (3)C18—C19—C20—C212.0 (5)
Cu2—N5—N6—C16177.1 (2)C19—C20—C21—C221.7 (5)
C14—N5—N6—Cu1177.7 (2)C20—C21—C22—C171.0 (4)
Cu2—N5—N6—Cu15.7 (4)C20—C21—C22—C24173.9 (3)
O1—Cu1—N6—C166.7 (3)C18—C17—C22—C213.5 (4)
N2—Cu1—N6—C16177.8 (3)C23—C17—C22—C21169.3 (3)
O1—Cu1—N6—N5170.0 (2)C18—C17—C22—C24171.4 (3)
N2—Cu1—N6—N51.1 (2)C23—C17—C22—C2415.8 (4)
C5—N1—C1—C20.9 (5)Cu2iii—O2—C23—O1149.6 (3)
Cu1—N1—C1—C2175.8 (3)Cu2iii—O2—C23—C1736.8 (6)
N1—C1—C2—C30.5 (5)Cu1—O1—C23—O29.6 (3)
C1—C2—C3—C40.2 (6)Cu1—O1—C23—C17164.29 (18)
C2—C3—C4—C50.5 (5)C18—C17—C23—O246.8 (4)
C1—N1—C5—C40.5 (5)C22—C17—C23—O2140.2 (3)
Cu1—N1—C5—C4176.6 (3)C18—C17—C23—O1127.2 (3)
C1—N1—C5—C6179.9 (3)C22—C17—C23—O145.8 (4)
Cu1—N1—C5—C63.0 (3)Cu2iv—O4—C24—O31.6 (3)
C3—C4—C5—N10.2 (5)Cu2iv—O4—C24—C22175.63 (18)
C3—C4—C5—C6179.3 (3)C21—C22—C24—O3130.1 (3)
N3—N2—C6—C70.3 (4)C17—C22—C24—O344.7 (4)
Cu1—N2—C6—C7178.3 (2)C21—C22—C24—O447.3 (4)
N3—N2—C6—C5178.4 (3)C17—C22—C24—O4137.9 (3)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H4O4)(C8H6N3)2]
Mr579.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.752 (2), 20.566 (7), 14.141 (4)
β (°) 99.639 (6)
V3)2222.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.610, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
12705, 4813, 3469
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.07
No. of reflections4813
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg et al., 2005), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.9663 (19)Cu2—O4i1.984 (2)
Cu1—N61.968 (2)Cu2—N51.987 (2)
Cu1—N21.972 (2)Cu2—N42.036 (2)
Cu1—N12.042 (2)Cu2—O2ii2.335 (2)
Cu2—N31.960 (2)
O1—Cu1—N691.03 (9)O4i—Cu2—N5164.89 (9)
O1—Cu1—N2168.38 (9)N3—Cu2—N4176.46 (10)
N6—Cu1—N296.45 (10)O4i—Cu2—N492.44 (9)
O1—Cu1—N191.58 (9)N5—Cu2—N481.05 (10)
N6—Cu1—N1177.34 (10)N3—Cu2—O2ii99.98 (10)
N2—Cu1—N180.89 (10)O4i—Cu2—O2ii93.18 (9)
N3—Cu2—O4i90.75 (9)N5—Cu2—O2ii98.78 (9)
N3—Cu2—N596.21 (10)N4—Cu2—O2ii78.31 (9)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

We acknowledge financial support by the Special Fund for Central Universities (grant No. ZXH2009D011), the Natural Science Foundation of Tianjin (grant No. 09JCYBJC04200), the National Natural Science Foundation of China Civil Aviation Administration of China (grant No. 61079010) and the Scientific Research Foundation of Civil Aviation University of China (grant No. 2011KYS05).

References

First citationBrandenburg, K. & Berndt, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChandrasekhar, V., Nagarajan, L., Gopal, K., Baskar, V. & Kogerler, P. (2005). Dalton Trans. pp. 3143–3145.  Web of Science CSD CrossRef
First citationDu, M., Jiang, X. J. & Zhao, X. J. (2006). Inorg. Chem. 45, 3998–4006.  Web of Science CSD CrossRef PubMed CAS
First citationHu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162–173.  Web of Science CSD CrossRef PubMed CAS
First citationJeffery, J. C., Jones, P. L., Mann, K. L. V., Psillakis, E., McCleverty, J. A. & Ward, M. D. (1997). Chem. Commun. pp. 175–176.  CSD CrossRef Web of Science
First citationJones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997). Polyhedron, 16, 1567–1571.  CSD CrossRef CAS Web of Science
First citationMann, K. L. V., Psillakis, E., Jeffery, J. C., Rees, L. H., Harden, N. M., McCleverty, J. A., Ward, M. D., Gatteschi, D., Totti, F., Mabbs, F. E., McInnes, E. J. L., Riedi, P. C. & Smith, G. M. (1999). J. Chem. Soc. Dalton Trans. pp. 339–348.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSugiyarto, K. H. & Goodwin, H. A. (1988). Aust. J. Chem. 41, 1645–1663.  CrossRef CAS
First citationTisler, M., Stanovnik, B. & Versek, B. (1980). Vestn. Slov. Kem. Drus. 27, 65–72.  CAS
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds