metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Completing the bis­­[hy­dr­oxy­bis­(pyridin-2-yl)methane­sulfonato-κ3N,O,N′]MII series (M = Mn to Zn) with the copper(II) and cobalt(II) structures

aSchool of Chemistry, Brunswick Street, University of Manchester, Manchester M13 9PL, England
*Correspondence e-mail: farhad.haghjoo@postgrad.manchester.ac.uk

(Received 4 October 2012; accepted 4 December 2012; online 13 December 2012)

The CuII complex bis­[hy­droxy­bis­(pyridin-2-yl)methane­sul­fon­ato-κ3N,O,N′]copper(II) hexa­hydrate, [Cu(C11H9N2O4S)2]·6H2O, (I)[link], crystallizes in the space group P[\overline{1}], compared with P21/c for the anhydrous CoII analogue bis­[hy­droxy­bis­(pyridin-2-yl)methane­sulfonato-κ3N,O,N′]cobalt(II), [Co(C11H9N2O4S)2], (II)[link]. However, both mol­ecules sit on a crystallographic inversion centre and are thus very similar in appearance. Jahn–Teller elongation of the Cu—O bonds [2.347 (3) Å in (I)[link] and 2.064 (2) Å in (II)[link]] influences the S—O bond lengths, which are all around 1.455 (3) Å in (I)[link] and 1.436 (2)–1.473 (2) Å in (II)[link].

Comment

The distinction between bonding and supra­molecular inter­actions is blurred in Jahn–Teller-distorted systems, where the weakening of some coordination bonds puts them on a par with hydrogen bonds. The inter­play between the two types of

[Scheme 1]
bonding is of particular inter­est in copper complexes because of its occurrence in enzymes, e.g. the active site in copper amine oxidase from Hansenula polymorpha (Li et al., 1998[Li, R., Klinman, J. P. & Mathews, F. S. (1998). Structure, 6, 294-307.]).

Because of their complexity and, often, low resolution, protein structures are not the ideal platform for studying the subtler details of the relationship between these two inter­actions. Small inorganic complexes and salts provide a higher resolution and a more systematic means of investigation.

Beagley et al. (1989[Beagley, B., Eriksson, A., Lindgren, J., Persson, I., Pettersson, L. G. M., Sandstromr, M., Wahlgrenll, U. & White, E. W. (1989). J. Phys. Condens. Mat. pp. 2395-2408.]) established that, for the hexa­aqua divalent metal cations in Tutton's salts, Cs2[M(H2O)6](SO4)2, Jahn–Teller distortion weakens the hydrogen bonds from the coordinated water, with elongated Cu—O bonds. This is because the partial positive charge on their H atoms is reduced relative to the water H atoms, which are more fully coordinated to the metal.

The current study is based on work carried out by Abrahams et al. (2006[Abrahams, B. F., Hudson, T. A. & Robson, R. (2006). Chem. Eur. J. 12, 7095-7102.]), who previously reported the structures of the bis­[hy­droxy­bis­(pyridin-2-yl)methane­sulfonato-κ3N,O,N′]MII complexes for Mn, Fe, Ni and Zn. The structures of the Co and Cu complexes reported herein, namely bis­[hy­droxy­bis(pyri­din-2-yl)methane­sulfonato-κ3N,O,N′]copper(II) hexa­hy­drate, (I)[link], and bis­[hy­droxy­bis­(pyridin-2-yl)methane­sulfonato-κ3N,O,N′]cobalt(II), (II)[link], complete the series from Mn to Zn.

Each divalent metal in (I)[link] and (II)[link] is coordinated by two hy­droxy­bis­(pyridin-2-yl)methane­sulfonate ligands in a centro­symmetric arrangement (Figs. 1[link]a and 1b), with distinct Jahn–Teller tetra­gonal elongation involving the M—O bonds in the Cu case. The Jahn–Teller radius, RJT, calculated using RJT2 = Σ6i=1Δdi2, where di represents the deviation of the ith ML bond length from the mean of the six (Falvello, 1997[Falvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463-4475.]), has a value of 0.385 Å, which is appropriate for the static Jahn–Teller tetra­gonal distortion seen in this case. It is inter­esting that, despite all the complexes being crystallized from aqueous solutions, it is only the copper complex that forms a hydrate; all the other complexes in this series form isostructural anhydrous crystals.

The extent of the M—O Jahn–Teller distortion can be seen when the M—O and M—N bond lengths from Abrahams et al. (2006)[Abrahams, B. F., Hudson, T. A. & Robson, R. (2006). Chem. Eur. J. 12, 7095-7102.] and the current work are plotted against d electron configuration (Fig. 2[link]), while a similar plot of the three S—O bond lengths against d electron configuration (Fig. 3[link]) shows the combined effect of hydrogen bonding and coordination on the sulfite group. The S—O bond for the coordinated O atom is significantly longer than the two noncoordinating S—O bonds in all but the copper complex. The nearly identical S—O bond lengths in the copper complex suggest that the strength of the Cu⋯O inter­action is on a par with the SO⋯HOH hydrogen bonds (Fig. 4[link]). This contrasts with the situation in all the other complexes, where the S—O bonds involving the coordinated O atom remain significantly longer than the other S—O bonds, despite the involvement of one of the other O atoms in a strong hydrogen bond with the alcohol H atom (Fig. 5[link]).

A useful comparison may be made between the current structure of (I)[link] and bis­[bis­(3,5-dimethyl­pyrazol-1-yl)acetato]­copper(II) and its hydrate (Kozlevcaˇr et al., 2003[Kozlevcaˇr, B., Gamez, P., de Gelder, R., Driessen, W. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 47-50.]). In both these structures, the Cu atom sits on an inversion centre. In the anhydrous compound, typical Jahn–Teller elongation of the Cu—O bonds is observed. On dehydration, the Cu—O bond shrinks and a pair of Cu—N bonds lengthen to maintain the Jahn–Teller distortion. This is an unusual situation, as only 5% of crystal structures established to date in the well studied CuN4O2 system adopt Cu—N elongation rather than Cu—O. In the anhydrous compound, a significantly longer C—O bond length [1.262 (3) Å] is observed for the coordinated carboxyl­ate O atom than for the noncoordinated carboxyl­ate O atom [1.214 (3) Å]. For the hydrated compound, the two C—O bond lengths are indistinguishable [1.245 (4) and 1.241 (4) Å]. The authors attributed the similar carboxyl­ate C—O bonds in the hydrate to the binding of both O atoms to a Lewis acid, i.e. to the Cu and to a water mol­ecule. In Cu structure (I)[link], the overall effect is to make all three S—O bonds identical within experimental error, suggesting that a similar process to that seen in the above carboxyl­ate is in operation.

[Figure 1]
Figure 1
(a) The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The solvent water mol­ecules have been omitted for clarity. (b) The mol­ecular structure of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (v) −x + 2, −y + 1, −z + 1; (vi) −x + 1, −y + 1, −z + 1.]
[Figure 2]
Figure 2
Bond lengths to the transition-metal atom in the bis­[hy­droxy­bis­(pyridin-2-yl)methane­sulfonato-κ3N,O,N′]MII series, where M = Mn to Zn.
[Figure 3]
Figure 3
S—O bond lengths in the bis­[hy­droxy­bis­(pyridin-2-yl)methane­sulfonato-κ3N,O,N′]MII series, where M = Mn to Zn.
[Figure 4]
Figure 4
Water–sulfate hydrogen bonding in (I)[link] (dashed lines). [Symmetry code: (vii) x + 1, y, z.]
[Figure 5]
Figure 5
Hy­droxy–sulfate hydrogen bonding in (II)[link] (dashed lines). [Symmetry code: (viii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].]

Experimental

The title compounds were prepared using aqueous solutions of 2,2′-dipyridyl ketone, sodium bis­ulfite and transition metal nitrate in a 2:2:1 molar ratio. For the current work, the solutions were diluted tenfold relative to those used by Abrahams et al. (2006[Abrahams, B. F., Hudson, T. A. & Robson, R. (2006). Chem. Eur. J. 12, 7095-7102.]), i.e. 0.025 M di-2-pyridyl ketone (2 ml), 0.025 M sodium sulfite (2 ml) and 0.025 M copper or cobalt nitrate (1 ml). These were mixed together and left to stand in open containers at room temperature for a week in order to produce good-quality crystals.

Compound (I)[link]

Crystal data
  • [Cu(C11H9N2O4S)2]·6H2O

  • Mr = 702.16

  • Triclinic, [P \overline 1]

  • a = 7.5892 (3) Å

  • b = 10.1399 (4) Å

  • c = 10.7325 (5) Å

  • α = 108.675 (2)°

  • β = 109.920 (2)°

  • γ = 101.025 (4)°

  • V = 692.53 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.24 × 0.1 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.792, Tmax = 0.923

  • 10846 measured reflections

  • 2715 independent reflections

  • 2315 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.172

  • S = 1.07

  • 2715 reflections

  • 257 parameters

  • 9 restraints

  • All H-atom parameters refined

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

N1—Cu12.020 (3)
N2—Cu12.009 (4)
O2—S11.455 (3)
O2—Cu12.347 (3)
O3—S11.455 (3)
O4—S11.456 (3)
N2—Cu1—N185.91 (14)
N2—Cu1—O285.52 (13)
N1—Cu1—O288.63 (12)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯AD—HH⋯ADAD—H⋯A
O1—H1⋯O60.83 (6)1.84 (6)2.653 (5)167 (6)
O5—H5A⋯O30.96 (1)1.83 (1)2.783 (5)176 (6)
O5—H5B⋯O1i0.96 (1)2.15 (6)2.902 (5)134 (7)
O5—H5B⋯O3i0.96 (1)2.41 (4)3.212 (5)141 (5)
O6—H6A⋯O4ii0.96 (1)1.87 (1)2.828 (5)178 (5)
O6—H6B⋯O7iii0.97 (1)1.82 (2)2.731 (6)155 (4)
O7—H7A⋯O40.96 (1)1.91 (2)2.828 (5)157 (5)
O7—H7B⋯O5iv0.96 (1)1.80 (2)2.745 (5)168 (6)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x+1, -y, -z; (iv) -x+2, -y+1, -z.

Compound (II)[link]

Crystal data
  • [Co(C11H9N2O4S)2]

  • Mr = 589.45

  • Monoclinic, P 21 /c

  • a = 7.7300 (3) Å

  • b = 9.3475 (4) Å

  • c = 15.6518 (6) Å

  • β = 98.499 (2)°

  • V = 1118.52 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.25 × 0.12 × 0.09 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.785, Tmax = 0.914

  • 4704 measured reflections

  • 2558 independent reflections

  • 2025 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.124

  • S = 1.05

  • 2558 reflections

  • 203 parameters

  • All H-atom parameters refined

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.60 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

N1—Co12.127 (3)
N2—Co12.128 (3)
O2—S11.473 (2)
O2—Co12.064 (2)
O3—S11.436 (2)
O4—S11.453 (2)
O2—Co1—N188.92 (9)
O2—Co1—N286.40 (10)
N1—Co1—N283.57 (10)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯AD—HH⋯ADAD—H⋯A
O1—H1⋯O4viii0.79 (5)2.04 (5)2.789 (3)159 (5)
Symmetry code: (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

H atoms were refined isotropically in both structures. Additionally, for the CuII complex, distance restraints were applied to the water H atoms, whereby the O—H distances were restrained to 0.958 (10) Å and the H⋯H distances to 1.516 (10) Å.

For both compounds, data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The distinction between bonding and supramolecular interactions is blurred in Jahn–Teller-distorted systems, where the weakening of some coordination bonds puts them on a par with hydrogen bonds. The interplay between the two types of bonding is of particular interest in copper complexes because of its occurrence in enzymes, e.g. the active site in copper amine oxidase from Hansenula polymorpha (Li et al., 1998).

Because of their complexity and, often, low resolution, protein structures are not the ideal platform for studying the subtler details of the relationship between these two interactions. Small inorganic complexes and salts provide a higher resolution and a more systematic means of investigation.

Beagley et al. (1989) established that, for the hexaaqua divalent metal cations in Tutton's salts, Cs2[M(H2O)6](SO4)2, Jahn–Teller distortion weakens the hydrogen bonds from the coordinated water with elongated Cu—O bonds. This is because the partial positive charge on their H atoms is reduced relative to the water H atoms which are more fully coordinated to the metal.

The current study is based on work carried out by Abrahams et al. (2006), who previously reported the structures of the bis[hydroxybis(pyridin-2-yl)methanesulfonato-κ3N,O,N']M(II) complexes for Mn, Fe, Ni and Zn. The structures of the Co and Cu complexes reported herein, namely bis[hydroxybis(pyridin-2-yl)methanesulfonato-κ3N,O,N']copper(II) hexahydrate, (I), and bis[hydroxybis(pyridin-2-yl)methanesulfonato-κ3N,O,N']cobalt(II), (II), complete the series from Mn to Zn

Each divalent metal in (I) and (II) is coordinated by two hydroxybis(pyridin-2-yl)methanesulfonate ligands in a centrosymmetric arrangement (Figs. 1a and 1b), with distinct Jahn–Teller tetragonal elongation in the Cu case. The Jahn–Teller radius, RJT, calculated using R2JT = Σ6i=1Δdi2, where di represents the deviation of the ith M—L bond distance from the mean of the six (Falvello, 1997), has a value of 0.385 Å, which is appropriate for the static Jahn–Teller tetragonal distortion seen in this case. It is interesting that, despite all the complexes being crystallized from aqueous solutions, it is only the copper complex that forms a hydrate; all the other complexes in this series so far form isostructural anhydrous crystals.

The extent of the M—O Jahn–Teller distortion can be seen when the M—O and M—N bond lengths from Abrahams et al. (2006) and the current work are plotted against d electron configuration (Fig. 2), while a similar plot of the three S—O bond lengths against d electron configuration (Fig. 3) shows the combined effect of hydrogen bonding and coordination on the sulfite group. The S—O bond for the coordinated O atom is significantly longer than the two noncoordinating S—O bonds in all but the copper complex. The nearly identical S—O bond lengths in the copper complex suggest that the strength of the Cu···O interaction is on a par with the SO···.HOH hydrogen bonds (Fig. 4). This contrasts with the situation in all the other complexes, where the S—O bonds involving the coordinated O atom remain significantly longer than the other S—O bonds, despite the involvement of one of the other O atoms in a strong hydrogen bond with the alcohol H atom (Fig. 5).

A useful comparison may be made between the current structure of (I) and bis[bis(3,5-dimethylpyrazol-1-yl)acetato]copper(II) and its hydrate (Kozlevcǎr et al., 2003). In both these structures, the Cu atom sits on an inversion centre. In the anhydrous compound, typical Jahn–Teller elongation of the Cu—O bonds is observed. On dehydration, the Cu—O bond length shrinks and a pair of Cu—N bonds lengthen to maintain the Jahn–Teller distortion. This is an extremely unusual situation, as only 3% of crystal structures studied to date in the well studied CuN4O2 system adopt Cu—N elongation rather than Cu—O [References?]. In the anhydrous compound, a significantly longer C—O distance [1.262 (3) Å] is observed for the coordinated carboxylate O atom compared with the noncoordinated carboxylate O atom [1.214 (3) Å]. For the hydrated compound, the two C—O distances are indistinguishable [1.245 (4) and 1.241 (4) Å]. The authors attributed the similar carboxylate C—O bonds in the hydrate to the binding of both O atoms to a Lewis acid, i.e. to the Cu and to a water molecule. In Cu structure (I), the overall effect is to make all three S—O bonds identical within experimental error, suggesting that a similar process to that seen in the above carboxylate is in operation.

Related literature top

For related literature, see: Abrahams et al. (2006); Beagley et al. (1989); Falvello (1997); Kozlevcǎr et al. (2003); Li et al. (1998); Sheldrick (2008).

Experimental top

The title compounds were prepared using aqueous solutions of 2,2'-dipyridyl ketone, sodium bisulfite and transition metal nitrate in 2:2:1 molar ratios.

For the current work, the solutions were diluted tenfold relative to those used by Abrahams et al. (2006), i.e. 0.025 M di-2-pyridyl ketone (2 ml), 0.025 M sodium sulphite (2 ml) and 0.025 M copper or cobalt nitrate (1 ml). These were mixed together and left to stand in open containers at room temperature for a week in order to produce good-quality crystals.

Refinement top

H atoms were refined isotropically in both structures. Additionally, for the CuII complex, DFIX restraints (SHELXL97; Sheldrick, 2008) were applied to the water H atoms, whereby the O—H distances were restrained to 0.958 (10) Å and H···H distances to 1.516 (10) Å. [Values added by Co-Editor - please confirm]

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
Fig. 1. (a) The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level [Added by Co-Editor - please confirm]. The solvent water molecules have been omitted for clarity. (b) The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level [Symmetry codes: (v) -x + 1, -y + 1, -z + 1; (vi) -x + 2, -y + 1, -z + 1.] [Added by Co-Editor - please confirm]

Fig. 2. Bond lengths to the transition metal in the bis[hydroxybis(pyridin-2-yl)methanesulfonato-N,O,N']MII series, where M = Mn to Zn.

Fig. 3. S—O bond lengths in the bis[hydroxybis(pyridin-2-yl)methanesulfonato-N,O,N']MII series, where M = Mn to Zn.

Fig. 4. Water–sulfate hydrogen bonding in (I) (dashed lines). [Symmetry code: (vii) x + 1, y, z.] [As advised by Co-Editor, the O7···O4 hydrogen bond should be drawn from the relevant H atom, to match the other two.]

Fig. 5. Hydroxy–sulfate hydrogen bonding in (II) (dashed lines). [Symmetry code: (viii) -x + 1, y + 1/2, -z + 1/2.] [Symop changed to match Table 4 - please confirm. Is this figure complete? It looks like it may be clipped on the right]
(I) bis[hydroxybis(pyridin-2-yl)methanesulfonato- κ3N,O,N']copper(II) hexahydrate top
Crystal data top
[Cu(C11H9N2O4S)2]·6H2OZ = 1
Mr = 702.16F(000) = 363
Triclinic, P1Dx = 1.684 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5892 (3) ÅCell parameters from 3309 reflections
b = 10.1399 (4) Åθ = 2–27°
c = 10.7325 (5) ŵ = 1.02 mm1
α = 108.675 (2)°T = 100 K
β = 109.920 (2)°Block, blue
γ = 101.025 (4)°0.24 × 0.1 × 0.08 mm
V = 692.53 (5) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2715 independent reflections
Radiation source: Enraf–Nonius FR5902315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 9 pixels mm-1θmax = 26°, θmin = 3.0°
CCD rotation images, thick slices scansh = 09
Absorption correction: multi-scan
(Blessing, 1995)
k = 1212
Tmin = 0.792, Tmax = 0.923l = 1311
10846 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064All H-atom parameters refined
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1015P)2 + 1.5123P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2715 reflectionsΔρmax = 0.73 e Å3
257 parametersΔρmin = 0.83 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (8)
Crystal data top
[Cu(C11H9N2O4S)2]·6H2Oγ = 101.025 (4)°
Mr = 702.16V = 692.53 (5) Å3
Triclinic, P1Z = 1
a = 7.5892 (3) ÅMo Kα radiation
b = 10.1399 (4) ŵ = 1.02 mm1
c = 10.7325 (5) ÅT = 100 K
α = 108.675 (2)°0.24 × 0.1 × 0.08 mm
β = 109.920 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2715 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2315 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.923Rint = 0.083
10846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0649 restraints
wR(F2) = 0.172All H-atom parameters refined
S = 1.07Δρmax = 0.73 e Å3
2715 reflectionsΔρmin = 0.83 e Å3
257 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6150 (6)0.3012 (5)0.2046 (4)0.0266 (9)
C20.6810 (6)0.2127 (5)0.2925 (5)0.0262 (9)
C30.5819 (6)0.0621 (5)0.2357 (5)0.0281 (9)
C40.6342 (7)0.0134 (5)0.3220 (5)0.0314 (10)
C50.7849 (7)0.0627 (5)0.4613 (5)0.0319 (10)
C60.8834 (7)0.2107 (5)0.5095 (5)0.0285 (9)
C70.5903 (6)0.4428 (4)0.2915 (4)0.0254 (9)
C80.4216 (6)0.4778 (5)0.2341 (5)0.0282 (9)
C90.4013 (7)0.6061 (5)0.3169 (5)0.0326 (10)
C100.5499 (7)0.6934 (5)0.4568 (5)0.0309 (10)
C110.7135 (7)0.6543 (5)0.5065 (5)0.0291 (9)
N10.8352 (5)0.2863 (4)0.4270 (4)0.0258 (7)
N20.7388 (5)0.5336 (4)0.4257 (4)0.0259 (7)
O10.4390 (5)0.2109 (3)0.0764 (3)0.0299 (7)
O20.9784 (4)0.4490 (3)0.2649 (3)0.0314 (7)
O30.7117 (5)0.4123 (4)0.0373 (4)0.0373 (8)
O40.8184 (5)0.2070 (3)0.0609 (4)0.0347 (7)
O50.7610 (5)0.7115 (4)0.1590 (4)0.0393 (8)
O60.1634 (5)0.1313 (4)0.1628 (4)0.0409 (8)
O70.8760 (6)0.1270 (4)0.1964 (4)0.0483 (9)
S10.79797 (16)0.34699 (12)0.13544 (11)0.0296 (3)
Cu110.50.50.0257 (3)
H5A0.739 (8)0.6078 (17)0.119 (6)0.050 (16)*
H5B0.641 (6)0.721 (6)0.100 (7)0.09 (3)*
H6A0.047 (5)0.158 (5)0.127 (6)0.053 (17)*
H6B0.110 (7)0.037 (4)0.163 (7)0.061 (19)*
H7A0.855 (7)0.177 (5)0.113 (4)0.047 (16)*
H7B1.011 (4)0.182 (6)0.171 (6)0.07 (2)*
H10.342 (9)0.191 (6)0.095 (6)0.038 (15)*
H30.501 (9)0.014 (6)0.143 (7)0.042 (15)*
H40.564 (8)0.114 (6)0.279 (6)0.039 (14)*
H50.812 (7)0.017 (5)0.525 (5)0.026 (12)*
H60.994 (8)0.269 (6)0.604 (6)0.036 (13)*
H80.323 (12)0.406 (9)0.144 (8)0.08 (2)*
H90.274 (8)0.634 (6)0.279 (6)0.035 (13)*
H100.537 (8)0.772 (6)0.512 (6)0.033 (13)*
H110.809 (7)0.708 (5)0.593 (6)0.025 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.024 (2)0.022 (2)0.0071 (17)0.0063 (17)0.0084 (17)
C20.028 (2)0.024 (2)0.026 (2)0.0111 (17)0.0107 (17)0.0105 (17)
C30.025 (2)0.027 (2)0.027 (2)0.0077 (17)0.0080 (18)0.0100 (18)
C40.031 (2)0.025 (2)0.035 (2)0.0078 (18)0.0121 (19)0.0128 (19)
C50.036 (2)0.030 (2)0.033 (2)0.0120 (19)0.0137 (19)0.0176 (19)
C60.027 (2)0.029 (2)0.026 (2)0.0092 (18)0.0087 (18)0.0110 (18)
C70.030 (2)0.0206 (19)0.026 (2)0.0045 (16)0.0130 (17)0.0123 (17)
C80.024 (2)0.026 (2)0.031 (2)0.0041 (17)0.0079 (18)0.0144 (18)
C90.029 (2)0.031 (2)0.040 (3)0.0097 (19)0.014 (2)0.019 (2)
C100.035 (2)0.025 (2)0.034 (2)0.0101 (19)0.017 (2)0.0120 (19)
C110.027 (2)0.028 (2)0.027 (2)0.0070 (18)0.0099 (19)0.0103 (18)
N10.0239 (17)0.0257 (17)0.0228 (17)0.0082 (14)0.0055 (14)0.0092 (14)
N20.0269 (18)0.0238 (17)0.0229 (17)0.0070 (14)0.0076 (14)0.0093 (14)
O10.0270 (16)0.0281 (16)0.0259 (16)0.0056 (13)0.0056 (13)0.0093 (13)
O20.0287 (16)0.0317 (16)0.0247 (15)0.0036 (13)0.0084 (13)0.0082 (13)
O30.0396 (18)0.0412 (18)0.0329 (17)0.0145 (15)0.0134 (15)0.0197 (15)
O40.0326 (17)0.0299 (16)0.0346 (17)0.0083 (13)0.0136 (14)0.0074 (14)
O50.0401 (19)0.0416 (19)0.0326 (17)0.0131 (15)0.0103 (15)0.0172 (15)
O60.0369 (18)0.0395 (19)0.040 (2)0.0130 (15)0.0125 (16)0.0131 (16)
O70.052 (2)0.050 (2)0.039 (2)0.0091 (18)0.0209 (18)0.0162 (17)
S10.0300 (6)0.0286 (6)0.0258 (6)0.0084 (4)0.0091 (4)0.0102 (4)
Cu10.0248 (4)0.0230 (4)0.0228 (4)0.0064 (3)0.0053 (3)0.0083 (3)
Geometric parameters (Å, º) top
C1—O11.410 (5)C10—C111.362 (7)
C1—C21.530 (6)C10—H100.87 (6)
C1—C71.527 (6)C11—N21.345 (6)
C1—S11.836 (5)C11—H110.87 (5)
C2—N11.354 (5)N1—Cu12.020 (3)
C2—C31.386 (6)N2—Cu12.009 (4)
C3—C41.385 (6)O1—H10.83 (6)
C3—H30.87 (6)O2—S11.455 (3)
C4—C51.378 (7)O2—Cu12.347 (3)
C4—H40.93 (6)O3—S11.455 (3)
C5—C61.375 (6)O4—S11.456 (3)
C5—H50.93 (5)O5—H5A0.956 (10)
C6—N11.352 (6)O5—H5B0.957 (10)
C6—H60.96 (5)O6—H6A0.963 (10)
C7—N21.357 (5)O6—H6B0.966 (10)
C7—C81.386 (6)O7—H7A0.963 (10)
C8—C91.392 (7)O7—H7B0.962 (10)
C8—H80.93 (8)Cu1—N2i2.009 (4)
C9—C101.387 (7)Cu1—N1i2.020 (4)
C9—H91.04 (5)Cu1—O2i2.347 (3)
O1—C1—C2110.1 (3)N2—C11—H11116 (3)
O1—C1—C7111.0 (3)C10—C11—H11121 (3)
C2—C1—C7113.6 (3)C6—N1—C2118.1 (4)
O1—C1—S1103.3 (3)C6—N1—Cu1120.2 (3)
C2—C1—S1108.7 (3)C2—N1—Cu1121.6 (3)
C7—C1—S1109.5 (3)C11—N2—C7118.5 (4)
N1—C2—C3121.7 (4)C11—N2—Cu1119.6 (3)
N1—C2—C1118.0 (4)C7—N2—Cu1121.8 (3)
C3—C2—C1120.2 (4)C1—O1—H1111 (4)
C4—C3—C2119.1 (4)S1—O2—Cu1121.35 (17)
C4—C3—H3121 (4)H5A—O5—H5B104.4 (15)
C2—C3—H3120 (4)H6A—O6—H6B103.4 (14)
C5—C4—C3119.3 (4)H7A—O7—H7B103.4 (14)
C5—C4—H4125 (3)O2—S1—O3114.08 (19)
C3—C4—H4116 (3)O2—S1—O4113.06 (19)
C4—C5—C6119.0 (4)O3—S1—O4113.0 (2)
C4—C5—H5121 (3)O2—S1—C1104.81 (18)
C6—C5—H5120 (3)O3—S1—C1105.4 (2)
N1—C6—C5122.7 (4)O4—S1—C1105.45 (19)
N1—C6—H6114 (3)N2i—Cu1—N2180.0000 (10)
C5—C6—H6123 (3)N2i—Cu1—N194.09 (14)
N2—C7—C8121.1 (4)N2—Cu1—N185.91 (14)
N2—C7—C1118.1 (4)N2i—Cu1—N1i85.91 (14)
C8—C7—C1120.8 (4)N2—Cu1—N1i94.09 (14)
C7—C8—C9119.6 (4)N1—Cu1—N1i180.0 (2)
C7—C8—H8115 (5)N2i—Cu1—O2i85.52 (13)
C9—C8—H8125 (5)N2—Cu1—O2i94.48 (13)
C10—C9—C8118.4 (4)N1—Cu1—O2i91.37 (12)
C10—C9—H9120 (3)N1i—Cu1—O2i88.63 (12)
C8—C9—H9122 (3)N2i—Cu1—O294.48 (13)
C11—C10—C9119.3 (4)N2—Cu1—O285.52 (13)
C11—C10—H10121 (4)N1—Cu1—O288.63 (12)
C9—C10—H10120 (4)N1i—Cu1—O291.37 (12)
N2—C11—C10123.0 (4)O2i—Cu1—O2180
O1—C1—C2—N1172.8 (4)C1—C7—N2—Cu18.0 (5)
C7—C1—C2—N147.6 (5)Cu1—O2—S1—O3121.5 (2)
S1—C1—C2—N174.6 (4)Cu1—O2—S1—O4107.6 (2)
O1—C1—C2—C36.1 (6)Cu1—O2—S1—C16.7 (3)
C7—C1—C2—C3131.3 (4)O1—C1—S1—O2176.1 (3)
S1—C1—C2—C3106.5 (4)C2—C1—S1—O267.0 (3)
N1—C2—C3—C44.0 (7)C7—C1—S1—O257.7 (3)
C1—C2—C3—C4174.9 (4)O1—C1—S1—O355.4 (3)
C2—C3—C4—C50.8 (7)C2—C1—S1—O3172.3 (3)
C3—C4—C5—C61.9 (7)C7—C1—S1—O363.0 (3)
C4—C5—C6—N11.7 (7)O1—C1—S1—O464.4 (3)
O1—C1—C7—N2172.8 (3)C2—C1—S1—O452.6 (3)
C2—C1—C7—N248.0 (5)C7—C1—S1—O4177.3 (3)
S1—C1—C7—N273.8 (4)C11—N2—Cu1—N1137.9 (3)
O1—C1—C7—C87.8 (5)C7—N2—Cu1—N146.5 (3)
C2—C1—C7—C8132.5 (4)C11—N2—Cu1—N1i42.1 (3)
S1—C1—C7—C8105.7 (4)C7—N2—Cu1—N1i133.5 (3)
N2—C7—C8—C91.9 (6)C11—N2—Cu1—O2i46.8 (3)
C1—C7—C8—C9178.7 (4)C7—N2—Cu1—O2i137.6 (3)
C7—C8—C9—C101.6 (6)C11—N2—Cu1—O2133.2 (3)
C8—C9—C10—C112.5 (6)C7—N2—Cu1—O242.4 (3)
C9—C10—C11—N20.1 (7)C6—N1—Cu1—N2i43.5 (3)
C5—C6—N1—C21.3 (7)C2—N1—Cu1—N2i133.2 (3)
C5—C6—N1—Cu1175.5 (3)C6—N1—Cu1—N2136.5 (3)
C3—C2—N1—C64.1 (6)C2—N1—Cu1—N246.8 (3)
C1—C2—N1—C6174.7 (4)C6—N1—Cu1—O2i42.1 (3)
C3—C2—N1—Cu1172.6 (3)C2—N1—Cu1—O2i141.2 (3)
C1—C2—N1—Cu18.5 (5)C6—N1—Cu1—O2137.9 (3)
C10—C11—N2—C73.3 (6)C2—N1—Cu1—O238.8 (3)
C10—C11—N2—Cu1172.4 (3)S1—O2—Cu1—N2i130.8 (2)
C8—C7—N2—C114.3 (6)S1—O2—Cu1—N249.2 (2)
C1—C7—N2—C11176.3 (4)S1—O2—Cu1—N136.8 (2)
C8—C7—N2—Cu1171.4 (3)S1—O2—Cu1—N1i143.2 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.83 (6)1.84 (6)2.653 (5)167 (6)
O5—H5A···O30.96 (1)1.83 (1)2.783 (5)176 (6)
O5—H5B···O1ii0.96 (1)2.15 (6)2.902 (5)134 (7)
O5—H5B···O3ii0.96 (1)2.41 (4)3.212 (5)141 (5)
O6—H6A···O4iii0.96 (1)1.87 (1)2.828 (5)178 (5)
O6—H6B···O7iv0.97 (1)1.82 (2)2.731 (6)155 (4)
O7—H7A···O40.96 (1)1.91 (2)2.828 (5)157 (5)
O7—H7B···O5v0.96 (1)1.80 (2)2.745 (5)168 (6)
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z.
(II) bis[hydroxybis(pyridin-2-yl)methanesulfonato- κ3N,O,N']cobalt(II) top
Crystal data top
[Co(C11H9N2O4S)2]F(000) = 602
Mr = 589.45Dx = 1.75 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3777 reflections
a = 7.7300 (3) Åθ = 2–26°
b = 9.3475 (4) ŵ = 1.01 mm1
c = 15.6518 (6) ÅT = 100 K
β = 98.499 (2)°Block, purple
V = 1118.52 (8) Å30.25 × 0.12 × 0.09 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
2558 independent reflections
Radiation source: Enraf–Nonius FR5902025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD rotation images, thick slices scansh = 1010
Absorption correction: multi-scan
(Blessing, 1995)
k = 1212
Tmin = 0.785, Tmax = 0.914l = 2020
4704 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.8352P]
where P = (Fo2 + 2Fc2)/3
2558 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Co(C11H9N2O4S)2]V = 1118.52 (8) Å3
Mr = 589.45Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7300 (3) ŵ = 1.01 mm1
b = 9.3475 (4) ÅT = 100 K
c = 15.6518 (6) Å0.25 × 0.12 × 0.09 mm
β = 98.499 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2558 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2025 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.914Rint = 0.048
4704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.124All H-atom parameters refined
S = 1.05Δρmax = 0.65 e Å3
2558 reflectionsΔρmin = 0.60 e Å3
203 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6394 (4)0.7026 (3)0.36031 (18)0.0208 (6)
C20.7537 (4)0.5692 (3)0.37170 (18)0.0207 (6)
C30.8902 (4)0.5491 (4)0.3251 (2)0.0240 (7)
C40.9892 (4)0.4256 (4)0.3378 (2)0.0264 (7)
C50.9525 (5)0.3291 (4)0.3995 (2)0.0302 (7)
C60.8169 (4)0.3575 (4)0.4449 (2)0.0273 (7)
C70.6495 (4)0.7833 (3)0.44617 (18)0.0197 (6)
C80.7270 (4)0.9176 (3)0.4563 (2)0.0247 (7)
C90.7390 (4)0.9841 (3)0.5362 (2)0.0255 (7)
C100.6715 (4)0.9175 (4)0.6026 (2)0.0259 (7)
C110.5973 (4)0.7838 (4)0.5879 (2)0.0233 (6)
N10.7157 (3)0.4741 (3)0.43127 (17)0.0227 (5)
N20.5872 (3)0.7160 (3)0.51142 (16)0.0217 (5)
O10.6959 (3)0.7873 (3)0.29600 (14)0.0253 (5)
O20.3490 (3)0.5621 (3)0.38620 (14)0.0284 (5)
O30.3168 (3)0.7823 (2)0.30360 (15)0.0309 (5)
O40.4215 (3)0.5657 (3)0.24139 (14)0.0291 (5)
S10.41039 (10)0.64977 (8)0.31844 (5)0.0217 (2)
Co10.50.50.50.01982 (18)
H90.789 (5)1.074 (4)0.547 (2)0.024*
H110.553 (5)0.737 (4)0.628 (2)0.024*
H10.640 (6)0.858 (6)0.289 (3)0.058 (16)*
H30.916 (4)0.621 (4)0.288 (2)0.021 (8)*
H41.081 (5)0.410 (4)0.306 (2)0.023 (9)*
H51.009 (5)0.247 (4)0.408 (2)0.021 (9)*
H60.789 (5)0.303 (4)0.489 (2)0.024 (9)*
H80.780 (5)0.962 (4)0.406 (2)0.034 (10)*
H100.679 (5)0.959 (4)0.655 (3)0.031 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0289 (16)0.0180 (15)0.0165 (13)0.0008 (12)0.0065 (11)0.0019 (11)
C20.0238 (15)0.0202 (15)0.0176 (14)0.0027 (12)0.0018 (11)0.0019 (12)
C30.0245 (16)0.0261 (17)0.0217 (15)0.0041 (13)0.0041 (12)0.0022 (13)
C40.0220 (15)0.0309 (18)0.0264 (16)0.0013 (14)0.0044 (12)0.0086 (14)
C50.0298 (17)0.0252 (18)0.0346 (19)0.0058 (14)0.0014 (14)0.0007 (14)
C60.0260 (16)0.0270 (18)0.0298 (17)0.0036 (13)0.0071 (13)0.0059 (14)
C70.0207 (14)0.0203 (15)0.0181 (14)0.0022 (12)0.0030 (11)0.0019 (12)
C80.0284 (16)0.0216 (16)0.0234 (15)0.0003 (13)0.0014 (12)0.0002 (12)
C90.0287 (17)0.0190 (16)0.0271 (16)0.0011 (13)0.0014 (12)0.0016 (13)
C100.0300 (17)0.0252 (17)0.0218 (16)0.0049 (13)0.0012 (12)0.0036 (13)
C110.0272 (16)0.0243 (16)0.0192 (14)0.0035 (13)0.0060 (12)0.0019 (12)
N10.0250 (13)0.0215 (13)0.0221 (12)0.0005 (11)0.0052 (10)0.0015 (10)
N20.0249 (13)0.0213 (13)0.0193 (12)0.0016 (11)0.0047 (9)0.0001 (10)
O10.0330 (13)0.0220 (12)0.0213 (11)0.0001 (10)0.0059 (9)0.0024 (9)
O20.0267 (12)0.0350 (13)0.0230 (11)0.0045 (10)0.0016 (9)0.0087 (10)
O30.0308 (12)0.0229 (12)0.0365 (13)0.0039 (10)0.0034 (10)0.0016 (10)
O40.0385 (13)0.0265 (12)0.0232 (11)0.0029 (10)0.0073 (9)0.0081 (10)
S10.0260 (4)0.0199 (4)0.0188 (4)0.0004 (3)0.0023 (3)0.0000 (3)
Co10.0232 (3)0.0187 (3)0.0178 (3)0.0002 (2)0.0038 (2)0.0023 (2)
Geometric parameters (Å, º) top
C1—O11.401 (4)C8—H81.03 (4)
C1—C21.523 (4)C9—C101.379 (5)
C1—C71.533 (4)C9—H90.94 (4)
C1—S11.861 (3)C10—C111.380 (5)
C2—N11.351 (4)C10—H100.90 (4)
C2—C31.382 (4)C11—N21.347 (4)
C3—C41.382 (5)C11—H110.88 (4)
C3—H30.93 (3)N1—Co12.127 (3)
C4—C51.381 (5)N2—Co12.128 (3)
C4—H40.93 (4)O1—H10.79 (5)
C5—C61.376 (5)O2—S11.473 (2)
C5—H50.88 (4)O2—Co12.064 (2)
C6—N11.340 (4)O3—S11.436 (2)
C6—H60.91 (4)O4—S11.453 (2)
C7—N21.347 (4)Co1—O2i2.064 (2)
C7—C81.390 (4)Co1—N1i2.127 (3)
C8—C91.387 (4)Co1—N2i2.128 (3)
O1—C1—C2108.1 (2)N2—C11—C10122.8 (3)
O1—C1—C7111.8 (2)N2—C11—H11115 (2)
C2—C1—C7110.3 (2)C10—C11—H11122 (2)
O1—C1—S1106.16 (19)C6—N1—C2117.6 (3)
C2—C1—S1109.2 (2)C6—N1—Co1119.6 (2)
C7—C1—S1111.2 (2)C2—N1—Co1122.7 (2)
N1—C2—C3122.4 (3)C11—N2—C7118.3 (3)
N1—C2—C1116.0 (3)C11—N2—Co1119.8 (2)
C3—C2—C1121.6 (3)C7—N2—Co1121.6 (2)
C2—C3—C4119.1 (3)C1—O1—H1111 (4)
C2—C3—H3119 (2)S1—O2—Co1125.20 (13)
C4—C3—H3122 (2)O3—S1—O4115.00 (14)
C5—C4—C3118.7 (3)O3—S1—O2112.84 (15)
C5—C4—H4121 (2)O4—S1—O2111.19 (14)
C3—C4—H4120 (2)O3—S1—C1104.95 (14)
C6—C5—C4119.0 (3)O4—S1—C1105.44 (14)
C6—C5—H5119 (2)O2—S1—C1106.56 (13)
C4—C5—H5122 (2)O2—Co1—O2i180
N1—C6—C5123.1 (3)O2—Co1—N1i91.08 (9)
N1—C6—H6112 (2)O2i—Co1—N1i88.92 (9)
C5—C6—H6124 (2)O2—Co1—N188.92 (9)
N2—C7—C8122.1 (3)O2i—Co1—N191.08 (9)
N2—C7—C1117.2 (3)N1i—Co1—N1180
C8—C7—C1120.7 (3)O2—Co1—N2i93.60 (10)
C9—C8—C7118.5 (3)O2i—Co1—N2i86.40 (10)
C9—C8—H8122 (2)N1i—Co1—N2i83.57 (10)
C7—C8—H8119 (2)N1—Co1—N2i96.43 (10)
C10—C9—C8119.7 (3)O2—Co1—N286.40 (10)
C10—C9—H9118 (2)O2i—Co1—N293.60 (10)
C8—C9—H9123 (2)N1i—Co1—N296.43 (10)
C9—C10—C11118.5 (3)N1—Co1—N283.57 (10)
C9—C10—H10121 (3)N2i—Co1—N2180.00 (13)
C11—C10—H10121 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4ii0.79 (5)2.04 (5)2.789 (3)159 (5)
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C11H9N2O4S)2]·6H2O[Co(C11H9N2O4S)2]
Mr702.16589.45
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)100100
a, b, c (Å)7.5892 (3), 10.1399 (4), 10.7325 (5)7.7300 (3), 9.3475 (4), 15.6518 (6)
α, β, γ (°)108.675 (2), 109.920 (2), 101.025 (4)90, 98.499 (2), 90
V3)692.53 (5)1118.52 (8)
Z12
Radiation typeMo KαMo Kα
µ (mm1)1.021.01
Crystal size (mm)0.24 × 0.1 × 0.080.25 × 0.12 × 0.09
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.792, 0.9230.785, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
10846, 2715, 2315 4704, 2558, 2025
Rint0.0830.048
(sin θ/λ)max1)0.6170.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.172, 1.07 0.048, 0.124, 1.05
No. of reflections27152558
No. of parameters257203
No. of restraints90
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.73, 0.830.65, 0.60

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) for (I) top
N1—Cu12.020 (3)O2—Cu12.347 (3)
N2—Cu12.009 (4)O3—S11.455 (3)
O2—S11.455 (3)O4—S11.456 (3)
N2—Cu1—N185.91 (14)N1—Cu1—O288.63 (12)
N2—Cu1—O285.52 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.83 (6)1.84 (6)2.653 (5)167 (6)
O5—H5A···O30.956 (10)1.828 (12)2.783 (5)176 (6)
O5—H5B···O1i0.957 (10)2.15 (6)2.902 (5)134 (7)
O5—H5B···O3i0.957 (10)2.41 (4)3.212 (5)141 (5)
O6—H6A···O4ii0.963 (10)1.865 (12)2.828 (5)178 (5)
O6—H6B···O7iii0.966 (10)1.82 (2)2.731 (6)155 (4)
O7—H7A···O40.963 (10)1.91 (2)2.828 (5)157 (5)
O7—H7B···O5iv0.962 (10)1.798 (17)2.745 (5)168 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y+1, z.
Selected geometric parameters (Å, º) for (II) top
N1—Co12.127 (3)O2—Co12.064 (2)
N2—Co12.128 (3)O3—S11.436 (2)
O2—S11.473 (2)O4—S11.453 (2)
O2—Co1—N188.92 (9)N1—Co1—N283.57 (10)
O2—Co1—N286.40 (10)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.79 (5)2.04 (5)2.789 (3)159 (5)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and EPSRC support for the purchase of equipment.

References

First citationAbrahams, B. F., Hudson, T. A. & Robson, R. (2006). Chem. Eur. J. 12, 7095–7102.  Web of Science CSD CrossRef PubMed CAS
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals
First citationBeagley, B., Eriksson, A., Lindgren, J., Persson, I., Pettersson, L. G. M., Sandstromr, M., Wahlgrenll, U. & White, E. W. (1989). J. Phys. Condens. Mat. pp. 2395–2408.  CrossRef Web of Science
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationFalvello, L. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4463–4475.  Web of Science CrossRef
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science
First citationKozlevcaˇr, B., Gamez, P., de Gelder, R., Driessen, W. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 47–50.
First citationLi, R., Klinman, J. P. & Mathews, F. S. (1998). Structure, 6, 294–307.  Web of Science CrossRef
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds