metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two lanthanum(III) complexes containing η2-pyrazolate and η2-1,2,4-triazolate ligands: intra­molecular C—H⋯N/O inter­actions and coordination geometries

aApplied Chemistry Department, School of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
*Correspondence e-mail: yz_shen@nuaa.edu.cn

(Received 29 October 2012; accepted 30 November 2012; online 13 December 2012)

The lanthanum(III) complexes tris­(3,5-diphenyl­pyrazolato-κ2N,N′)tris­(tetra­hydro­furan-κO)lanthanum(III) tetra­hydro­furan monosolvate, [La(C15H11N2)3(C4H8O)3]·C4H8O, (I), and tris­(3,5-diphenyl-1,2,4-triazolato-κ2N1,N2)tris­(tetra­hydrofuran-κO)lanthanum(III), [La(C14H10N3)3(C4H8O)3], (II), both contain LaIII atoms coordinated by three heterocyclic ligands and three tetra­hydro­furan ligands, but their coordination geometries differ. Complex (I) has a mer-distorted octa­hedral geometry, while complex (II) has a fac-distorted configuration. The difference in the coordination geometries and the existence of asymmetric La—N bonding in the two complexes is associated with intra­molecular C—H⋯N/O inter­actions between the ligands.

Comment

The structural chemistry of anionic five-membered nitro­gen heterocyclic ligands, especially pyrazolate and 1,2,4-triazolate ligands, has received much attention because of the structural diversity and variety of the coordination modes of these compounds (Zheng et al., 2003[Zheng, W.-J., Heeg, M. J. & Winter, C. H. (2003). Angew. Chem. Int. Ed. 42, 2761-2764.]; Kobrsi et al., 2005[Kobrsi, I., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2005). Inorg. Chem. 44, 4894-4896.], 2006[Kobrsi, I., Zheng, W.-J., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2006). Inorg. Chem. 45, 8700-8710.]; Werrett et al., 2011[Werrett, M. V., Chartrand, D., Gale, J. D., Hanan, G. S., MacLellan, J. G., Massi, M., Muzzioli, S., Raiteri, P., Skelton, B. W., Silberstein, M. & Stagni, S. (2011). Inorg. Chem. 50, 1229-1241.]). Pyrazolate ligands are among the most versatile of ligands, with 20 different coordination modes identified so far (Halcrow, 2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]). 1,2,4-Triazolate ligands are frequently used to construct metal–organic frameworks (MOFs) with various transition metal ions (Yang et al., 2007[Yang, C., Wang, X.-P. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454-15455.], 2009[Yang, G., Zhang, P.-P., Liu, L.-L., Kou, J.-F., Hou, H.-W. & Fan, Y.-T. (2009). CrystEngComm, 11, 663-670.]; Mahata et al., 2009[Mahata, P., Prabu, M. & Natarajan, S. (2009). Cryst. Growth Des. 9, 3683-3691.]; Wei et al., 2010[Wei, G., Shen, Y.-F., Li, Y.-R. & Huang, X.-C. (2010). Inorg. Chem. 49, 9191-9199.]). However, to the best of our knowledge, there is only one reported example of a lanthanide complex containing 1,2,4-triazolate anions, namely the tetra­nuclear complex [Cp′2Yb(μ-η1:η2-Tz)]4·2THF (Tz = 1,2,4-triazolate and Cp′ = methylcyclopentadienyl; Zhang et al., 2007[Zhang, J., Cai, R.-F., Chen, Z.-X. & Zhou, X.-G. (2007). Inorg. Chem. 46, 321-327.]). Monomeric lanthanide complexes are typically obtained in the presence of sterically demanding ligands. We report here the synthesis and crystal structures of two mono­meric lanthanum complexes containing η2-3,5-diphenyl­py­ra­zolate (Ph2Pz) and η2-3,5-diphenyl-1,2,4-triazolate (Ph2Tz) ligands, namely tris­(3,5-diphenyl­pyrazolato-κ2N,N′)tris­(tetra­hydro­furan-κO)lanthanum(III) tetra­hydro­furan monosolvate, (I)[link], and tris­(3,5-diphenyl-1,2,4-triazolato-κ2N1,N2)tris­(tetra­hydro­furan-κO)lanthanum(III), (II)[link].

[Scheme 1]

Complex (I)[link] crystallizes as a monomeric complex with three η2-Ph2Pz ligands and three coordinated tetra­hydro­furan (THF) mol­ecules in the asymmetric unit, together with one solvent mol­ecule of THF (Fig. 1[link]), while (II)[link] is monomeric with three η2-Ph2Tz ligands and three coordinated THF mol­ecules, and no solvent (Fig. 2[link]). The average La—N [2.531 (3) Å] and La—O [2.612 (2) Å] bond lengths in (I)[link] do not differ significantly from those in (II)[link] [La—N = 2.535 (2) Å and La—O = 2.603 (2) Å] (Tables 1[link] and 3[link]). The coordination geometries about atom La1 in both (I)[link] and (II)[link] can be described as distorted octa­hedral if the centres of the N—N bonds are treated as monodentate donors (Pfeiffer et al., 1999[Pfeiffer, D., Ximba, B. J., Liable-Sands, L. M., Rheingold, A. L., Heeg, M. J., Coleman, D. M., Schlegel, H. B., Kuech, T. F. & Winter, C. H. (1999). Inorg. Chem. 38, 4539-4548.]). However, complex (I)[link] has a mer-distorted octa­hedral geometry, while complex (II)[link] has a fac-distorted geometry (Fig. 3[link]). There are a few other lanthanide complexes reported so far with the formula [ML3X3] (M = lanthanide, X = THF and L = pyrazolate or pseudo-pyrazolate ligands), for instance, [Nd(η2-Ph2Pz)3(THF)3]·THF (Cosgriff et al., 1993[Cosgriff, J. E., Deacon, G. B. & Gatehouse, B. M. (1993). Aust. J. Chem. 46, 1881-1896.]) and [Sm(η2-N,N-3,5-Ph2dp)3(THF)3]·THF (3,5-Ph2dp = 3,5-di­phenyl-1,2,4-diaza­phospho­lide; Pi et al., 2008[Pi, C.-F., Wan, L., Gu, Y.-Y., Zheng, W.-J., Weng, L.-H., Chen, Z.-X. & Wu, L.-M. (2008). Inorg. Chem. 47, 9739-9741.]); both of these are isostructural with (I)[link]. All of the complexes with a mer configuration are solvated with THF in the crystal structure, while (II)[link], having a fac configuration, is not solvated.

Since bonding between lanthanide ions and ligands is highly electrostatic and nondirectional, the coordination geometries of lanthanide complexes are often very irregular, depending mainly on steric factors associated with the ligands (Marques et al., 2002[Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2159.]; Aspinall, 2007[Aspinall, H. C. (2007). Top. Appl. Phys. 106, 53-72.]). From this viewpoint, the structure of (II)[link] might be expected to be similar to that of (I)[link]. It has been demonstrated recently that intra­molecular noncovalent inter­actions also play important roles in the geometries of the metal centres of lanthanide complexes (Yuasa et al., 2011[Yuasa, J., Ohno, T., Miyata, K., Tsumatori, H., Hasegawa, Y. & Kawai, T. (2011). J. Am. Chem. Soc. 133, 9892-9902.]), and we suggest that the stability of complexes (I)[link] and (II)[link] could depend on intra­molecular C—H⋯N/O inter­actions, in addition to steric factors. In both (I)[link] and (II)[link], C—H⋯N/O inter­actions are formed between the ligands (Tables 2[link] and 4[link]). In (I)[link], one of the η2-Ph2Pz ligands (containing atoms H16 and H30) forms C—H⋯N inter­actions with the triazole rings of the other two η2-Ph2Pz ligands, while the other two η2-Ph2Pz ligands form C—H⋯O inter­actions with the THF ligands (Fig. 4[link]). One η2-Ph2Pz ligand forms a C1—H1⋯O3 inter­action and a much longer C15—H15⋯O2 contact (H⋯O = 3.22 Å), while another η2-Ph2Pz ligand forms a C31—H31⋯O2 inter­action and no apparent contact with atom O3. In (II)[link], the fac coordination geometry permits each of the η2-Ph2Tz ligands to form one C—H⋯N contact in a threefold cyclic arrangement (Fig. 5[link]). All of the C—H⋯O contacts to the THF ligands in (II)[link] are much longer (H⋯O > 3 Å).

Although C—H⋯N/O inter­actions are generally considered to be weak, they appear to have an impact on the La—N bond lengths. For all three η2-Ph2Tz ligands in (II)[link], the two La—N bonds have significantly different lengths (Table 3[link]), and the shorter length in each case is at the same end of the ligand as the C—H⋯N contact. In (I)[link], a similar asymmetry in the La—N bond lengths is observed for the two η2-Ph2Pz ligands forming C—H⋯O contacts, while the ligand forming C—H⋯N contacts at both of its ends (H16 and H30) displays the most symmetrical La—N distances (La1—N3/N4; Table 1[link]). It has previously been reported that weak C—H⋯N inter­actions produce asymmetric η2-bonding between five-membered heterocyclic ligands and Ba2+ or K+ ions (Kobrsi et al., 2005[Kobrsi, I., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2005). Inorg. Chem. 44, 4894-4896.], 2006[Kobrsi, I., Zheng, W.-J., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2006). Inorg. Chem. 45, 8700-8710.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted. Only the major disorder components are shown for the THF solvent mol­ecule and disordered atom C51.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted. Only one disorder component is shown for disordered atoms C44, C45, C46 and C49.
[Figure 3]
Figure 3
The coordination geometry in (I)[link] and (II)[link]. Dashed lines link atom La1 to the centres of the N—N bonds. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The intra­molecular C—H⋯N/O inter­actions (dashed lines) in (I)[link].
[Figure 5]
Figure 5
The intra­molecular C—H⋯N inter­actions (dashed lines) in (II)[link].

Experimental

All manipulations were carried out using standard Schlenk line or dry-box techniques under a nitrogen atmosphere. The THF, hexane and deuterated benzene (C6D6) solvents were refluxed over sodium and distilled.

For the synthesis of (I)[link], La[N(SiMe3)2]3 (1.0374 g, 1.673 mmol) in THF (10 ml) was added to a THF solution (20 ml) of Ph2PzH (1.1055 g, 5.019 mmol) at room temperature. The solution was stirred for 24 h and then evaporated to dryness under vacuum to afford a pale-yellow solid. The residue was extracted with a mixture of THF and hexane. Complex (I)[link] was obtained from the filtered extract at 243 K as colourless crystals by slow evaporation (yield 1.49 g, 82%). Analysis calculated for C61H65LaN6O4: C 67.52, H 6.04, N 7.74%; found: C 67.46, H 6.13, N 7.61%. 1H NMR (C6D6, 300 MHz): δ 8.15 (d, J = 7.6 Hz, 12H), 7.46 (s, 3H), 7.21–7.26 (m, 12H), 7.07–7.12 (m, 6H), 3.44 (m, 16H), 1.04 (m, 16H).

Complex (II)[link] was obtained by protolysis of La[N(SiMe3)2]3 (0.6598 g, 1.064 mmol) with Ph2TzH (0.7063 g, 3.192 mmol), following a similar procedure to that for (I)[link]. Colourless crystals of (II)[link] were obtained by slow evaporation from a mixture of THF and hexane (yield 0.91 g, 84%). Analysis calculated for C54H54LaN9O3: C 63.84, H 5.36, N 12.41%; found: C 63.75, H 5.43, N 12.34%. 1H NMR (C6D6, 300 MHz): δ 8.62 (d, J = 6.4 Hz, 12H), 7.19–7.24 (m, 12H), 7.08–7.13 (m, 6H), 3.30 (m, 12H), 0.85 (m, 12H); 13C{H} NMR (C6D6, 75 MHz): δ 160.6, 132.7, 128.9, 128.7, 126.8, 69.8, 24.9.

Compound (I)[link]

Crystal data
  • [La(C15H11N2)3(C4H8O)3]·C4H8O

  • Mr = 1085.10

  • Orthorhombic, P 21 21 21

  • a = 14.146 (3) Å

  • b = 16.358 (3) Å

  • c = 22.856 (5) Å

  • V = 5288.8 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.811, Tmax = 1.000

  • 22016 measured reflections

  • 9592 independent reflections

  • 9280 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.054

  • S = 1.03

  • 9592 reflections

  • 670 parameters

  • 76 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 4272 Friedel pairs

  • Flack parameter: 0.450 (8)

Table 1
Selected bond lengths (Å) for (I)[link]

La1—N12.523 (2)
La1—N22.588 (2)
La1—N32.506 (2)
La1—N42.527 (2)
La1—N52.498 (2)
La1—N62.546 (2)
La1—O12.6496 (19)
La1—O22.612 (2)
La1—O32.573 (2)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯AD—HH⋯ADAD—H⋯A
C1—H1⋯O30.952.773.704 (4)168
C16—H16⋯N20.952.793.690 (4)157
C30—H30⋯N50.952.813.734 (4)163
C31—H31⋯O20.952.703.617 (5)163

Compound (II)[link]

Crystal data
  • [La(C14H10N3)3(C4H8O)3]

  • Mr = 1015.97

  • Monoclinic, P 21 /c

  • a = 11.531 (2) Å

  • b = 18.688 (4) Å

  • c = 23.827 (7) Å

  • β = 108.38 (3)°

  • V = 4873 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.836, Tmax = 0.836

  • 25724 measured reflections

  • 8861 independent reflections

  • 8240 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 1.05

  • 8861 reflections

  • 636 parameters

  • 124 restraints

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.49 e Å−3

Table 3
Selected bond lengths (Å) for (II)[link]

La1—N12.5083 (18)
La1—N32.5658 (19)
La1—N42.507 (2)
La1—N62.547 (2)
La1—N72.6016 (19)
La1—N92.4843 (18)
La1—O12.5926 (18)
La1—O22.6404 (17)
La1—O32.5792 (15)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯AD—HH⋯ADAD—H⋯A
C3—H3⋯N70.952.673.614 (3)173
C17—H17⋯N30.952.753.696 (3)178
C42—H42⋯N40.952.753.632 (3)154

All H atoms were placed geometrically and treated as riding atoms, with C—H = 0.95 (pyrazole and phen­yl) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C). Some of the coordinated THF ligands in both complexes show orientational disorder. Atom C51 of (I)[link] is split over two sites (C51 and C51′) with refined site occupancies of 0.900 (12) and 0.100 (12), respectively. In complex (II)[link], two sets of positions are defined by atoms C44/C45/C46 and C44′/C45′/C46′, with refined site occupancies of 0.347 (5) and 0.653 (5), respectively. Atom C49 of (II)[link] is also split over two sites (C49 and C49′), with refined site occupancies of 0.48 (3) and 0.52 (3), respectively. The free THF mol­ecule in (I)[link] is refined as disordered over two positions, with site occupancies of 0.82 (3) and 0.18 (3). The geometries of the disordered groups were restrained to be similar to one another or to specific distances and displacement parameters were either restrained to be similar for neighbouring atoms, or to have approximate isotropic behaviour, or constrained to be equivalent for the corresponding atoms in the disordered parts. The crystal of (I)[link] was refined as an inversion twin, with a refined twin ratio of 0.550 (8):0.450 (8).

For both compounds, data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structural chemistry of anionic five-membered nitrogen heterocyclic ligands, especially pyrazolate and 1,2,4-triazolate ligands, has received much of attention because of the structural diversity and variety of coordination modes of these compounds (Zheng et al., 2003; Kobrsi et al., 2005, 2006; Werrett et al., 2011). Pyrazolate ligands are among the most versatile of ligands, with 20 different coordination modes identified so far (Halcrow, 2009). 1,2,4-Triazolate ligands are frequently used to construct metal–organic frameworks (MOFs) with various transition metal ions (Yang et al., 2007, 2009; Mahata et al., 2009; Wei et al., 2010). However, to the best of our knowledge, there is only one reported example of a lanthanide complex containing 1,2,4-triazolate anions, namely the tetranuclear complex [Cp'2Yb(µ-η1:η2-Tz)]4.2THF (Tz = C2H2N3 and Cp' = CH3C5H4; Zhang et al., 2007). Monomeric lanthanide complexes are typically obtained in the presence of sterically demanding ligands. We report here the synthesis and crystal structures of two monomeric lanthanum complexes containing η2-3,5-diphenylpyrazolate (Ph2Pz) and η2-3,5-diphenyl-1,2,4-triazolate (Ph2Tz) ligands, namely tris(3,5-diphenylpyrazolato-κ2N,N')tris(tetrahydrofuran-κO)lanthanum(III) tetrahydrofuran monosolvate, (I), and tris(3,5-diphenyl-1,2,4-triazolato-κ2N1,N2)tris(tetrahydrofuran-κO)lanthanum(III), (II).

Complex (I) crystallizes as a monomeric complex with three η2-Ph2Pz ligands and three coordinated tetrahydrofuran (THF) molecules in the asymmetric unit (Fig. 1), together with one solvent molecule of THF, while (II) is monomeric with three η2-Ph2Tz ligands and three coordinated THF molecules, and no solvent (Fig. 2). The average La—N [2.531 (3) Å] and La—O [2.612 (2) Å] bond lengths in (I) do not differ significantly from those of (II) [La—N = 2.535 (2) Å and La—O = 2.603 (2) Å] (Tables 1 and 3). The coordination geometries about atom La1 in both (I) and (II) can be described as distorted octahedral if the centres of the N—N bonds are treated as monodentate donors (Pfeiffer et al., 1999). However, complex (I) has a mer-distorted octahedral geometry, while complex (II) has a fac-distorted geometry (Fig. 3). There are a few other lanthanide complexes reported so far with the formula [ML3X3] (M = lanthanide, X = THF and L = pyrazolate or pseudo-pyrazolate ligands), for instance [Nd(η2-Ph2Pz)3(THF)3].THF (Cosgriff et al., 1993) and [Sm(η2-N,N-3,5-Ph2dp)3(THF)3].THF (3,5-Ph2dp = 3,5-diphenyl-1,2,4-diazaphospholide; Pi et al., 2008); both of these are isostructural with (I). All of the complexes with a mer configuration are solvated with THF in the crystal structure, while (II), having a fac configuration, is not solvated.

Since bonding between lanthanide ions and ligands is highly electrostatic and nondirectional, the coordination geometries of lanthanide complexes are often very irregular, depending mainly on steric factors associated with the ligands (Marques et al., 2002; Aspinall, 2007). From this viewpoint, the structure of (II) might be expected to be similar to that of (I). It has been demonstrated recently that intramolecular noncovalent interactions also play important roles in the geometries of the metal centres of lanthanide complexes (Yuasa et al., 2011) and we suggest that the stability of complexes (I) and (II) could depend on intramolecular C—H···N/O interactions, in addition to steric factors. In both (I) and (II), C—H···N/O interactions are formed between the ligands (Tables 2 and 4). In (I), one of the η2-Ph2Pz ligands (containing atoms H16 and H30) forms C—H···N interactions with the triazole rings of the other two η2-Ph2Pz ligands, while the other two η2-Ph2Pz ligands form C—H···O interactions with the THF ligands (Fig. 4). One η2-Ph2Pz ligand forms a short C1—H1···O3 interaction and a much longer C15—H15···O2 contact (H···O = 3.22 Å), while another η2-Ph2Pz ligand forms a short C31—H31···O2 interaction and no apparent contact with atom O3. In (II), the fac coordination geometry permits each of the η2-Ph2Tz ligands to form one short C—H···N contact in a threefold cyclic arrangement (Fig. 5). All of the C—H···O contacts to the THF ligands in (II) are much longer (H···O > 3 Å).

Although C—H···N/O interactions are generally considered to be weak, they appear to have an impact on the La—N bond lengths. For all three η2-Ph2Tz ligands in (II), the two La—N bonds have significantly different lengths (Table 3), and the shorter length in each case is at the same end of the ligand as the C—H···N contact. In (I), a similar asymmetry in the La—N bond lengths is observed for the two η2-Ph2Pz ligands forming C—H···O contacts, while the ligand forming C—H···N contacts at both of its ends (H16 and H30) displays the most symmetrical La—N distances (La1—N3/N4; Table 1). It has previously been reported that weak C—H···N interactions produce asymmetric η2-bonding between five-membered heterocyclic ligands and Ba2+ or K+ ions (Kobrsi et al., 2005, 2006).

Related literature top

For related literature, see: Aspinall (2007); Cosgriff et al. (1993); Halcrow (2009); Kobrsi et al. (2005, 2006); Mahata et al. (2009); Marques et al. (2002); Pfeiffer et al. (1999); Pi et al. (2008); Wei et al. (2010); Werrett et al. (2011); Yang et al. (2007, 2009); Yuasa et al. (2011); Zhang et al. (2007); Zheng et al. (2003).

Experimental top

All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of nitrogen. The THF, hexane and deuterated benzene (C6D6) solvents were refluxed over sodium and distilled.

For the synthesis of (I), La[N(SiMe3)2]3 (1.0374 g, 1.673 mmol) in THF (10 ml) was added to a THF solution (20 ml) of Ph2PzH (1.1055 g, 5.019 mmol) at room temperature. The solution was stirred for 24 h and then evaporated to dryness under vacuum to afford a pale-yellow solid. The residue was extracted with a mixture of THF and hexane. Complex (I) was obtained from the filtered extract at 243 K as colourless crystals (yield 1.49 g, 82%). Analysis, calculated for C61H65LaN6O4: C 67.52, H 6.04, N 7.74%; found: C 67.46, H 6.13, N 7.61%. Spectroscopic analysis: 1H NMR (C6D6, 300 MHz, δ, p.p.m.): 8.15 (d, J = 7.6 Hz, 12H), 7.46 (s, 3H), 7.21–7.26 (m, 12H), 7.07–7.12 (m, 6H), 3.44 (m, 16H), 1.04 (m, 16H).

Complex (II) was obtained by protolysis of La[N(SiMe3)2]3 (0.6598 g, 1.064 mmol) with Ph2TzH (0.7063 g, 3.192 mmol), following a similar procedure to that for (I). After work-up, colourless crystals of (II) were obtained (yield 0.91 g, 84%). Analysis, calculated for C54H54LaN9O3: C 63.84, H 5.36, N 12.41%; found: C 63.75, H 5.43, N 12.34%. Spectroscopic analysis: 1H NMR (C6D6, 300 MHz, δ, p.p.m.): 8.62 (d, J = 6.4 Hz, 12H), 7.19–7.24 (m, 12H), 7.08–7.13 (m, 6H), 3.30 (m, 12H), 0.85 (m, 12H); 13C{H} NMR (C6D6, 75 MHz, δ, p.p.m.): 160.6, 132.7, 128.9, 128.7, 126.8, 69.8, 24.9.

Refinement top

All H atoms were placed geometrically and treated as riding atoms, with C—H = 0.95 (pyrazole and phenyl) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C). Some of the coordinated THF ligands in both complexes show orientational disorder. Atom C51 of (I) is split over two sites (C51 and C51') with refined site occupancies of 0.899 (11) and 0.101 (11), respectively. In complex (II), two sets of positions are defined by atoms C44/C45/C46 and C44'/C45'/C46', with refined site occupancies of 0.347 (5) and 0.653 (5), respectively. Atom C49 of (II) is also split over two sites (C49 and C49'), with refined site occupancies of 0.48 (3) and 0.52 (3), respectively. The free THF molecule in (I) is refined as disordered over two positions, with site occupancies of 0.82 (3) and 0.19 (3). The geometries of the disordered groups were restrained and displacement parameters were either restrained to approximate isotropic behaviour or constrained to be equivalent for the atoms in the disordered parts. The crystal of (I) was refined as an inversion twin, with a refined twin ratio of 0.55 (1):0.45 (1).

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted and only the major disorder component is shown for the solvent THF molecule and disordered atom C51.

Fig. 2. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted and only one disorder component is shown for disordered atoms C44, C45, C46 and C49.

Fig. 3. The coordination geometry in (I) and (II). Dashed lines link atom La1 to the centres of the N—N bonds. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 4. The intramolecular C—H···N/O interactions (dashed lines) in (I).

Fig. 5. The intramolecular C—H···N interactions (dashed lines) in (II).
(I) tris(3,5-diphenylpyrazolato-κ2N,N')tris(tetrahydrofuran- κO)lanthanum(III) tetrahydrofuran monosolvate top
Crystal data top
[La(C15H11N2)3(C4H8O)3]·C4H8OF(000) = 2248
Mr = 1085.10Dx = 1.363 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 20820 reflections
a = 14.146 (3) Åθ = 2.6–29.1°
b = 16.358 (3) ŵ = 0.86 mm1
c = 22.856 (5) ÅT = 173 K
V = 5288.8 (18) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
9592 independent reflections
Radiation source: fine-focus sealed tube9280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1417
Tmin = 0.811, Tmax = 1.000k = 1719
22016 measured reflectionsl = 2327
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0219P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
9592 reflectionsΔρmax = 0.53 e Å3
670 parametersΔρmin = 0.34 e Å3
76 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.450 (8)
Crystal data top
[La(C15H11N2)3(C4H8O)3]·C4H8OV = 5288.8 (18) Å3
Mr = 1085.10Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 14.146 (3) ŵ = 0.86 mm1
b = 16.358 (3) ÅT = 173 K
c = 22.856 (5) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
9592 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
9280 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 1.000Rint = 0.031
22016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.53 e Å3
S = 1.03Δρmin = 0.34 e Å3
9592 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
670 parametersAbsolute structure parameter: 0.450 (8)
76 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C510.4821 (3)0.5595 (4)0.8603 (2)0.0457 (15)0.900 (12)
H51A0.44770.58770.82840.055*0.900 (12)
H51B0.45330.50510.86700.055*0.900 (12)
C51'0.508 (3)0.5298 (11)0.886 (2)0.0457 (15)0.100 (12)
H51C0.52780.48860.91540.055*0.100 (12)
H51D0.45360.50810.86370.055*0.100 (12)
O40.7878 (5)0.9162 (6)0.5183 (4)0.0403 (13)0.82 (3)
C580.7538 (8)0.8655 (7)0.4719 (5)0.0460 (19)0.82 (3)
H58A0.71870.81800.48760.055*0.82 (3)
H58B0.80670.84550.44740.055*0.82 (3)
C590.6893 (9)0.9205 (7)0.4370 (3)0.049 (2)0.82 (3)
H59A0.64240.88830.41450.058*0.82 (3)
H59B0.72560.95550.40970.058*0.82 (3)
C600.6418 (6)0.9709 (8)0.4844 (3)0.061 (2)0.82 (3)
H60A0.57950.94760.49490.073*0.82 (3)
H60B0.63291.02820.47140.073*0.82 (3)
C610.7098 (7)0.9665 (7)0.5358 (4)0.0378 (15)0.82 (3)
H61A0.73231.02190.54630.045*0.82 (3)
H61B0.67790.94240.57030.045*0.82 (3)
O4'0.774 (2)0.915 (3)0.5306 (13)0.0403 (13)0.18 (3)
C58'0.774 (4)0.868 (4)0.476 (2)0.0460 (19)0.18 (3)
H58C0.76080.80920.48450.055*0.18 (3)
H58D0.83680.87150.45710.055*0.18 (3)
C59'0.699 (4)0.904 (4)0.4382 (15)0.049 (2)0.18 (3)
H59C0.66840.86170.41350.058*0.18 (3)
H59D0.72460.94750.41270.058*0.18 (3)
C60'0.629 (2)0.939 (3)0.4823 (17)0.061 (2)0.18 (3)
H60C0.59350.98570.46560.073*0.18 (3)
H60D0.58290.89670.49520.073*0.18 (3)
C61'0.690 (3)0.966 (4)0.532 (2)0.0378 (15)0.18 (3)
H61C0.70771.02380.52710.045*0.18 (3)
H61D0.65650.95910.56940.045*0.18 (3)
La10.785393 (12)0.697118 (9)0.830200 (6)0.01865 (5)
O10.76950 (16)0.56576 (11)0.76309 (8)0.0276 (5)
O20.62490 (14)0.63184 (12)0.86200 (9)0.0290 (5)
O30.92245 (14)0.79929 (12)0.84184 (8)0.0314 (5)
N10.80336 (16)0.75407 (13)0.72821 (9)0.0222 (6)
N20.70749 (18)0.75172 (13)0.73548 (9)0.0214 (5)
N30.70585 (17)0.81251 (13)0.88287 (9)0.0218 (5)
N40.75078 (16)0.76888 (13)0.92572 (9)0.0226 (6)
N50.86087 (17)0.58898 (14)0.89163 (10)0.0225 (5)
N60.92837 (17)0.60699 (14)0.85064 (10)0.0204 (6)
C10.9965 (2)0.79272 (18)0.68646 (12)0.0277 (7)
H10.98720.79710.72750.033*
C21.0870 (2)0.79866 (18)0.66337 (13)0.0308 (7)
H21.13910.80770.68880.037*
C31.1023 (2)0.7916 (2)0.60413 (13)0.0317 (7)
H31.16450.79610.58870.038*
C41.0265 (2)0.77800 (18)0.56721 (13)0.0321 (8)
H41.03690.77210.52640.039*
C50.9358 (2)0.77299 (17)0.58939 (13)0.0274 (7)
H50.88410.76450.56360.033*
C60.9194 (2)0.78037 (16)0.64970 (12)0.0232 (7)
C70.82176 (19)0.77513 (15)0.67219 (13)0.0201 (6)
C80.73724 (19)0.78759 (16)0.64280 (11)0.0222 (7)
H80.72910.80320.60310.027*
C90.6669 (2)0.77233 (16)0.68384 (11)0.0218 (7)
C100.5641 (2)0.77465 (15)0.67565 (13)0.0223 (6)
C110.5247 (2)0.8027 (2)0.62339 (13)0.0333 (7)
H110.56540.82170.59320.040*
C120.4281 (2)0.8035 (3)0.61433 (15)0.0448 (9)
H120.40310.82370.57860.054*
C130.3684 (2)0.7752 (2)0.65695 (15)0.0435 (9)
H130.30210.77490.65060.052*
C140.4052 (2)0.7469 (2)0.70936 (14)0.0369 (8)
H140.36360.72710.73880.044*
C150.5015 (2)0.74710 (18)0.71936 (13)0.0287 (7)
H150.52560.72860.75580.034*
C160.5753 (2)0.91037 (17)0.81623 (12)0.0224 (7)
H160.59490.85970.80000.027*
C170.5239 (2)0.96445 (18)0.78249 (14)0.0313 (8)
H170.50760.95060.74340.038*
C180.4960 (2)1.03875 (19)0.80557 (14)0.0339 (8)
H180.46111.07620.78230.041*
C190.5193 (3)1.05850 (19)0.86273 (15)0.0357 (9)
H190.50081.10970.87860.043*
C200.5692 (2)1.00383 (18)0.89661 (13)0.0292 (7)
H200.58361.01730.93600.035*
C210.5989 (2)0.92927 (17)0.87392 (12)0.0220 (7)
C220.6536 (2)0.87119 (16)0.90934 (12)0.0215 (6)
C230.6644 (2)0.86571 (17)0.96946 (12)0.0237 (7)
H230.63600.89940.99840.028*
C240.7258 (2)0.80041 (17)0.97836 (10)0.0217 (6)
C250.7645 (2)0.76662 (16)1.03296 (11)0.0222 (7)
C260.7370 (2)0.79762 (19)1.08712 (11)0.0277 (7)
H260.69100.83981.08900.033*
C270.7762 (2)0.76741 (18)1.13811 (12)0.0332 (7)
H270.75710.78931.17480.040*
C280.8431 (2)0.7055 (2)1.13635 (12)0.0337 (7)
H280.87040.68531.17150.040*
C290.8697 (2)0.67349 (18)1.08276 (13)0.0319 (8)
H290.91450.63031.08110.038*
C300.8315 (2)0.70402 (19)1.03171 (12)0.0294 (7)
H300.85120.68210.99520.035*
C310.7372 (2)0.5109 (2)0.97492 (14)0.0354 (9)
H310.71210.55220.95010.042*
C320.6780 (2)0.4714 (2)1.01429 (14)0.0402 (9)
H320.61320.48621.01660.048*
C330.7129 (3)0.41100 (19)1.04996 (13)0.0378 (8)
H330.67180.38251.07570.045*
C340.8074 (3)0.3919 (2)1.04828 (14)0.0404 (9)
H340.83200.35111.07360.048*
C350.8671 (3)0.43231 (18)1.00952 (13)0.0336 (8)
H350.93260.41941.00930.040*
C360.8330 (2)0.49096 (17)0.97126 (12)0.0220 (7)
C370.8930 (2)0.52735 (16)0.92581 (12)0.0221 (7)
C380.9827 (2)0.50520 (17)0.90712 (12)0.0235 (7)
H381.02240.46430.92340.028*
C391.0026 (2)0.55600 (17)0.85902 (13)0.0231 (7)
C401.0836 (2)0.55542 (16)0.81899 (12)0.0231 (7)
C411.1576 (2)0.49997 (16)0.82650 (14)0.0271 (7)
H411.15640.46350.85880.032*
C421.2322 (2)0.49735 (19)0.78776 (14)0.0333 (8)
H421.28190.45920.79360.040*
C431.2353 (2)0.55001 (18)0.74034 (13)0.0328 (8)
H431.28680.54830.71370.039*
C441.1625 (2)0.6048 (2)0.73240 (14)0.0335 (8)
H441.16380.64100.69990.040*
C451.0876 (2)0.60778 (19)0.77117 (13)0.0293 (7)
H451.03820.64620.76510.035*
C460.8014 (3)0.48449 (17)0.77923 (13)0.0360 (9)
H46A0.78130.47060.81950.043*
H46B0.87110.48030.77670.043*
C470.7547 (3)0.42933 (19)0.73541 (13)0.0402 (9)
H47A0.69130.41230.74910.048*
H47B0.79350.38000.72830.048*
C480.7472 (2)0.48106 (17)0.68051 (12)0.0333 (8)
H48A0.68200.48020.66490.040*
H48B0.79100.46100.64990.040*
C490.7744 (3)0.56677 (17)0.70008 (12)0.0342 (8)
H49A0.83920.58040.68690.041*
H49B0.73000.60760.68380.041*
C500.5876 (2)0.5524 (2)0.84674 (15)0.0413 (9)
H50A0.61740.50890.87060.050*
H50B0.59820.54030.80480.050*
C520.4830 (3)0.6096 (2)0.91524 (15)0.0445 (9)
H52A0.50160.57660.94960.053*
H52B0.42080.63530.92270.053*
C530.5569 (2)0.6722 (2)0.90024 (17)0.0475 (10)
H53A0.52770.71940.88000.057*
H53B0.58840.69210.93620.057*
C540.9082 (2)0.88662 (17)0.83397 (16)0.0386 (7)
H54A0.85570.90650.85890.046*
H54B0.89370.89950.79260.046*
C551.0010 (3)0.9248 (2)0.85231 (16)0.0508 (9)
H55A0.99170.98090.86740.061*
H55B1.04650.92620.81940.061*
C561.0343 (3)0.8677 (2)0.90017 (18)0.0580 (10)
H56A1.10420.86730.90250.070*
H56B1.00840.88450.93860.070*
C570.9984 (3)0.7874 (2)0.88324 (15)0.0497 (8)
H57A1.04960.75470.86520.060*
H57B0.97500.75780.91810.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C510.033 (2)0.061 (3)0.042 (3)0.020 (2)0.007 (2)0.006 (3)
C51'0.033 (2)0.061 (3)0.042 (3)0.020 (2)0.007 (2)0.006 (3)
O40.040 (3)0.0516 (14)0.029 (3)0.010 (2)0.007 (2)0.002 (3)
C580.059 (5)0.041 (2)0.038 (3)0.003 (3)0.003 (3)0.002 (2)
C590.064 (4)0.049 (6)0.0322 (19)0.001 (3)0.005 (2)0.003 (2)
C600.050 (3)0.078 (5)0.054 (3)0.013 (4)0.006 (3)0.020 (4)
C610.039 (4)0.0407 (18)0.034 (2)0.001 (4)0.002 (3)0.0014 (17)
O4'0.040 (3)0.0516 (14)0.029 (3)0.010 (2)0.007 (2)0.002 (3)
C58'0.059 (5)0.041 (2)0.038 (3)0.003 (3)0.003 (3)0.002 (2)
C59'0.064 (4)0.049 (6)0.0322 (19)0.001 (3)0.005 (2)0.003 (2)
C60'0.050 (3)0.078 (5)0.054 (3)0.013 (4)0.006 (3)0.020 (4)
C61'0.039 (4)0.0407 (18)0.034 (2)0.001 (4)0.002 (3)0.0014 (17)
La10.01842 (8)0.02096 (7)0.01658 (7)0.00280 (8)0.00025 (7)0.00084 (7)
O10.0359 (14)0.0258 (10)0.0210 (10)0.0044 (10)0.0012 (10)0.0007 (8)
O20.0210 (12)0.0304 (11)0.0357 (12)0.0032 (10)0.0035 (10)0.0045 (10)
O30.0271 (11)0.0266 (8)0.0406 (12)0.0022 (10)0.0063 (9)0.0008 (11)
N10.0197 (15)0.0242 (12)0.0227 (12)0.0008 (11)0.0007 (11)0.0004 (10)
N20.0179 (13)0.0234 (12)0.0228 (12)0.0007 (12)0.0006 (12)0.0019 (10)
N30.0205 (13)0.0252 (12)0.0198 (11)0.0019 (13)0.0001 (10)0.0004 (10)
N40.0241 (14)0.0247 (12)0.0190 (12)0.0043 (10)0.0027 (10)0.0002 (10)
N50.0227 (14)0.0236 (13)0.0211 (12)0.0008 (11)0.0004 (11)0.0021 (11)
N60.0183 (13)0.0232 (12)0.0196 (12)0.0015 (11)0.0006 (10)0.0034 (11)
C10.0275 (17)0.0285 (16)0.0271 (16)0.0011 (15)0.0019 (13)0.0007 (14)
C20.0215 (15)0.0321 (15)0.0389 (17)0.0002 (14)0.0010 (14)0.0016 (19)
C30.0217 (17)0.0334 (18)0.0400 (18)0.0015 (15)0.0077 (14)0.0034 (16)
C40.0335 (19)0.0354 (18)0.0274 (17)0.0024 (15)0.0056 (15)0.0000 (15)
C50.0245 (18)0.0300 (17)0.0276 (16)0.0017 (14)0.0004 (14)0.0021 (14)
C60.0263 (17)0.0177 (15)0.0254 (15)0.0009 (12)0.0002 (13)0.0015 (12)
C70.0250 (15)0.0172 (13)0.0181 (13)0.0014 (11)0.0001 (14)0.0029 (13)
C80.0238 (17)0.0248 (16)0.0179 (13)0.0011 (13)0.0015 (12)0.0020 (13)
C90.0255 (17)0.0175 (13)0.0223 (16)0.0015 (12)0.0035 (13)0.0005 (12)
C100.0248 (16)0.0181 (13)0.0239 (15)0.0000 (12)0.0007 (14)0.0046 (13)
C110.0239 (17)0.0397 (17)0.0362 (17)0.0000 (18)0.0042 (14)0.0048 (19)
C120.034 (2)0.058 (2)0.0422 (19)0.003 (2)0.0127 (17)0.005 (2)
C130.0192 (18)0.062 (2)0.050 (2)0.0043 (16)0.0030 (16)0.0173 (19)
C140.0258 (19)0.050 (2)0.0343 (19)0.0052 (17)0.0053 (16)0.0153 (17)
C150.0280 (19)0.0299 (16)0.0283 (17)0.0025 (15)0.0009 (14)0.0086 (14)
C160.0220 (16)0.0191 (14)0.0261 (16)0.0007 (13)0.0007 (13)0.0027 (13)
C170.0291 (19)0.0320 (17)0.0327 (18)0.0006 (15)0.0063 (15)0.0029 (15)
C180.034 (2)0.0295 (17)0.0382 (19)0.0036 (16)0.0047 (16)0.0117 (16)
C190.040 (2)0.0238 (17)0.043 (2)0.0080 (16)0.0028 (18)0.0032 (16)
C200.0322 (19)0.0281 (17)0.0273 (16)0.0045 (15)0.0030 (15)0.0051 (14)
C210.0161 (16)0.0246 (16)0.0255 (16)0.0005 (13)0.0045 (13)0.0012 (13)
C220.0214 (16)0.0180 (14)0.0250 (15)0.0013 (13)0.0015 (13)0.0023 (13)
C230.0238 (17)0.0253 (15)0.0220 (15)0.0019 (13)0.0019 (13)0.0042 (13)
C240.0211 (15)0.0235 (13)0.0205 (13)0.0014 (16)0.0005 (12)0.0037 (13)
C250.0259 (18)0.0200 (14)0.0205 (14)0.0022 (13)0.0028 (13)0.0019 (12)
C260.0278 (17)0.0333 (16)0.0221 (14)0.0003 (15)0.0012 (12)0.0029 (15)
C270.036 (2)0.0422 (17)0.0209 (14)0.0041 (17)0.0001 (16)0.0042 (14)
C280.042 (2)0.0367 (18)0.0227 (15)0.0043 (18)0.0083 (14)0.0062 (16)
C290.036 (2)0.0297 (18)0.0301 (17)0.0007 (14)0.0077 (15)0.0029 (14)
C300.0370 (18)0.0305 (16)0.0207 (14)0.0006 (16)0.0018 (13)0.0025 (15)
C310.033 (2)0.0396 (19)0.0333 (18)0.0023 (16)0.0027 (16)0.0104 (16)
C320.034 (2)0.051 (2)0.0357 (19)0.0033 (17)0.0047 (16)0.0052 (18)
C330.048 (2)0.0393 (18)0.0260 (16)0.015 (2)0.0080 (19)0.0014 (15)
C340.061 (3)0.0327 (18)0.0279 (17)0.0013 (18)0.0041 (17)0.0099 (15)
C350.040 (2)0.0357 (18)0.0251 (17)0.0104 (16)0.0016 (16)0.0069 (15)
C360.0257 (18)0.0224 (15)0.0181 (15)0.0007 (13)0.0001 (13)0.0044 (13)
C370.0249 (17)0.0189 (14)0.0226 (15)0.0008 (13)0.0031 (13)0.0002 (13)
C380.0256 (17)0.0237 (15)0.0212 (15)0.0044 (13)0.0010 (13)0.0029 (13)
C390.0243 (18)0.0220 (15)0.0231 (16)0.0036 (13)0.0063 (14)0.0009 (13)
C400.0199 (16)0.0214 (14)0.0279 (17)0.0017 (12)0.0007 (13)0.0036 (13)
C410.0275 (17)0.0250 (14)0.0287 (16)0.0047 (13)0.0033 (16)0.0025 (15)
C420.025 (2)0.0324 (16)0.0427 (19)0.0076 (15)0.0000 (16)0.0003 (15)
C430.028 (2)0.0356 (18)0.0345 (18)0.0021 (15)0.0070 (15)0.0083 (15)
C440.032 (2)0.0359 (18)0.0324 (18)0.0035 (16)0.0039 (16)0.0056 (15)
C450.0271 (18)0.0316 (17)0.0291 (17)0.0096 (15)0.0035 (14)0.0060 (15)
C460.053 (3)0.0236 (15)0.0315 (17)0.0112 (17)0.0095 (17)0.0009 (14)
C470.053 (3)0.0329 (18)0.0341 (18)0.0016 (16)0.0087 (16)0.0014 (15)
C480.041 (2)0.0318 (16)0.0267 (17)0.0027 (14)0.0013 (14)0.0069 (14)
C490.049 (2)0.0326 (16)0.0210 (15)0.0006 (17)0.0022 (17)0.0002 (13)
C500.044 (2)0.045 (2)0.035 (2)0.0159 (18)0.0084 (17)0.0147 (17)
C520.034 (2)0.043 (2)0.057 (2)0.0055 (17)0.0098 (19)0.0009 (19)
C530.028 (2)0.047 (2)0.068 (3)0.0027 (16)0.0152 (18)0.0120 (19)
C540.0399 (10)0.0325 (8)0.0434 (11)0.0022 (8)0.0011 (9)0.0025 (9)
C550.0489 (11)0.0494 (12)0.0542 (13)0.0050 (9)0.0013 (9)0.0004 (9)
C560.0588 (13)0.0554 (11)0.0597 (13)0.0036 (9)0.0051 (10)0.0033 (9)
C570.0470 (11)0.0512 (11)0.0508 (11)0.0008 (9)0.0162 (8)0.0018 (9)
Geometric parameters (Å, º) top
C51—C521.500 (5)C15—H150.9500
C51—C501.529 (5)C16—C171.381 (4)
C51—H51A0.9900C16—C211.395 (4)
C51—H51B0.9900C16—H160.9500
C51'—C501.492 (10)C17—C181.382 (4)
C51'—C521.505 (10)C17—H170.9500
C51'—H51C0.9900C18—C191.385 (4)
C51'—H51D0.9900C18—H180.9500
O4—C581.430 (7)C19—C201.378 (4)
O4—C611.434 (6)C19—H190.9500
C58—C591.509 (8)C20—C211.390 (4)
C58—H58A0.9900C20—H200.9500
C58—H58B0.9900C21—C221.469 (4)
C59—C601.519 (6)C22—C231.386 (4)
C59—H59A0.9900C23—C241.391 (4)
C59—H59B0.9900C23—H230.9500
C60—C611.521 (7)C24—C251.470 (4)
C60—H60A0.9900C25—C261.393 (4)
C60—H60B0.9900C25—C301.396 (4)
C61—H61A0.9900C26—C271.382 (4)
C61—H61B0.9900C26—H260.9500
O4'—C61'1.450 (18)C27—C281.387 (4)
O4'—C58'1.457 (18)C27—H270.9500
C58'—C59'1.507 (19)C28—C291.384 (4)
C58'—H58C0.9900C28—H280.9500
C58'—H58D0.9900C29—C301.379 (4)
C59'—C60'1.52 (2)C29—H290.9500
C59'—H59C0.9900C30—H300.9500
C59'—H59D0.9900C31—C321.388 (4)
C60'—C61'1.491 (19)C31—C361.397 (4)
C60'—H60C0.9900C31—H310.9500
C60'—H60D0.9900C32—C331.373 (4)
C61'—H61C0.9900C32—H320.9500
C61'—H61D0.9900C33—C341.372 (5)
La1—N12.523 (2)C33—H330.9500
La1—N22.588 (2)C34—C351.391 (4)
La1—N32.506 (2)C34—H340.9500
La1—N42.527 (2)C35—C361.385 (4)
La1—N52.498 (2)C35—H350.9500
La1—N62.546 (2)C36—C371.468 (4)
La1—O12.6496 (19)C37—C381.386 (4)
La1—O22.612 (2)C38—C391.407 (4)
La1—O32.573 (2)C38—H380.9500
O1—C491.442 (3)C39—C401.467 (4)
O1—C461.451 (3)C40—C451.390 (4)
O2—C501.445 (3)C40—C411.395 (4)
O2—C531.458 (4)C41—C421.379 (4)
O3—C571.445 (4)C41—H410.9500
O3—C541.454 (3)C42—C431.385 (4)
N1—C71.351 (3)C42—H420.9500
N1—N21.367 (3)C43—C441.378 (4)
N2—C91.355 (3)C43—H430.9500
N3—C221.354 (3)C44—C451.381 (4)
N3—N41.368 (3)C44—H440.9500
N4—C241.356 (3)C45—H450.9500
N5—C371.354 (3)C46—C471.501 (4)
N5—N61.370 (3)C46—H46A0.9900
N6—C391.355 (4)C46—H46B0.9900
C1—C21.388 (4)C47—C481.517 (4)
C1—C61.392 (4)C47—H47A0.9900
C1—H10.9500C47—H47B0.9900
C2—C31.376 (4)C48—C491.521 (4)
C2—H20.9500C48—H48A0.9900
C3—C41.383 (4)C48—H48B0.9900
C3—H30.9500C49—H49A0.9900
C4—C51.382 (4)C49—H49B0.9900
C4—H40.9500C50—H50A0.9900
C5—C61.403 (4)C50—H50B0.9900
C5—H50.9500C52—C531.503 (4)
C6—C71.476 (4)C52—H52A0.9900
C7—C81.386 (4)C52—H52B0.9900
C8—C91.390 (4)C53—H53A0.9900
C8—H80.9500C53—H53B0.9900
C9—C101.467 (4)C54—C551.513 (5)
C10—C111.396 (4)C54—H54A0.9900
C10—C151.409 (4)C54—H54B0.9900
C11—C121.382 (4)C55—C561.513 (5)
C11—H110.9500C55—H55A0.9900
C12—C131.370 (4)C55—H55B0.9900
C12—H120.9500C56—C571.460 (5)
C13—C141.385 (4)C56—H56A0.9900
C13—H130.9500C56—H56B0.9900
C14—C151.382 (4)C57—H57A0.9900
C14—H140.9500C57—H57B0.9900
C52—C51—C50101.7 (3)C15—C14—H14119.6
C52—C51—H51A111.4C13—C14—H14119.6
C50—C51—H51A111.4C14—C15—C10120.2 (3)
C52—C51—H51B111.4C14—C15—H15119.9
C50—C51—H51B111.4C10—C15—H15119.9
H51A—C51—H51B109.3C17—C16—C21120.8 (3)
C50—C51'—C52103.2 (8)C17—C16—H16119.6
C50—C51'—H51C111.1C21—C16—H16119.6
C52—C51'—H51C111.1C16—C17—C18120.0 (3)
C50—C51'—H51D111.1C16—C17—H17120.0
C52—C51'—H51D111.1C18—C17—H17120.0
H51C—C51'—H51D109.1C17—C18—C19119.8 (3)
C58—O4—C61106.3 (5)C17—C18—H18120.1
O4—C58—C59104.5 (6)C19—C18—H18120.1
O4—C58—H58A110.8C20—C19—C18120.0 (3)
C59—C58—H58A110.8C20—C19—H19120.0
O4—C58—H58B110.8C18—C19—H19120.0
C59—C58—H58B110.8C19—C20—C21121.0 (3)
H58A—C58—H58B108.9C19—C20—H20119.5
C58—C59—C60102.3 (4)C21—C20—H20119.5
C58—C59—H59A111.3C20—C21—C16118.4 (3)
C60—C59—H59A111.3C20—C21—C22121.4 (3)
C58—C59—H59B111.3C16—C21—C22120.2 (3)
C60—C59—H59B111.3N3—C22—C23109.7 (2)
H59A—C59—H59B109.2N3—C22—C21120.0 (2)
C59—C60—C61104.2 (4)C23—C22—C21130.3 (3)
C59—C60—H60A110.9C22—C23—C24105.3 (2)
C61—C60—H60A110.9C22—C23—H23127.4
C59—C60—H60B110.9C24—C23—H23127.4
C61—C60—H60B110.9N4—C24—C23109.0 (2)
H60A—C60—H60B108.9N4—C24—C25120.9 (2)
O4—C61—C60107.4 (4)C23—C24—C25130.1 (2)
O4—C61—H61A110.2C26—C25—C30118.3 (3)
C60—C61—H61A110.2C26—C25—C24120.9 (2)
O4—C61—H61B110.2C30—C25—C24120.7 (2)
C60—C61—H61B110.2C27—C26—C25120.5 (3)
H61A—C61—H61B108.5C27—C26—H26119.8
C61'—O4'—C58'108.9 (11)C25—C26—H26119.8
O4'—C58'—C59'106.3 (13)C26—C27—C28120.7 (3)
O4'—C58'—H58C110.5C26—C27—H27119.7
C59'—C58'—H58C110.5C28—C27—H27119.7
O4'—C58'—H58D110.5C29—C28—C27119.2 (3)
C59'—C58'—H58D110.5C29—C28—H28120.4
H58C—C58'—H58D108.7C27—C28—H28120.4
C58'—C59'—C60'103.1 (15)C30—C29—C28120.3 (3)
C58'—C59'—H59C111.1C30—C29—H29119.8
C60'—C59'—H59C111.1C28—C29—H29119.8
C58'—C59'—H59D111.1C29—C30—C25121.0 (3)
C60'—C59'—H59D111.1C29—C30—H30119.5
H59C—C59'—H59D109.1C25—C30—H30119.5
C61'—C60'—C59'103.5 (15)C32—C31—C36121.0 (3)
C61'—C60'—H60C111.1C32—C31—H31119.5
C59'—C60'—H60C111.1C36—C31—H31119.5
C61'—C60'—H60D111.1C33—C32—C31120.2 (3)
C59'—C60'—H60D111.1C33—C32—H32119.9
H60C—C60'—H60D109.0C31—C32—H32119.9
O4'—C61'—C60'107.1 (13)C34—C33—C32119.8 (3)
O4'—C61'—H61C110.3C34—C33—H33120.1
C60'—C61'—H61C110.3C32—C33—H33120.1
O4'—C61'—H61D110.3C33—C34—C35120.1 (3)
C60'—C61'—H61D110.3C33—C34—H34120.0
H61C—C61'—H61D108.5C35—C34—H34120.0
N5—La1—N3117.09 (7)C36—C35—C34121.3 (3)
N5—La1—N1137.53 (7)C36—C35—H35119.4
N3—La1—N1102.18 (7)C34—C35—H35119.4
N5—La1—N485.76 (7)C35—C36—C31117.6 (3)
N3—La1—N431.55 (6)C35—C36—C37121.7 (3)
N1—La1—N4130.26 (7)C31—C36—C37120.6 (3)
N5—La1—N631.49 (7)N5—C37—C38108.9 (2)
N3—La1—N6134.81 (7)N5—C37—C36121.0 (3)
N1—La1—N6107.66 (7)C38—C37—C36129.9 (3)
N4—La1—N6105.33 (7)C37—C38—C39105.6 (3)
N5—La1—O394.57 (7)C37—C38—H38127.2
N3—La1—O378.43 (7)C39—C38—H38127.2
N1—La1—O377.28 (7)N6—C39—C38108.6 (3)
N4—La1—O375.82 (7)N6—C39—C40121.4 (2)
N6—La1—O376.03 (7)C38—C39—C40129.8 (3)
N5—La1—N2153.70 (7)C45—C40—C41117.8 (3)
N3—La1—N287.17 (7)C45—C40—C39121.2 (3)
N1—La1—N230.99 (7)C41—C40—C39120.9 (3)
N4—La1—N2118.68 (7)C42—C41—C40121.0 (3)
N6—La1—N2133.75 (7)C42—C41—H41119.5
O3—La1—N2100.55 (7)C40—C41—H41119.5
N5—La1—O285.73 (7)C41—C42—C43120.5 (3)
N3—La1—O277.53 (7)C41—C42—H42119.8
N1—La1—O2119.71 (7)C43—C42—H42119.8
N4—La1—O277.35 (7)C44—C43—C42119.0 (3)
N6—La1—O2113.74 (7)C44—C43—H43120.5
O3—La1—O2153.06 (6)C42—C43—H43120.5
N2—La1—O290.22 (7)C43—C44—C45120.7 (3)
N5—La1—O177.73 (7)C43—C44—H44119.6
N3—La1—O1148.32 (7)C45—C44—H44119.6
N1—La1—O176.89 (6)C44—C45—C40121.0 (3)
N4—La1—O1149.38 (7)C44—C45—H45119.5
N6—La1—O172.78 (7)C40—C45—H45119.5
O3—La1—O1130.57 (7)O1—C46—C47104.1 (2)
N2—La1—O176.08 (6)O1—C46—H46A110.9
O2—La1—O175.87 (6)C47—C46—H46A110.9
C49—O1—C46104.4 (2)O1—C46—H46B110.9
C49—O1—La1124.39 (15)C47—C46—H46B110.9
C46—O1—La1124.70 (15)H46A—C46—H46B108.9
C50—O2—C53108.1 (2)C46—C47—C48104.3 (2)
C50—O2—La1128.13 (18)C46—C47—H47A110.9
C53—O2—La1123.73 (17)C48—C47—H47A110.9
C57—O3—C54108.4 (2)C46—C47—H47B110.9
C57—O3—La1122.74 (18)C48—C47—H47B110.9
C54—O3—La1121.39 (17)H47A—C47—H47B108.9
C7—N1—N2108.3 (2)C47—C48—C49104.7 (2)
C7—N1—La1171.48 (18)C47—C48—H48A110.8
N2—N1—La177.13 (13)C49—C48—H48A110.8
C9—N2—N1107.9 (2)C47—C48—H48B110.8
C9—N2—La1174.13 (17)C49—C48—H48B110.8
N1—N2—La171.88 (13)H48A—C48—H48B108.9
C22—N3—N4107.7 (2)O1—C49—C48105.7 (2)
C22—N3—La1173.6 (2)O1—C49—H49A110.6
N4—N3—La175.07 (13)C48—C49—H49A110.6
C24—N4—N3108.4 (2)O1—C49—H49B110.6
C24—N4—La1173.70 (19)C48—C49—H49B110.6
N3—N4—La173.37 (13)H49A—C49—H49B108.7
C37—N5—N6108.7 (2)O2—C50—C51'110.6 (7)
C37—N5—La1174.3 (2)O2—C50—C51103.8 (3)
N6—N5—La176.19 (14)O2—C50—H50A111.0
C39—N6—N5108.1 (2)C51—C50—H50A111.0
C39—N6—La1176.61 (19)O2—C50—H50B111.0
N5—N6—La172.32 (14)C51'—C50—H50B130.6
C2—C1—C6120.3 (3)C51—C50—H50B111.0
C2—C1—H1119.9H50A—C50—H50B109.0
C6—C1—H1119.9C51—C52—C53100.8 (3)
C3—C2—C1120.9 (3)C53—C52—C51'109.2 (6)
C3—C2—H2119.5C51—C52—H52A111.6
C1—C2—H2119.5C53—C52—H52A111.6
C2—C3—C4119.4 (3)C51—C52—H52B111.6
C2—C3—H3120.3C53—C52—H52B111.6
C4—C3—H3120.3C51'—C52—H52B130.6
C3—C4—C5120.4 (3)H52A—C52—H52B109.4
C3—C4—H4119.8O2—C53—C52106.7 (3)
C5—C4—H4119.8O2—C53—H53A110.4
C4—C5—C6120.6 (3)C52—C53—H53A110.4
C4—C5—H5119.7O2—C53—H53B110.4
C6—C5—H5119.7C52—C53—H53B110.4
C1—C6—C5118.4 (3)H53A—C53—H53B108.6
C1—C6—C7122.1 (3)O3—C54—C55104.5 (3)
C5—C6—C7119.5 (3)O3—C54—H54A110.9
N1—C7—C8109.3 (2)C55—C54—H54A110.9
N1—C7—C6121.7 (2)O3—C54—H54B110.9
C8—C7—C6129.0 (3)C55—C54—H54B110.9
C7—C8—C9105.3 (2)H54A—C54—H54B108.9
C7—C8—H8127.4C54—C55—C56102.5 (3)
C9—C8—H8127.4C54—C55—H55A111.3
N2—C9—C8109.2 (3)C56—C55—H55A111.3
N2—C9—C10122.5 (3)C54—C55—H55B111.3
C8—C9—C10128.2 (3)C56—C55—H55B111.3
C11—C10—C15117.4 (3)H55A—C55—H55B109.2
C11—C10—C9120.9 (3)C57—C56—C55104.8 (3)
C15—C10—C9121.6 (3)C57—C56—H56A110.8
C12—C11—C10121.8 (3)C55—C56—H56A110.8
C12—C11—H11119.1C57—C56—H56B110.8
C10—C11—H11119.1C55—C56—H56B110.8
C13—C12—C11120.0 (3)H56A—C56—H56B108.9
C13—C12—H12120.0O3—C57—C56108.1 (3)
C11—C12—H12120.0O3—C57—H57A110.1
C12—C13—C14119.8 (3)C56—C57—H57A110.1
C12—C13—H13120.1O3—C57—H57B110.1
C14—C13—H13120.1C56—C57—H57B110.1
C15—C14—C13120.8 (3)H57A—C57—H57B108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O30.952.773.704 (4)168
C16—H16···N20.952.793.690 (4)157
C30—H30···N50.952.813.734 (4)163
C31—H31···O20.952.703.617 (5)163
(II) tris(3,5-diphenyl-1,2,4-triazolato- κ2N1,N2)tris(tetrahydrofuran- κO)lanthanum(III) top
Crystal data top
[La(C14H10N3)3(C4H8O)3]F(000) = 2088
Mr = 1015.97Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21602 reflections
a = 11.531 (2) Åθ = 1.8–29.0°
b = 18.688 (4) ŵ = 0.93 mm1
c = 23.827 (7) ÅT = 173 K
β = 108.38 (3)°Prism, colourless
V = 4873 (2) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
8861 independent reflections
Radiation source: fine-focus sealed tube8240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.836, Tmax = 0.836k = 2218
25724 measured reflectionsl = 2824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.031P)2 + 2.4124P]
where P = (Fo2 + 2Fc2)/3
8861 reflections(Δ/σ)max = 0.001
636 parametersΔρmax = 0.86 e Å3
124 restraintsΔρmin = 0.49 e Å3
Crystal data top
[La(C14H10N3)3(C4H8O)3]V = 4873 (2) Å3
Mr = 1015.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.531 (2) ŵ = 0.93 mm1
b = 18.688 (4) ÅT = 173 K
c = 23.827 (7) Å0.20 × 0.20 × 0.20 mm
β = 108.38 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
8861 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
8240 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.836Rint = 0.020
25724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026124 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.05Δρmax = 0.86 e Å3
8861 reflectionsΔρmin = 0.49 e Å3
636 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.796348 (11)0.078435 (7)0.288811 (5)0.01892 (5)
N10.70232 (17)0.00896 (10)0.34168 (8)0.0240 (4)
N20.57341 (17)0.02964 (10)0.39309 (8)0.0275 (4)
N30.64725 (17)0.05507 (10)0.34712 (8)0.0236 (4)
N40.60869 (17)0.07355 (9)0.19992 (8)0.0230 (4)
N50.52881 (17)0.08045 (10)0.10150 (8)0.0249 (4)
N60.69835 (16)0.09932 (10)0.17828 (8)0.0227 (4)
N70.95033 (16)0.02676 (10)0.30164 (8)0.0234 (4)
N81.00673 (16)0.11199 (10)0.24884 (8)0.0237 (4)
N90.86725 (16)0.02728 (10)0.24545 (8)0.0230 (4)
O10.92452 (16)0.11968 (10)0.39398 (7)0.0390 (4)
O20.71655 (15)0.21128 (8)0.28564 (7)0.0316 (4)
O30.98764 (14)0.13811 (8)0.27547 (7)0.0266 (3)
C10.6554 (2)0.05768 (12)0.36971 (9)0.0240 (5)
C20.6897 (2)0.13375 (12)0.37495 (9)0.0266 (5)
C30.7921 (2)0.15818 (13)0.36175 (10)0.0316 (5)
H30.84050.12550.34820.038*
C40.8238 (3)0.22993 (14)0.36824 (11)0.0397 (6)
H40.89510.24600.36020.048*
C50.7520 (3)0.27830 (14)0.38633 (11)0.0421 (7)
H5A0.77300.32760.38990.050*
C60.6497 (3)0.25470 (14)0.39913 (11)0.0392 (6)
H60.60000.28790.41130.047*
C70.6191 (2)0.18249 (13)0.39423 (10)0.0334 (6)
H70.54980.16640.40410.040*
C80.5715 (2)0.04007 (12)0.37777 (9)0.0231 (5)
C90.4966 (2)0.09343 (13)0.39563 (10)0.0256 (5)
C100.4298 (2)0.07334 (14)0.43257 (11)0.0312 (6)
H100.42910.02460.44390.037*
C110.3647 (2)0.12339 (15)0.45300 (12)0.0384 (6)
H110.32000.10900.47840.046*
C120.3643 (2)0.19391 (16)0.43665 (12)0.0408 (6)
H120.32010.22830.45100.049*
C130.4288 (2)0.21462 (14)0.39913 (13)0.0411 (6)
H130.42770.26320.38730.049*
C140.4945 (2)0.16476 (14)0.37897 (11)0.0347 (6)
H140.53880.17940.35340.042*
C150.5104 (2)0.06294 (11)0.15269 (10)0.0227 (5)
C160.3954 (2)0.03386 (12)0.15796 (10)0.0263 (5)
C170.3836 (2)0.02153 (13)0.21361 (11)0.0307 (5)
H170.45010.03140.24820.037*
C180.2754 (2)0.00509 (14)0.21873 (13)0.0385 (6)
H180.26840.01400.25680.046*
C190.1776 (2)0.01880 (14)0.16880 (14)0.0430 (7)
H190.10270.03590.17250.052*
C200.1888 (2)0.00763 (14)0.11363 (13)0.0412 (7)
H200.12170.01760.07930.049*
C210.2975 (2)0.01810 (13)0.10762 (11)0.0322 (5)
H210.30500.02490.06940.039*
C220.6466 (2)0.10141 (12)0.11954 (10)0.0244 (5)
C230.7157 (2)0.12114 (12)0.07936 (10)0.0280 (5)
C240.6546 (2)0.14608 (14)0.02269 (11)0.0386 (6)
H240.56840.15160.01020.046*
C250.7198 (3)0.16281 (17)0.01552 (13)0.0508 (7)
H250.67800.18020.05410.061*
C260.8443 (3)0.15443 (17)0.00211 (14)0.0537 (8)
H260.88820.16550.02450.064*
C270.9062 (3)0.13004 (17)0.05829 (13)0.0501 (7)
H270.99240.12450.07030.060*
C280.8422 (2)0.11371 (15)0.09706 (12)0.0393 (6)
H280.88480.09740.13590.047*
C291.0310 (2)0.07802 (11)0.30154 (10)0.0219 (5)
C301.1327 (2)0.09750 (12)0.35437 (10)0.0245 (5)
C311.1652 (2)0.05491 (14)0.40482 (10)0.0315 (5)
H311.12340.01120.40500.038*
C321.2586 (2)0.07617 (14)0.45488 (11)0.0360 (6)
H321.28110.04650.48900.043*
C331.3186 (2)0.13981 (15)0.45550 (12)0.0412 (7)
H331.38020.15500.49040.049*
C341.2889 (3)0.18157 (15)0.40509 (13)0.0488 (8)
H341.33140.22510.40500.059*
C351.1975 (2)0.16014 (14)0.35465 (12)0.0405 (6)
H351.17900.18860.31990.049*
C360.9041 (2)0.07852 (11)0.21579 (10)0.0219 (5)
C370.8388 (2)0.09391 (12)0.15308 (10)0.0236 (5)
C380.8956 (2)0.13039 (13)0.11790 (10)0.0306 (5)
H380.97650.14790.13480.037*
C390.8347 (3)0.14126 (14)0.05845 (11)0.0382 (6)
H390.87420.16600.03480.046*
C400.7164 (3)0.11622 (14)0.03320 (11)0.0404 (7)
H400.67480.12370.00760.048*
C410.6598 (3)0.08038 (13)0.06786 (12)0.0411 (7)
H410.57900.06290.05070.049*
C420.7196 (2)0.06965 (12)0.12725 (11)0.0319 (6)
H420.67900.04550.15080.038*
C431.0338 (2)0.16221 (16)0.41354 (11)0.0413 (7)
H43A1.01570.21360.40530.050*
H43B1.09450.14670.39440.050*
C44'1.0569 (5)0.1748 (3)0.4791 (2)0.0359 (12)0.653 (5)
H44A0.99950.21010.48660.043*0.653 (5)
H44B1.14220.18960.49980.043*0.653 (5)
C45'1.0306 (5)0.0979 (3)0.49546 (17)0.0505 (13)0.653 (5)
H45A1.10040.06570.49830.061*0.653 (5)
H45B1.01230.09700.53340.061*0.653 (5)
C46'0.9196 (6)0.0772 (3)0.44422 (17)0.0646 (16)0.653 (5)
H46A0.92170.02550.43540.077*0.653 (5)
H46B0.84370.08750.45370.077*0.653 (5)
C441.0795 (10)0.1472 (6)0.4806 (5)0.0359 (12)0.347 (5)
H44C1.11480.09860.48900.043*0.347 (5)
H44D1.14150.18280.50180.043*0.347 (5)
C450.9669 (8)0.1539 (6)0.4969 (3)0.053 (2)0.347 (5)
H45C0.94430.20450.49990.063*0.347 (5)
H45D0.97390.12890.53450.063*0.347 (5)
C460.8764 (7)0.1161 (5)0.4436 (2)0.0362 (18)0.347 (5)
H46C0.86610.06550.45350.043*0.347 (5)
H46D0.79560.13990.43300.043*0.347 (5)
C470.7446 (2)0.26343 (15)0.33268 (13)0.0469 (7)
H47A0.82260.28790.33590.056*
H47B0.75230.23990.37090.056*
C480.6417 (3)0.31621 (13)0.31765 (11)0.0367 (6)
H48A0.66510.36270.33800.044*
H48B0.56740.29730.32480.044*
C490.6296 (19)0.3197 (5)0.2519 (4)0.052 (3)0.48 (2)
H49A0.70360.34020.24540.062*0.48 (2)
H49B0.55690.34750.22910.062*0.48 (2)
C49'0.5763 (13)0.3126 (6)0.2506 (4)0.046 (2)0.52 (2)
H49C0.48650.31600.24120.056*0.52 (2)
H49D0.60500.35060.22930.056*0.52 (2)
C500.6152 (3)0.23866 (16)0.23647 (13)0.0514 (7)
H50A0.53540.21970.23710.062*
H50B0.62620.22830.19770.062*
C510.9964 (2)0.21138 (13)0.25803 (11)0.0331 (6)
H51A0.95750.24420.27940.040*
H51B0.95650.21750.21500.040*
C521.1319 (2)0.22574 (14)0.27454 (13)0.0395 (6)
H52A1.16730.23750.31700.047*
H52B1.14950.26510.25060.047*
C531.1796 (2)0.15482 (14)0.26013 (14)0.0434 (7)
H53A1.17230.15190.21770.052*
H53B1.26620.14770.28400.052*
C541.0990 (2)0.10073 (14)0.27584 (13)0.0362 (6)
H54A1.07950.06130.24660.043*
H54B1.14040.08040.31550.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01885 (8)0.02081 (8)0.01656 (7)0.00078 (5)0.00484 (5)0.00016 (5)
N10.0266 (10)0.0219 (10)0.0235 (9)0.0004 (8)0.0078 (8)0.0007 (8)
N20.0303 (11)0.0277 (11)0.0260 (10)0.0038 (9)0.0109 (9)0.0019 (8)
N30.0253 (10)0.0227 (9)0.0229 (9)0.0005 (8)0.0078 (8)0.0003 (8)
N40.0218 (10)0.0232 (10)0.0236 (10)0.0010 (8)0.0067 (8)0.0000 (8)
N50.0242 (10)0.0257 (10)0.0223 (10)0.0014 (8)0.0036 (8)0.0002 (8)
N60.0221 (10)0.0235 (10)0.0224 (10)0.0011 (8)0.0068 (8)0.0006 (8)
N70.0223 (9)0.0254 (10)0.0209 (9)0.0004 (8)0.0047 (8)0.0012 (8)
N80.0220 (9)0.0233 (10)0.0232 (9)0.0004 (8)0.0036 (8)0.0004 (8)
N90.0216 (9)0.0247 (10)0.0206 (9)0.0003 (8)0.0036 (8)0.0008 (8)
O10.0373 (10)0.0565 (12)0.0206 (8)0.0195 (9)0.0054 (8)0.0031 (8)
O20.0405 (9)0.0257 (9)0.0279 (8)0.0007 (7)0.0095 (7)0.0044 (7)
O30.0242 (8)0.0253 (8)0.0318 (9)0.0005 (7)0.0108 (7)0.0023 (7)
C10.0252 (12)0.0266 (12)0.0181 (11)0.0036 (10)0.0038 (9)0.0011 (9)
C20.0355 (13)0.0243 (12)0.0169 (11)0.0055 (10)0.0040 (10)0.0005 (9)
C30.0424 (14)0.0274 (13)0.0256 (12)0.0012 (11)0.0113 (11)0.0003 (10)
C40.0524 (17)0.0307 (14)0.0361 (14)0.0067 (13)0.0141 (13)0.0015 (11)
C50.0609 (19)0.0230 (13)0.0361 (14)0.0014 (13)0.0065 (13)0.0005 (11)
C60.0498 (16)0.0298 (14)0.0311 (13)0.0130 (13)0.0030 (12)0.0068 (11)
C70.0380 (14)0.0313 (13)0.0272 (13)0.0057 (11)0.0050 (11)0.0047 (10)
C80.0225 (11)0.0277 (12)0.0185 (10)0.0032 (10)0.0056 (9)0.0004 (9)
C90.0198 (11)0.0325 (13)0.0223 (11)0.0013 (10)0.0034 (9)0.0008 (10)
C100.0264 (13)0.0376 (14)0.0309 (13)0.0019 (11)0.0109 (11)0.0000 (11)
C110.0295 (13)0.0499 (17)0.0406 (15)0.0019 (12)0.0180 (12)0.0026 (13)
C120.0285 (13)0.0484 (17)0.0463 (16)0.0055 (12)0.0129 (12)0.0094 (13)
C130.0379 (15)0.0304 (14)0.0557 (17)0.0043 (12)0.0158 (13)0.0009 (13)
C140.0330 (13)0.0359 (14)0.0382 (14)0.0017 (11)0.0152 (12)0.0039 (11)
C150.0217 (11)0.0199 (11)0.0243 (11)0.0025 (9)0.0039 (9)0.0014 (9)
C160.0226 (11)0.0217 (11)0.0329 (12)0.0025 (9)0.0064 (10)0.0021 (10)
C170.0267 (12)0.0309 (13)0.0357 (13)0.0013 (11)0.0115 (11)0.0074 (11)
C180.0382 (15)0.0355 (14)0.0501 (16)0.0036 (12)0.0255 (13)0.0100 (12)
C190.0308 (14)0.0369 (15)0.069 (2)0.0076 (12)0.0263 (14)0.0139 (14)
C200.0238 (13)0.0383 (15)0.0550 (17)0.0042 (11)0.0029 (12)0.0104 (13)
C210.0268 (12)0.0318 (13)0.0348 (13)0.0021 (11)0.0052 (11)0.0015 (11)
C220.0267 (12)0.0215 (11)0.0217 (11)0.0033 (10)0.0030 (10)0.0018 (9)
C230.0338 (13)0.0267 (12)0.0245 (10)0.0055 (10)0.0108 (9)0.0054 (9)
C240.0403 (10)0.0420 (10)0.0321 (8)0.0026 (8)0.0091 (7)0.0012 (8)
C250.0549 (11)0.0569 (11)0.0432 (10)0.0052 (9)0.0191 (8)0.0034 (8)
C260.0570 (11)0.0583 (12)0.0511 (11)0.0061 (9)0.0247 (9)0.0005 (9)
C270.0475 (11)0.0546 (11)0.0518 (11)0.0039 (9)0.0207 (9)0.0009 (9)
C280.0383 (10)0.0421 (10)0.0385 (10)0.0018 (8)0.0135 (8)0.0008 (8)
C290.0204 (11)0.0212 (11)0.0228 (11)0.0039 (9)0.0052 (9)0.0027 (9)
C300.0216 (11)0.0241 (11)0.0257 (12)0.0046 (9)0.0043 (10)0.0044 (9)
C310.0316 (13)0.0362 (14)0.0253 (12)0.0016 (11)0.0068 (11)0.0012 (11)
C320.0334 (14)0.0486 (16)0.0225 (12)0.0058 (12)0.0039 (11)0.0002 (11)
C330.0336 (14)0.0442 (16)0.0341 (14)0.0041 (12)0.0061 (12)0.0122 (12)
C340.0406 (16)0.0320 (15)0.0548 (18)0.0047 (12)0.0123 (14)0.0025 (13)
C350.0370 (14)0.0293 (14)0.0405 (15)0.0015 (12)0.0089 (12)0.0048 (11)
C360.0212 (11)0.0186 (11)0.0247 (11)0.0022 (9)0.0055 (10)0.0018 (9)
C370.0259 (12)0.0200 (11)0.0218 (11)0.0033 (9)0.0033 (10)0.0002 (9)
C380.0310 (13)0.0289 (13)0.0306 (13)0.0010 (11)0.0076 (11)0.0026 (10)
C390.0529 (17)0.0348 (14)0.0288 (13)0.0060 (13)0.0154 (12)0.0068 (11)
C400.0540 (17)0.0293 (14)0.0261 (13)0.0054 (13)0.0041 (12)0.0019 (11)
C410.0385 (15)0.0294 (14)0.0387 (15)0.0027 (11)0.0115 (13)0.0043 (11)
C420.0291 (13)0.0246 (12)0.0349 (13)0.0019 (10)0.0002 (11)0.0064 (10)
C430.0337 (14)0.0590 (18)0.0272 (13)0.0168 (13)0.0040 (11)0.0056 (12)
C44'0.031 (3)0.042 (4)0.0316 (16)0.003 (2)0.0047 (17)0.015 (3)
C45'0.054 (3)0.072 (3)0.0193 (19)0.028 (2)0.0027 (18)0.0005 (19)
C46'0.069 (3)0.083 (3)0.033 (2)0.037 (3)0.004 (2)0.010 (2)
C440.031 (3)0.042 (4)0.0316 (16)0.003 (2)0.0047 (17)0.015 (3)
C450.050 (4)0.075 (5)0.030 (3)0.020 (4)0.008 (3)0.006 (3)
C460.037 (3)0.050 (4)0.019 (3)0.019 (3)0.005 (2)0.002 (3)
C470.0381 (15)0.0462 (17)0.0507 (17)0.0002 (13)0.0059 (13)0.0243 (14)
C480.0511 (16)0.0249 (13)0.0332 (14)0.0007 (12)0.0121 (12)0.0029 (11)
C490.078 (7)0.033 (4)0.033 (3)0.022 (4)0.003 (4)0.003 (3)
C49'0.054 (5)0.042 (4)0.036 (3)0.016 (4)0.003 (4)0.005 (3)
C500.0581 (10)0.0456 (10)0.0438 (10)0.0115 (9)0.0064 (8)0.0001 (8)
C510.0357 (13)0.0282 (13)0.0381 (14)0.0035 (11)0.0154 (12)0.0076 (11)
C520.0404 (15)0.0301 (14)0.0560 (17)0.0042 (12)0.0264 (14)0.0008 (12)
C530.0379 (15)0.0334 (14)0.0683 (19)0.0009 (12)0.0301 (15)0.0019 (13)
C540.0298 (13)0.0323 (14)0.0517 (16)0.0050 (11)0.0201 (12)0.0028 (12)
Geometric parameters (Å, º) top
La1—N12.5083 (18)C26—H260.9500
La1—N32.5658 (19)C27—C281.386 (4)
La1—N42.507 (2)C27—H270.9500
La1—N62.547 (2)C28—H280.9500
La1—N72.6016 (19)C29—C301.471 (3)
La1—N92.4843 (18)C30—C351.388 (3)
La1—O12.5926 (18)C30—C311.391 (3)
La1—O22.6404 (17)C31—C321.389 (3)
La1—O32.5792 (15)C31—H310.9500
N1—C11.340 (3)C32—C331.374 (4)
N1—N31.380 (3)C32—H320.9500
N2—C11.345 (3)C33—C341.382 (4)
N2—C81.351 (3)C33—H330.9500
N3—C81.333 (3)C34—C351.384 (4)
N4—C151.337 (3)C34—H340.9500
N4—N61.379 (3)C35—H350.9500
N5—C151.343 (3)C36—C371.474 (3)
N5—C221.347 (3)C37—C421.393 (3)
N6—C221.338 (3)C37—C381.394 (3)
N7—C291.335 (3)C38—C391.383 (3)
N7—N91.379 (2)C38—H380.9500
N8—C361.351 (3)C39—C401.387 (4)
N8—C291.355 (3)C39—H390.9500
N9—C361.336 (3)C40—C411.377 (4)
O1—C431.438 (3)C40—H400.9500
O1—C46'1.452 (2)C41—C421.379 (4)
O1—C461.457 (2)C41—H410.9500
O2—C471.443 (3)C42—H420.9500
O2—C501.462 (3)C43—C44'1.519 (6)
O3—C511.444 (3)C43—C441.541 (11)
O3—C541.460 (3)C43—H43A0.9900
C1—C21.470 (3)C43—H43B0.9900
C2—C31.391 (3)C44'—C45'1.544 (7)
C2—C71.392 (3)C44'—H44A0.9900
C3—C41.386 (3)C44'—H44B0.9900
C3—H30.9500C45'—C46'1.514 (6)
C4—C51.383 (4)C45'—H45A0.9900
C4—H40.9500C45'—H45B0.9900
C5—C61.380 (4)C46'—H46A0.9900
C5—H5A0.9500C46'—H46B0.9900
C6—C71.390 (4)C44—C451.475 (12)
C6—H60.9500C44—H44C0.9900
C7—H70.9500C44—H44D0.9900
C8—C91.467 (3)C45—C461.539 (9)
C9—C141.389 (3)C45—H45C0.9900
C9—C101.391 (3)C45—H45D0.9900
C10—C111.381 (4)C46—H46C0.9900
C10—H100.9500C46—H46D0.9900
C11—C121.374 (4)C47—C481.497 (4)
C11—H110.9500C47—H47A0.9900
C12—C131.386 (4)C47—H47B0.9900
C12—H120.9500C48—C491.530 (9)
C13—C141.380 (4)C48—C49'1.538 (9)
C13—H130.9500C48—H48A0.9900
C14—H140.9500C48—H48B0.9900
C15—C161.475 (3)C49—C501.556 (10)
C16—C171.394 (3)C49—H49A0.9900
C16—C211.395 (3)C49—H49B0.9900
C17—C181.384 (3)C49'—C501.523 (9)
C17—H170.9500C49'—H49C0.9900
C18—C191.381 (4)C49'—H49D0.9900
C18—H180.9500C50—H50A0.9900
C19—C201.377 (4)C50—H50B0.9900
C19—H190.9500C51—C521.510 (3)
C20—C211.392 (4)C51—H51A0.9900
C20—H200.9500C51—H51B0.9900
C21—H210.9500C52—C531.515 (4)
C22—C231.472 (3)C52—H52A0.9900
C23—C281.392 (3)C52—H52B0.9900
C23—C241.392 (3)C53—C541.498 (4)
C24—C251.386 (4)C53—H53A0.9900
C24—H240.9500C53—H53B0.9900
C25—C261.372 (4)C54—H54A0.9900
C25—H250.9500C54—H54B0.9900
C26—C271.381 (4)
N9—La1—N485.94 (6)C27—C28—C23120.2 (3)
N9—La1—N186.68 (6)C27—C28—H28119.9
N4—La1—N190.34 (6)C23—C28—H28119.9
N9—La1—N677.81 (6)N7—C29—N8113.43 (19)
N4—La1—N631.66 (6)N7—C29—C30123.0 (2)
N1—La1—N6119.86 (6)N8—C29—C30123.6 (2)
N9—La1—N3117.03 (6)C35—C30—C31118.7 (2)
N4—La1—N384.49 (6)C35—C30—C29119.7 (2)
N1—La1—N331.53 (6)C31—C30—C29121.5 (2)
N6—La1—N3115.55 (6)C32—C31—C30120.2 (2)
N9—La1—O383.47 (6)C32—C31—H31119.9
N4—La1—O3117.09 (6)C30—C31—H31119.9
N1—La1—O3149.92 (6)C33—C32—C31120.6 (2)
N6—La1—O385.65 (6)C33—C32—H32119.7
N3—La1—O3152.31 (5)C31—C32—H32119.7
N9—La1—O1118.45 (6)C32—C33—C34119.6 (2)
N4—La1—O1154.74 (6)C32—C33—H33120.2
N1—La1—O185.02 (6)C34—C33—H33120.2
N6—La1—O1152.32 (6)C33—C34—C35120.2 (3)
N3—La1—O178.60 (6)C33—C34—H34119.9
O3—La1—O175.02 (5)C35—C34—H34119.9
N9—La1—N731.36 (6)C34—C35—C30120.6 (3)
N4—La1—N7116.55 (6)C34—C35—H35119.7
N1—La1—N780.56 (6)C30—C35—H35119.7
N6—La1—N7107.53 (6)N9—C36—N8112.94 (19)
N3—La1—N7110.90 (6)N9—C36—C37121.99 (19)
O3—La1—N776.27 (5)N8—C36—C37125.0 (2)
O1—La1—N787.20 (6)C42—C37—C38118.6 (2)
N9—La1—O2153.29 (5)C42—C37—C36120.1 (2)
N4—La1—O279.04 (5)C38—C37—C36121.2 (2)
N1—La1—O2115.13 (6)C39—C38—C37120.3 (2)
N6—La1—O277.84 (5)C39—C38—H38119.8
N3—La1—O283.60 (5)C37—C38—H38119.8
O3—La1—O283.91 (5)C38—C39—C40120.4 (2)
O1—La1—O280.53 (6)C38—C39—H39119.8
N7—La1—O2158.84 (5)C40—C39—H39119.8
C1—N1—N3105.79 (17)C41—C40—C39119.4 (2)
C1—N1—La1177.65 (16)C41—C40—H40120.3
N3—N1—La176.53 (11)C39—C40—H40120.3
C1—N2—C8102.58 (18)C40—C41—C42120.5 (3)
C8—N3—N1105.64 (17)C40—C41—H41119.7
C8—N3—La1177.56 (16)C42—C41—H41119.7
N1—N3—La171.94 (10)C41—C42—C37120.7 (2)
C15—N4—N6105.90 (17)C41—C42—H42119.7
C15—N4—La1173.53 (15)C37—C42—H42119.7
N6—N4—La175.76 (11)O1—C43—C44'105.7 (3)
C15—N5—C22102.33 (19)O1—C43—C44102.3 (5)
C22—N6—N4105.18 (18)O1—C43—H43A111.3
C22—N6—La1172.86 (15)C44—C43—H43A111.3
N4—N6—La172.58 (11)O1—C43—H43B111.3
C29—N7—N9105.31 (17)C44'—C43—H43B126.8
C29—N7—La1172.54 (15)C44—C43—H43B111.3
N9—N7—La169.62 (11)H43A—C43—H43B109.2
C36—N8—C29102.11 (18)C43—C44'—C45'97.5 (3)
C36—N9—N7106.21 (17)C43—C44'—H44A112.3
C36—N9—La1172.25 (15)C45'—C44'—H44A112.3
N7—N9—La179.02 (11)C43—C44'—H44B112.3
C43—O1—C46'107.0 (2)C45'—C44'—H44B112.3
C43—O1—C46106.4 (3)H44A—C44'—H44B109.9
C43—O1—La1130.69 (13)C46'—C45'—C44'102.6 (4)
C46'—O1—La1118.4 (2)C46'—C45'—H45A111.2
C46—O1—La1121.5 (3)C44'—C45'—H45A111.2
C47—O2—C50108.25 (19)C46'—C45'—H45B111.2
C47—O2—La1128.47 (15)C44'—C45'—H45B111.2
C50—O2—La1122.36 (14)H45A—C45'—H45B109.2
C51—O3—C54108.30 (17)O1—C46'—C45'106.4 (3)
C51—O3—La1125.87 (13)O1—C46'—H46A110.4
C54—O3—La1125.28 (13)C45'—C46'—H46A110.4
N1—C1—N2112.9 (2)O1—C46'—H46B110.4
N1—C1—C2124.0 (2)C45'—C46'—H46B110.4
N2—C1—C2123.1 (2)H46A—C46'—H46B108.6
C3—C2—C7119.1 (2)C45—C44—C43102.5 (7)
C3—C2—C1121.5 (2)C45—C44—H44C111.3
C7—C2—C1119.4 (2)C43—C44—H44C111.3
C4—C3—C2120.3 (2)C45—C44—H44D111.3
C4—C3—H3119.8C43—C44—H44D111.3
C2—C3—H3119.8H44C—C44—H44D109.2
C5—C4—C3120.3 (3)C44—C45—C4699.6 (7)
C5—C4—H4119.9C44—C45—H45C111.8
C3—C4—H4119.9C46—C45—H45C111.8
C6—C5—C4119.8 (2)C44—C45—H45D111.8
C6—C5—H5A120.1C46—C45—H45D111.8
C4—C5—H5A120.1H45C—C45—H45D109.6
C5—C6—C7120.2 (2)O1—C46—C45108.4 (5)
C5—C6—H6119.9O1—C46—H46C110.0
C7—C6—H6119.9C45—C46—H46C110.0
C6—C7—C2120.3 (3)O1—C46—H46D110.0
C6—C7—H7119.9C45—C46—H46D110.0
C2—C7—H7119.9H46C—C46—H46D108.4
N3—C8—N2113.1 (2)O2—C47—C48107.0 (2)
N3—C8—C9124.3 (2)O2—C47—H47A110.3
N2—C8—C9122.6 (2)C48—C47—H47A110.3
C14—C9—C10118.5 (2)O2—C47—H47B110.3
C14—C9—C8121.9 (2)C48—C47—H47B110.3
C10—C9—C8119.6 (2)H47A—C47—H47B108.6
C11—C10—C9120.7 (2)C47—C48—C4994.7 (6)
C11—C10—H10119.6C47—C48—C49'108.2 (4)
C9—C10—H10119.6C47—C48—H48A112.8
C12—C11—C10120.2 (2)C49—C48—H48A112.8
C12—C11—H11119.9C49'—C48—H48A121.1
C10—C11—H11119.9C47—C48—H48B112.8
C11—C12—C13119.8 (2)C49—C48—H48B112.8
C11—C12—H12120.1C49'—C48—H48B89.7
C13—C12—H12120.1H48A—C48—H48B110.2
C14—C13—C12120.1 (3)C48—C49—C5099.7 (6)
C14—C13—H13120.0C48—C49—H49A111.8
C12—C13—H13120.0C50—C49—H49A111.8
C13—C14—C9120.7 (2)C48—C49—H49B111.8
C13—C14—H14119.6C50—C49—H49B111.8
C9—C14—H14119.6H49A—C49—H49B109.6
N4—C15—N5113.2 (2)C50—C49'—C48100.8 (5)
N4—C15—C16122.0 (2)C50—C49'—H49C111.6
N5—C15—C16124.8 (2)C48—C49'—H49C111.6
C17—C16—C21119.2 (2)C50—C49'—H49D111.6
C17—C16—C15120.1 (2)C48—C49'—H49D111.6
C21—C16—C15120.7 (2)H49C—C49'—H49D109.4
C18—C17—C16120.3 (2)O2—C50—C49'110.9 (4)
C18—C17—H17119.9O2—C50—C4998.8 (6)
C16—C17—H17119.9O2—C50—H50A112.0
C19—C18—C17120.3 (3)C49'—C50—H50A88.9
C19—C18—H18119.8C49—C50—H50A112.0
C17—C18—H18119.8O2—C50—H50B112.0
C20—C19—C18119.8 (2)C49'—C50—H50B121.1
C20—C19—H19120.1C49—C50—H50B112.0
C18—C19—H19120.1H50A—C50—H50B109.7
C19—C20—C21120.6 (2)O3—C51—C52104.73 (19)
C19—C20—H20119.7O3—C51—H51A110.8
C21—C20—H20119.7C52—C51—H51A110.8
C20—C21—C16119.7 (2)O3—C51—H51B110.8
C20—C21—H21120.2C52—C51—H51B110.8
C16—C21—H21120.2H51A—C51—H51B108.9
N6—C22—N5113.4 (2)C51—C52—C53101.8 (2)
N6—C22—C23122.2 (2)C51—C52—H52A111.4
N5—C22—C23124.3 (2)C53—C52—H52A111.4
C28—C23—C24119.2 (2)C51—C52—H52B111.4
C28—C23—C22120.5 (2)C53—C52—H52B111.4
C24—C23—C22120.2 (2)H52A—C52—H52B109.3
C25—C24—C23120.0 (3)C54—C53—C52103.6 (2)
C25—C24—H24120.0C54—C53—H53A111.0
C23—C24—H24120.0C52—C53—H53A111.0
C26—C25—C24120.3 (3)C54—C53—H53B111.0
C26—C25—H25119.9C52—C53—H53B111.0
C24—C25—H25119.9H53A—C53—H53B109.0
C25—C26—C27120.4 (3)O3—C54—C53106.8 (2)
C25—C26—H26119.8O3—C54—H54A110.4
C27—C26—H26119.8C53—C54—H54A110.4
C26—C27—C28119.9 (3)O3—C54—H54B110.4
C26—C27—H27120.1C53—C54—H54B110.4
C28—C27—H27120.1H54A—C54—H54B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N70.952.673.614 (3)173
C17—H17···N30.952.753.696 (3)178
C42—H42···N40.952.753.632 (3)154

Experimental details

(I)(II)
Crystal data
Chemical formula[La(C15H11N2)3(C4H8O)3]·C4H8O[La(C14H10N3)3(C4H8O)3]
Mr1085.101015.97
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/c
Temperature (K)173173
a, b, c (Å)14.146 (3), 16.358 (3), 22.856 (5)11.531 (2), 18.688 (4), 23.827 (7)
α, β, γ (°)90, 90, 9090, 108.38 (3), 90
V3)5288.8 (18)4873 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.860.93
Crystal size (mm)0.20 × 0.20 × 0.200.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Rigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.811, 1.0000.836, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
22016, 9592, 9280 25724, 8861, 8240
Rint0.0310.020
(sin θ/λ)max1)0.6020.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.054, 1.03 0.026, 0.063, 1.05
No. of reflections95928861
No. of parameters670636
No. of restraints76124
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.340.86, 0.49
Absolute structureFlack (1983), with how many Friedel pairs??
Absolute structure parameter0.450 (8)?

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) for (I) top
La1—N12.523 (2)La1—N62.546 (2)
La1—N22.588 (2)La1—O12.6496 (19)
La1—N32.506 (2)La1—O22.612 (2)
La1—N42.527 (2)La1—O32.573 (2)
La1—N52.498 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O30.952.773.704 (4)168.2
C16—H16···N20.952.793.690 (4)157.3
C30—H30···N50.952.813.734 (4)163.2
C31—H31···O20.952.703.617 (5)163.0
Selected bond lengths (Å) for (II) top
La1—N12.5083 (18)La1—N92.4843 (18)
La1—N32.5658 (19)La1—O12.5926 (18)
La1—N42.507 (2)La1—O22.6404 (17)
La1—N62.547 (2)La1—O32.5792 (15)
La1—N72.6016 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N70.952.673.614 (3)172.8
C17—H17···N30.952.753.696 (3)177.6
C42—H42···N40.952.753.632 (3)154.3
 

Acknowledgements

This work was supported by the National Science and Technology of Major Projects fund (grant No. 2009ZX02039-002). Funding from the Jiangsu Innovation Programme for Graduate Education (grant No. CX10B_100Z) and the Outstanding Doctoral Dissertation in NUAA fund (grant No. BCXJ10-11) is also acknowledged.

References

First citationAspinall, H. C. (2007). Top. Appl. Phys. 106, 53–72.  CrossRef CAS
First citationCosgriff, J. E., Deacon, G. B. & Gatehouse, B. M. (1993). Aust. J. Chem. 46, 1881–1896.  CSD CrossRef CAS
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationHalcrow, M. A. (2009). Dalton Trans. pp. 2059–2073.  Web of Science CrossRef
First citationKobrsi, I., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2005). Inorg. Chem. 44, 4894–4896.  Web of Science CSD CrossRef PubMed CAS
First citationKobrsi, I., Zheng, W.-J., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2006). Inorg. Chem. 45, 8700–8710.  Web of Science CSD CrossRef PubMed CAS
First citationMahata, P., Prabu, M. & Natarajan, S. (2009). Cryst. Growth Des. 9, 3683–3691.  Web of Science CSD CrossRef CAS
First citationMarques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137–2159.  Web of Science CrossRef PubMed CAS
First citationPfeiffer, D., Ximba, B. J., Liable-Sands, L. M., Rheingold, A. L., Heeg, M. J., Coleman, D. M., Schlegel, H. B., Kuech, T. F. & Winter, C. H. (1999). Inorg. Chem. 38, 4539–4548.  Web of Science CSD CrossRef PubMed CAS
First citationPi, C.-F., Wan, L., Gu, Y.-Y., Zheng, W.-J., Weng, L.-H., Chen, Z.-X. & Wu, L.-M. (2008). Inorg. Chem. 47, 9739–9741.  Web of Science CrossRef PubMed CAS
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWei, G., Shen, Y.-F., Li, Y.-R. & Huang, X.-C. (2010). Inorg. Chem. 49, 9191–9199.  Web of Science CSD CrossRef CAS PubMed
First citationWerrett, M. V., Chartrand, D., Gale, J. D., Hanan, G. S., MacLellan, J. G., Massi, M., Muzzioli, S., Raiteri, P., Skelton, B. W., Silberstein, M. & Stagni, S. (2011). Inorg. Chem. 50, 1229–1241.  Web of Science CSD CrossRef CAS PubMed
First citationYang, C., Wang, X.-P. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454–15455.  Web of Science CSD CrossRef PubMed CAS
First citationYang, G., Zhang, P.-P., Liu, L.-L., Kou, J.-F., Hou, H.-W. & Fan, Y.-T. (2009). CrystEngComm, 11, 663–670.  Web of Science CSD CrossRef CAS
First citationYuasa, J., Ohno, T., Miyata, K., Tsumatori, H., Hasegawa, Y. & Kawai, T. (2011). J. Am. Chem. Soc. 133, 9892–9902.  Web of Science CSD CrossRef CAS PubMed
First citationZhang, J., Cai, R.-F., Chen, Z.-X. & Zhou, X.-G. (2007). Inorg. Chem. 46, 321–327.  Web of Science CSD CrossRef PubMed CAS
First citationZheng, W.-J., Heeg, M. J. & Winter, C. H. (2003). Angew. Chem. Int. Ed. 42, 2761–2764.  Web of Science CSD CrossRef CAS

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds