metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Enanti­omerically pure and racemic dimeth­yl{N-[(2-oxidonaphthalen-1-yl-κO)methyl­­idene]­valinato-κ2N,O}tin(IV)

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

(Received 16 November 2012; accepted 11 December 2012; online 18 December 2012)

The title compound, [Sn(CH3)2(C16H15NO3)], crystallized from one reaction batch with high enanti­omeric excess as both a pure enanti­omer and a racemate. The S enanti­omer crystallizes in the chiral space group P32. The racemate crystallizes in the space group P[\overline{1}] with R and S enanti­omers in the crystal lattice; these form dimers about a crystallographic inversion centre.

Comment

Organotin(IV) complexes with O,N,O′-tridentate Schiff base ligands have received attention due to their biological properties, particularly their possible anti­tumor activity (Nath et al., 1997[Nath, M., Yadav, R., Gielen, M., Dalil, H., de Vos, D. & Eng, G. (1997). Appl. Organomet. Chem. 11, 727-736.]; Basu Baul et al., 2001[Basu Baul, T. S., Dutta, S., Rivarola, E., Scopelliti, M. & Choudhuri, S. (2001). Appl. Organomet. Chem. 15, 947-953.]; Al-Allaf et al., 2003[Al-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891-897.]; Zamudio-Rivera et al., 2005[Zamudio-Rivera, L. S., George-Tellez, R., Lopez-Mendoza, G., Morales-Pacheco, A., Flores, E., Höpfl, H., Barba, V., Fernandez, F. J., Cabirol, N. & Beltrán, H. I. (2005). Inorg. Chem. 44, 5370-5378.]; Tian et al., 2006[Tian, L., Shang, Z., Zheng, X., Sun, Y., Yu, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74-80.]; Beltrán et al., 2007[Beltrán, H. I., Damian-Zea, C., Hernández-Ortega, S., Nieto-Camacho, A. & Ramirez-Apan, M. T. (2007). J. Inorg. Biochem. 101, 1070-1085.]; Kobakhidze et al., 2010[Kobakhidze, N., Farfán, N., Romero, M., Méndez-Stivalet, J. M., Ballinas-López, M. G., García-Ortega, H., Domínguez, O., Santillan, R., Sánchez-Bartéz, F. & Gracia-Mora, I. (2010). J. Organomet. Chem. 695, 1189-1199.]). Diorganotin complexes of N-(2-hy­droxy­aryl­idene)-α-amino acids have been prepared by several groups (Dakternieks et al., 1998[Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058-3062.]; Basu Baul et al., 1999[Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1999). Z. Kristallogr. New Cryst. Struct. 214, 361-362.], 2005[Basu Baul, T. S., Masharing, C., Willem, R., Biesemans, M., Holcapek, M., Jirasko, R. & Linden, A. (2005). J. Organomet. Chem. 690, 3080-3094.]; Wang et al., 1992[Wang, J., Zhang, Y., Xu, Y. & Wang, Z. (1992). Heteroatom Chem. 3, 599-602.]; Smith et al., 1992[Smith, F. E., Hynes, R. C., Ang, T. T., Khoo, L. E. & Eng, G. (1992). Can. J. Chem. 70, 1114-1120.]; Beltrán et al., 2003[Beltrán, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfán, N. (2003). Chem. Eur. J. 9, 2291-2306.]; Yin et al., 2004[Yin, H.-D., Wang, Q.-B. & Xue, S.-C. (2004). J. Organomet. Chem. 689, 2480-2485.]). We have synthesized such complexes in connection with our investigation of the syntheses and structural properties of chiral silicon and tin complexes with O,N,O′-tridentate ligands (Warncke et al., 2012[Warncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46-52.]; Böhme et al., 2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]).

Dimeth­yl{N-[(2-oxidonaphthalen-1-yl-κO)methyl­idene]­valinato-κ2N,O}tin(IV) was prepared from enanti­omerically pure (S)-N-[(2-hy­droxy­naphthalen-1-yl)methyl­idene]­val­ine and di­chloridodimethyl­tin in the presence of triethyl­amine. After work-up of the reaction mixture and recrystallization (see Experimental), two different crystal types were observed under the microscope. Pale-yellow needles were characterized as enanti­omerically pure crystals, (I)[link], in the space group P32. Some yellow prisms were found between the surface of the solvent and the glass wall of the Schlenk tube. These were identified as the racemate, (II)[link], of the same compound in the space group P[\overline{1}]. The valinate ligand used for the synthesis was the pure S enanti­omer. Therefore, the formation of enanti­omerically pure compound (I)[link] was expected. The bulk material of the tin complex shows a large value for the optical rotation (see Experimental) which hints at the formation of an enanti­omerically pure product. The formation of the racemate was surprising. Only careful examination of the crystalline product under a microscope allowed the identification of the racemate (estimated to be less than 5% of the overal yield of crystalline product). We assume that a small portion of the ligand was racemized during the complex formation. The mechanism of such a racemization reaction has been investigated recently (Warncke et al., 2012[Warncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46-52.]).

[Scheme 1]

Fig. 1[link] shows the mol­ecular structure of (I)[link] and selected bond lengths and angles are listed in Table 1[link]. The presence of the S form of the enanti­omerically pure compound was established by anomalous dispersion effects in diffraction measurements on the crystal. The Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter of the final refinement is −0.02 (1). The bond lengths at the Sn atom are comparable with the bond lengths of the only known tin complex with an N-(hy­droxy­napthyl­idene)­amino acid ligand (Smith et al., 1996[Smith, F. E., Khoo, L. E., Goh, N. K., Hynes, R. C. & Eng, G. (1996). Can. J. Chem. 74, 2041-2047.]). The Sn atom in (I)[link] is penta­coordinated, with three bonds to the O,N,O′-tridentate valin­ate ligand and two bonds to methyl groups. The coordination geometry about the Sn atom is characterized by the Addison parameter τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The value of τ is 0.44, which is almost halfway between the values which define a square pyramid and a trigonal bipyramid. An alternative description of a penta­coordinated geometry is provided by Holmes (1984[Holmes, R. R. (1984). Progress Inorg. Chem. 32, 119-235.]) who uses an idealized trans-basal angle of 150° for a square pyramid. According to this description, the Sn atom in (I)[link] is 34.4% along the Berry pseudorotation coordinate from a trigonal bipyramid to a square pyramid.

R and S isomers are present in centrosymmetric crystal structure (II)[link]. The same atom-labelling scheme as in (I)[link] has been used for the atoms of (II)[link]. Selected bond lengths and angles are listed in Table 2[link]. The main difference from the structure of (I)[link] is the formation of dimers in the crystal lattice. Fig. 2[link] shows the dimer of (II)[link] which is formed between two Sn1—O2 units. A crystallographic inversion centre is located at the centre of the dimeric unit [Sn1⋯O2i = 2.8077 (18) Å; symmetry code: (i) −x + 1, −y + 2, −z]. The formation of the dimer implies several structural changes compared with (I)[link]. These are mainly an enlarged C17—Sn1—C18 angle and elongated bonds involving the Sn1 atom. These geometrical changes lead to a lower τ value of 0.25, i.e. the square-pyramidal character is far more pronounced. Alternatively, one could consider the coordination geometry as a distorted hexa­coordinated tin complex with atom O2i at a very long distance. The calculated density of (II)[link] is greater than that of (I)[link] (1.647 versus 1.536 Mg m−1). This means that the crystal structures under investigation obey Wallach's rule (Wallach, 1895[Wallach, O. (1895). Liebigs Ann. Chem. 286, 119-143.]). However, this rule has been critically assessed recently (Brock et al., 1991[Brock, C. P., Schweizer, W. B. & Dunitz, J. D. (1991). J. Am. Chem. Soc. 113, 9811-9820.]). The formation of dimers might offer an explanation for the more dense packing in (II)[link]. This is quanti­fied by the packing coefficients 0.705 for (II)[link] and 0.661 for (I)[link]. The different densities and packing coefficients, as well as the mere occurrence of the racemic by-product and its higher melting point, hint at a greater stability of the racemic crystals of (II)[link] in comparison with their chiral counterpart, (I)[link].

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], in the space group P32, drawn with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A view of the dimer of (II)[link], in the space group P[\overline{1}], drawn with 50% probability displacement ellipsoids. The same atom numbering as in (I)[link] has been used. [Symmetry code: (i) −x + 1, −y + 2, −z.]

Experimental

(S)-N-[(2-Hy­droxy­naphthalen-1-yl)methyl­idene]­valine was pre­pared from L-valine and 2-hy­droxy-1-naphthaldehyde according to a literature method (Nitta et al., 1992[Nitta, H., Yu, D., Kudo, M., Mori, A. & Inoue, S. (1992). J. Am. Chem. Soc. 114, 7969-7975.]). The preparation of the tin com­plex was performed in Schlenk tubes under argon with dry and air-free solvents.

The yellow suspension of (S)-N-[(2-hy­droxy­naphthalen-1-yl)methyl­idene]­valine (1.26 g, 4.64 mmol) and triethyl­amine (1.22 g, 12.06 mmol, 30% excess) in tetra­hydro­furan (50 ml) was stirred at 273 K. A solution of dichlorido­dimethyl­tin (1.02 g, 4.64 mmol) in tetra­hydro­furan (10 ml) was added dropwise. A white precipitate formed and the resulting suspension was stirred for 30 min at 273 K and then for 4 d at room temperature. The triethyl­amine hydro­chloride was filtered off and washed with tetra­hydro­furan (4 × 5 ml). The volatiles were removed completely from the filtrate under reduced pressure and the residue was extracted with hot chloro­form (10 ml). This CHCl3 solution was evaporated to dryness in a vacuum and the residue was recrystallized from absolute methanol (12 ml) as yellow crystals (yield 1.13 g, 58.2%). The crystals used for X-ray structure determination of (I) and (II) were taken from the bulk material. Analysis calculated for C18H21NO3Sn: C 51.71, H 5.06, N 3.35%; found: C 51.30, H 5.11, N 3.38%.

119Sn NMR (CDCl3): δ −158.3; 1H NMR (CDCl3): δ 0.59 (s, 3H, Sn—CH3), 1.00 (s, 3H, Sn—CH3), 1.08 (d, 3H, CH—CH3, 3JHH = 6.8 Hz), 1.11 (d, 3H, CH—CH3, 3JHH = 6.8 Hz), 2.39 [septet, 1H, CH(CH3)2, 3JHH = 6.8 Hz], 3.97 (d, 1H, CH–COO, 3JHH = 4,7 Hz), 6.93 (m, 1H, Har), 7.37 (m, 1H, Har), 7.57 (m, 1H, Har), 7.73 (m, 1H, Har), 7,86 (m, 1H, Har), 7.91 (m, 1H, Har), 9.03 (s, 1H, CH=N). 13C NMR (CDCl3): δ −1.2, 1.7 (Sn—CH3), 18.3, 19.1 [CH(CH3)2], 34.3 [CH(CH3)2], 74.7 (CH—COO), 108.4 (Car—CH=N), 118.4, 124.0, 124.6, 127.2, 129.0, 129.6, 133.9, 139.5 (8 × Car), 166.3 (CH=N), 172.4 (Car—O), 173.2 (COO). [α]D20 = − 406.2° (c = 1 g per 100 ml CHCl3). UV–Vis (c = 2.153 × 10 −4 mol l−1, solvent CHCl3): λmax (nm) (, l mol−1 cm−1) 411 (8568), 333 (5668), 257 (17215).

Compound (I)[link]

Crystal data
  • [Sn(CH3)2(C16H15NO3)]

  • Mr = 418.05

  • Trigonal, P 32

  • a = 11.6246 (5) Å

  • c = 11.5864 (5) Å

  • V = 1355.92 (10) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 200 K

  • 0.40 × 0.18 × 0.18 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.599, Tmax = 0.783

  • 14770 measured reflections

  • 4140 independent reflections

  • 4082 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.050

  • S = 1.09

  • 4140 reflections

  • 212 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −1.07 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2066 Friedel pairs

  • Flack parameter: −0.02 (1)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Sn1—C182.106 (3)
Sn1—O12.1070 (17)
Sn1—C172.107 (2)
Sn1—N12.1422 (16)
Sn1—O22.1504 (17)
C18—Sn1—O193.14 (9)
C18—Sn1—C17127.01 (12)
O1—Sn1—C1798.63 (10)
C18—Sn1—N1125.71 (9)
O1—Sn1—N180.77 (6)
C17—Sn1—N1107.19 (10)
C18—Sn1—O292.42 (10)
O1—Sn1—O2153.64 (6)
C17—Sn1—O298.47 (10)
N1—Sn1—O275.09 (6)

Compound (II)[link]

Crystal data
  • [Sn(CH3)2(C16H15NO3)]

  • Mr = 418.05

  • Triclinic, [P \overline 1]

  • a = 8.3148 (5) Å

  • b = 8.6633 (5) Å

  • c = 12.4320 (8) Å

  • α = 71.030 (5)°

  • β = 87.440 (6)°

  • γ = 84.553 (5)°

  • V = 842.97 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 153 K

  • 0.40 × 0.38 × 0.31 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.744, Tmax = 0.866

  • 13032 measured reflections

  • 3859 independent reflections

  • 3798 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.12

  • 3859 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −2.39 e Å−3

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Sn1—C172.110 (3)
Sn1—C182.111 (3)
Sn1—O12.1421 (19)
Sn1—O22.1593 (18)
Sn1—N12.165 (2)
C17—Sn1—C18137.42 (12)
C17—Sn1—O188.14 (9)
C18—Sn1—O194.58 (10)
C17—Sn1—O297.03 (10)
C18—Sn1—O299.54 (10)
O1—Sn1—O2152.46 (7)
C17—Sn1—N1117.83 (10)
C18—Sn1—N1104.43 (10)
O1—Sn1—N179.92 (7)
O2—Sn1—N173.74 (7)

In (I)[link], similarity and rigid-bond restraints were imposed on the anisotropic displacement parameters of atoms C5 and C6. Together with the floating origin restraint for the polar space group, a total of eight restraints was used. All H atoms in both structures were positioned geometrically and refined using a riding model (including free rotation about the C—C bond for the methyl groups). The aromatic H atoms and the azomethine H atom on C11 were constrained to an ideal geometry, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), the H atoms on tertiary C atoms C12 and C14 with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C), and the methyl H atoms with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

For both compounds, data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organotin(IV) complexes with O,N,O'-tridentate Schiff base ligands have received attention due to their biological properties, particularly possible antitumor activities (Nath et al., 1997; Basu Baul et al., 2001; Al-Allaf et al., 2003; Zamudio-Rivera et al., 2005; Tian et al., 2006; Beltrán et al., 2007; Kobakhidze et al., 2010). Diorganotin complexes of N-(2-hydroxyarylidene)-α-amino acids have been prepared by severel groups (Dakternieks et al., 1998; Basu Baul et al., 1999, 2005; Wang et al., 1992; Smith et al., 1992; Beltrán et al., 2003; Yin et al., 2004). We have synthesized such complexes in connection with our investigations of the syntheses and structural properties of chiral silicon and tin complexes with O,N,O'-tridentate ligands (Warncke et al., 2012; Böhme et al., 2006).

Dimethyl{N-[(2-oxidonaphthalen-1-yl-κO)methylidene]valinato-κ2N,O}tin(IV) was prepared from enantiomerically pure (S)-N-[(2-hydroxynaphthalen-1-yl)methylidene]valine and dichloridodimethyltin in the presence of triethylamine. After work-up of the reaction mixture and recrystallization (see Experimental), two different crystal types were observed under the microscope. Pale-yellow needles were characterized as enantiomerically pure crystals, (I), in the space group P32. Some yellow prisms were found between the surface of the solvent and the glass wall of the Schlenk tube. These were identified as the racemate, (II), of the same compound in the space group P1. The valinate ligand used for the synthesis was the pure S enantiomer. Therefore, the formation of enantiomerically pure compound (I) was expected. The bulk material of the tin complex shows a large value for the optical rotation (see Experimental) which hints at the formation of an enantiomerically pure product. The formation of the racemate was surprising and is not easy to detect. Only a small number of crystals of the racemate could be found under the microscope (estimated to be less than 5% of the overal yield of crystalline product). We assume that a small portion of the ligand was racemized during the complex formation. The mechanism of such a racemization reaction has been investigated recently (Warncke et al., 2012). Only careful examination of the crystalline product under a microscope allowed the identification of the racemate.

Fig. 1 shows the molecular structure of (I) and selected bond lengths and angles are listed in Table 1. The presence of the S form of the enantiomeric pure compound was established by anomalous dispersion effects in diffraction measurements on the crystal. The Flack (1983) parameter of the final refinement has a value of -0.02 (1). The bond lengths at the Sn atom are comparable with the bond lengths of the only known tin complex with an N-hydroxynapthylideneamino acid ligand (Smith et al., 1996). The Sn atom in (I) is pentacoordinated with three bonds to the O,N,O'-tridentate valinate ligand and two bonds to methyl groups. The coordination geometry about the Sn atom is characterized by the Addison parameter τ (Addison et al., 1984). The value of τ is 0.44, which is almost half-way between the values which define a square pyramid and a trigonal bipyramid. An alternative description of pentacoordinated geometries is provided by Holmes who uses an idealized trans-basal angle of 150° for a square pyramid (Holmes, 1984). According to this description, the Sn atom in (I) is 34.4% along the Berry pseudorotation coordinate from a trigonal bipyramid to a square pyramid.

The R and the S isomers are present in centrosymmetric crystal structure (II). The same labelling scheme as in (I) has been used for the atoms of (II). Selected bond lengths and angles are listed in Table 2. The main difference to the structure (I) is the formation of dimers in the crystal lattice. Fig. 2 shows the dimer of (II) which is formed between two Sn1—O2 units. A crystallographic inversion centre is located at the centre of the dimeric unit [Sn1···O2i = 2.8077 (18) Å; symmetry code: (i) -x+1, -y+2, -z]. The formation of the dimer implies several structural changes in comparison to (I). These are mainly an enlarged C17—Sn—C18 angle and elongated bonds involving the Sn atom. These geometrical changes lead to a lower τ value of 1/4, i.e. the square-pyramidal character is far more pronounced. Alternatively, one could consider the coordination geometry as a distorted hexacoordinated tin complex with atom O2A at a very long distance. The calculated density of (II) is higher than that of (I) (1.647 versus 1.536 Mg m -1). That means the crystal structures under investigation follow Wallach's rule (Wallach, 1895). However, this rule has been critically assessed recently (Brock et al., 1991). The formation of dimers might offer an explanation for the more dense packing in (II). This is quantified by the packing coefficients of 0.705 for (II) and 0.661 for (I). Not only the different densities and packing coefficients, but also the mere occurrence of the racemic by-product and its higher melting point hint to a greater stability of the racemic crystals of (II) in comparison with their chiral counterpart, (I).

Related literature top

For related literature, see: Addison et al. (1984); Al-Allaf, Rashan, Stelzner & Powell (2003); Böhme et al. (2006); Basu Baul, Dutta & Tiekink (1999); Basu Baul, Dutta, Rivarola, Scopelliti & Choudhuri (2001); Basu Baul, Masharing, Willem, Biesemans, Holcapek, Jirasko & Linden (2005); Beltrán et al. (2003, 2007); Brock et al. (1991); Dakternieks et al. (1998); Flack (1983); Holmes (1984); Kobakhidze et al. (2010); Nath et al. (1997); Nitta et al. (1992); Smith et al. (1992, 1996); Tian et al. (2006); Wallach (1895); Wang et al. (1992); Warncke et al. (2012); Yin et al. (2004); Zamudio-Rivera, George-Tellez, Lopez-Mendoza, Morales-Pacheco, Flores, Höpfl, Barba, Fernandez, Cabirol & Beltrán (2005).

Experimental top

The ligand 2-(S)-hydroxynaphthylmethylenevaline was prepared from L-valine and 2-hydroxy-1-naphthaldehyde according to a literature method (Nitta et al., 1992). The preparation of the tin complex was performed in Schlenk tubes under argon with dry and air-free solvents.

The yellow suspension of 2-(S)-hydroxynaphthylmethylenevaline (1.26 g, 4.64 mmol) and triethylamine (1.22 g, 12.06 mmol, 30% excess) in tetrahydrofuran (50 ml) was stirred at 273 K. A solution of dichlorodimethyltin (1.02 g, 4.64 mmol) in tetrahydrofuran (10 ml) was added dropwise. A white precipitate formed and the resulting suspension was stirred 30 min at 273 K and then for 4 d at room temperature. The triethylamine hydrochloride was filtered off and washed with tetrahydrofuran (4 × 5 ml). The volatiles were removed completely from the filtrate under reduced pressure, and the residue was extracted with hot chloroform (10 ml). This CHCl3 solution was evaporated to dryness in a vacuum and the residue was recrystallized from absolute methanol (12 ml) giving yellow crystals (yield 1.13 g, 58.2%). Analysis calculated for C18H21NO3Sn: C 51.71, H 5.06, N 3.35%; found: C 51.30, H 5.11, N 3.38%.

119Sn NMR (CDCl3): δ -158.3. 1H NMR (CDCl3): δ 0.59 (s, 3H, Sn—CH3), 1.00 (s, 3H, Sn—CH3), 1.08 (d, 3H, CH—CH3, 3JHH = 6.8 Hz), 1.11 (d, 3H, CH—CH3, 3JHH = 6.8 Hz), 2.39 [septet, 1H, CH(CH3)2, 3JHH = 6.8 Hz], 3.97 (d, 1H, CH–COO, 3JHH = 4,7 Hz), 6.93 (m, 1H, Har), 7.37 (m, 1H, Har), 7.57 (m, 1H, Har), 7.73 (m, 1H, Har), 7,86 (m, 1H, Har), 7.91 (m, 1H, Har), 9.03 (s, 1H, CHN). 13C NMR (CDCl3): δ -1.2, 1.7 (Sn—CH3), 18.3, 19.1 [CH(CH3)2], 34.3 [CH(CH3)2], 74.7 (CH—COO), 108.4 (Car—CHN), 118.4, 124.0, 124.6, 127.2, 129.0, 129.6, 133.9, 139.5 (8 × Car), 166.3 (CHN), 172.4 (Car—O), 173.2 (COO). [α]20D = - 406.2° (c = 1 g per 100 ml CHCl3). UV–VIS (c = 2.153 × 10 -4 mol l-1, solvent CHCl3): λmax [nm] (ε, l mol-1 cm-1) 411 (8568), 333 (5668), 257 (17215).

Refinement top

In (I), similarity and rigid-bond restraints were imposed on the anisotropic displacement parameters of atoms C5 and C6. Together with the floating origin restraint for the polar space group, a total of eight restraints was used. All H atoms in both structures were positioned geometrically and refined using a riding model (including free rotation about the C—C bond for the methyl groups). The aromatic H atoms and the azomethine H atom at C11 were constrained to an ideal geometry with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), the H atoms at tertiary C atoms C12 and C14 with C—H = 1.0 Å and Uiso(H) = 1.2Ueq(C), and the methyl H atoms with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009; data reduction: X-RED (Stoe & Cie, 2009; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure (I), in the space group P32, drawn with 50% probability displacement ellipsoids.

Fig. 2. A view of the dimer of (II), in yhe space group P1, drawn with 50% probability displacement ellipsoids. The same atom numbering as in (I) was applied. [Symmetry code: (A) -x+1, -y+2, -z.]
(I) (S)-Dimethyl{N-[(2-oxidonaphthalen-1-yl- κO)methylidene]valinato-κ2N,O}tin(IV) top
Crystal data top
[Sn(CH3)2(C16H15NO3)]Dx = 1.536 Mg m3
Mr = 418.05Melting point: 514 K
Trigonal, P32Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 32Cell parameters from 24695 reflections
a = 11.6246 (5) Åθ = 2.7–29.6°
c = 11.5864 (5) ŵ = 1.43 mm1
V = 1355.92 (10) Å3T = 200 K
Z = 3Needle, pale yellow
F(000) = 6300.40 × 0.18 × 0.18 mm
Data collection top
Stoe IPDS 2T
diffractometer
4140 independent reflections
Radiation source: fine-focus sealed tube4082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ rotation scanθmax = 27.5°, θmin = 2.7°
Absorption correction: numerical
(X-RED; Stoe & Cie, 2009
h = 1515
Tmin = 0.599, Tmax = 0.783k = 1514
14770 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.0805P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
4140 reflectionsΔρmax = 0.39 e Å3
212 parametersΔρmin = 1.07 e Å3
8 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (1)
Crystal data top
[Sn(CH3)2(C16H15NO3)]Z = 3
Mr = 418.05Mo Kα radiation
Trigonal, P32µ = 1.43 mm1
a = 11.6246 (5) ÅT = 200 K
c = 11.5864 (5) Å0.40 × 0.18 × 0.18 mm
V = 1355.92 (10) Å3
Data collection top
Stoe IPDS 2T
diffractometer
4140 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2009
4082 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.783Rint = 0.053
14770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.39 e Å3
S = 1.09Δρmin = 1.07 e Å3
4140 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
212 parametersAbsolute structure parameter: 0.02 (1)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.886237 (14)0.595967 (12)0.16285 (1)0.02762 (5)
O10.73488 (18)0.42325 (16)0.08351 (14)0.0338 (3)
O21.05095 (17)0.79610 (17)0.16180 (15)0.0375 (4)
O31.1663 (2)0.98279 (18)0.06267 (15)0.0466 (5)
N10.86127 (18)0.68276 (16)0.00860 (14)0.0264 (3)
C10.6298 (2)0.5170 (2)0.03048 (16)0.0273 (4)
C20.6328 (2)0.4110 (2)0.02588 (16)0.0282 (4)
C30.5200 (3)0.2801 (2)0.01572 (19)0.0362 (5)
H30.52280.20730.05000.043*
C40.4097 (2)0.2582 (3)0.0415 (2)0.0399 (5)
H40.33690.17010.04690.048*
C50.2813 (3)0.3412 (3)0.1507 (3)0.0520 (7)
H50.20840.25300.15580.062*
C60.2699 (3)0.4430 (4)0.1979 (3)0.0567 (7)
H60.19000.42600.23500.068*
C70.3776 (3)0.5724 (4)0.1907 (3)0.0520 (7)
H70.36980.64350.22260.062*
C80.4951 (3)0.5991 (3)0.1383 (2)0.0386 (5)
H80.56700.68790.13540.046*
C90.5095 (2)0.4951 (2)0.08858 (17)0.0314 (4)
C100.3995 (2)0.3642 (3)0.09440 (19)0.0367 (5)
C110.7497 (2)0.6421 (2)0.04594 (16)0.0265 (4)
H110.74730.70100.10150.032*
C120.9770 (2)0.8071 (2)0.03020 (16)0.0280 (4)
H120.94580.86970.05400.034*
C131.0736 (2)0.8695 (2)0.07085 (17)0.0302 (4)
C141.0413 (2)0.7804 (2)0.1363 (2)0.0377 (6)
H140.96770.72980.19260.045*
C151.0994 (4)0.6931 (4)0.1093 (3)0.0578 (8)
H15A1.17630.74090.05830.087*
H15B1.03230.61200.07090.087*
H15C1.12750.66980.18110.087*
C161.1405 (3)0.9077 (3)0.1973 (2)0.0556 (8)
H16A1.16930.88570.26940.083*
H16B1.09850.96080.21460.083*
H16C1.21770.95870.14730.083*
C170.7717 (3)0.6180 (3)0.2926 (2)0.0473 (6)
H17A0.82340.70570.32860.071*
H17B0.69080.60980.25850.071*
H17C0.74760.54890.35120.071*
C181.0119 (3)0.5152 (3)0.1816 (2)0.0448 (5)
H18A0.97310.44220.23750.067*
H18B1.02180.48150.10690.067*
H18C1.09910.58420.20910.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03397 (8)0.02429 (7)0.02250 (6)0.01298 (6)0.00173 (5)0.00211 (4)
O10.0384 (9)0.0227 (7)0.0362 (7)0.0123 (6)0.0018 (6)0.0021 (6)
O20.0390 (9)0.0311 (8)0.0285 (8)0.0070 (7)0.0065 (6)0.0002 (6)
O30.0460 (10)0.0277 (8)0.0385 (9)0.0022 (7)0.0099 (7)0.0010 (7)
N10.0281 (8)0.0207 (8)0.0222 (7)0.0061 (7)0.0006 (6)0.0023 (6)
C10.0254 (9)0.0245 (9)0.0240 (8)0.0064 (8)0.0039 (7)0.0018 (7)
C20.0306 (10)0.0209 (9)0.0246 (8)0.0064 (8)0.0076 (7)0.0013 (7)
C30.0413 (12)0.0212 (10)0.0319 (9)0.0051 (9)0.0107 (8)0.0009 (7)
C40.0350 (12)0.0282 (10)0.0354 (10)0.0001 (9)0.0097 (9)0.0063 (9)
C50.0284 (12)0.0583 (17)0.0453 (13)0.0038 (11)0.0026 (10)0.0132 (12)
C60.0349 (13)0.072 (2)0.0509 (15)0.0178 (14)0.0097 (11)0.0058 (14)
C70.0419 (15)0.0633 (19)0.0496 (14)0.0253 (14)0.0088 (11)0.0003 (13)
C80.0319 (11)0.0373 (12)0.0392 (11)0.0117 (10)0.0027 (9)0.0010 (9)
C90.0269 (10)0.0335 (11)0.0263 (9)0.0094 (9)0.0034 (7)0.0048 (8)
C100.0270 (10)0.0364 (12)0.0320 (10)0.0048 (9)0.0054 (8)0.0074 (8)
C110.0284 (9)0.0217 (9)0.0228 (8)0.0077 (8)0.0019 (7)0.0015 (6)
C120.0283 (10)0.0220 (9)0.0235 (8)0.0049 (8)0.0015 (7)0.0015 (7)
C130.0300 (10)0.0243 (9)0.0281 (9)0.0074 (8)0.0028 (7)0.0034 (7)
C140.0328 (11)0.0346 (12)0.0262 (11)0.0022 (9)0.0027 (7)0.0016 (7)
C150.0634 (19)0.066 (2)0.0483 (15)0.0358 (17)0.0152 (13)0.0027 (14)
C160.0450 (15)0.0481 (16)0.0392 (13)0.0027 (13)0.0114 (11)0.0067 (11)
C170.0633 (17)0.0424 (14)0.0348 (11)0.0253 (13)0.0180 (11)0.0002 (10)
C180.0469 (14)0.0458 (14)0.0482 (13)0.0281 (12)0.0038 (11)0.0031 (11)
Geometric parameters (Å, º) top
Sn1—C182.106 (3)C7—H70.9500
Sn1—O12.1070 (17)C8—C91.423 (4)
Sn1—C172.107 (2)C8—H80.9500
Sn1—N12.1422 (16)C9—C101.418 (3)
Sn1—O22.1504 (17)C11—H110.9500
O1—C21.306 (3)C12—C131.531 (3)
O2—C131.297 (3)C12—C141.549 (3)
O3—C131.219 (3)C12—H121.0000
N1—C111.301 (3)C14—C151.507 (4)
N1—C121.469 (2)C14—C161.521 (3)
C1—C21.411 (3)C14—H141.0000
C1—C111.436 (3)C15—H15A0.9800
C1—C91.454 (3)C15—H15B0.9800
C2—C31.433 (3)C15—H15C0.9800
C3—C41.349 (4)C16—H16A0.9800
C3—H30.9500C16—H16B0.9800
C4—C101.434 (4)C16—H16C0.9800
C4—H40.9500C17—H17A0.9800
C5—C61.369 (5)C17—H17B0.9800
C5—C101.420 (4)C17—H17C0.9800
C5—H50.9500C18—H18A0.9800
C6—C71.398 (5)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.380 (4)
C18—Sn1—O193.14 (9)C5—C10—C4121.5 (2)
C18—Sn1—C17127.01 (12)N1—C11—C1126.44 (19)
O1—Sn1—C1798.63 (10)N1—C11—H11116.8
C18—Sn1—N1125.71 (9)C1—C11—H11116.8
O1—Sn1—N180.77 (6)N1—C12—C13109.02 (16)
C17—Sn1—N1107.19 (10)N1—C12—C14109.99 (17)
C18—Sn1—O292.42 (10)C13—C12—C14112.89 (18)
O1—Sn1—O2153.64 (6)N1—C12—H12108.3
C17—Sn1—O298.47 (10)C13—C12—H12108.3
N1—Sn1—O275.09 (6)C14—C12—H12108.3
C2—O1—Sn1127.39 (13)O3—C13—O2123.55 (19)
C13—O2—Sn1119.62 (13)O3—C13—C12119.69 (19)
C11—N1—C12117.70 (17)O2—C13—C12116.76 (18)
C11—N1—Sn1125.42 (14)C15—C14—C16112.0 (3)
C12—N1—Sn1116.49 (13)C15—C14—C12113.2 (2)
C2—C1—C11120.4 (2)C16—C14—C12112.4 (2)
C2—C1—C9120.21 (19)C15—C14—H14106.2
C11—C1—C9118.74 (19)C16—C14—H14106.2
O1—C2—C1124.05 (18)C12—C14—H14106.2
O1—C2—C3117.2 (2)C14—C15—H15A109.5
C1—C2—C3118.7 (2)C14—C15—H15B109.5
C4—C3—C2121.3 (2)H15A—C15—H15B109.5
C4—C3—H3119.3C14—C15—H15C109.5
C2—C3—H3119.3H15A—C15—H15C109.5
C3—C4—C10121.8 (2)H15B—C15—H15C109.5
C3—C4—H4119.1C14—C16—H16A109.5
C10—C4—H4119.1C14—C16—H16B109.5
C6—C5—C10121.5 (3)H16A—C16—H16B109.5
C6—C5—H5119.2C14—C16—H16C109.5
C10—C5—H5119.2H16A—C16—H16C109.5
C5—C6—C7119.0 (3)H16B—C16—H16C109.5
C5—C6—H6120.5Sn1—C17—H17A109.5
C7—C6—H6120.5Sn1—C17—H17B109.5
C8—C7—C6121.4 (3)H17A—C17—H17B109.5
C8—C7—H7119.3Sn1—C17—H17C109.5
C6—C7—H7119.3H17A—C17—H17C109.5
C7—C8—C9120.7 (3)H17B—C17—H17C109.5
C7—C8—H8119.6Sn1—C18—H18A109.5
C9—C8—H8119.6Sn1—C18—H18B109.5
C10—C9—C8117.8 (2)H18A—C18—H18B109.5
C10—C9—C1118.8 (2)Sn1—C18—H18C109.5
C8—C9—C1123.4 (2)H18A—C18—H18C109.5
C9—C10—C5119.5 (3)H18B—C18—H18C109.5
C9—C10—C4119.0 (2)
C18—Sn1—O1—C2164.90 (17)C2—C1—C9—C104.4 (3)
C17—Sn1—O1—C266.93 (18)C11—C1—C9—C10166.54 (18)
N1—Sn1—O1—C239.22 (16)C2—C1—C9—C8174.2 (2)
O2—Sn1—O1—C263.0 (2)C11—C1—C9—C814.8 (3)
C18—Sn1—O2—C13117.30 (19)C8—C9—C10—C51.2 (3)
O1—Sn1—O2—C1315.2 (3)C1—C9—C10—C5179.9 (2)
C17—Sn1—O2—C13114.72 (19)C8—C9—C10—C4177.9 (2)
N1—Sn1—O2—C139.09 (17)C1—C9—C10—C40.8 (3)
C18—Sn1—N1—C11120.69 (19)C6—C5—C10—C91.3 (4)
O1—Sn1—N1—C1133.46 (17)C6—C5—C10—C4177.8 (3)
C17—Sn1—N1—C1162.8 (2)C3—C4—C10—C91.5 (3)
O2—Sn1—N1—C11157.21 (19)C3—C4—C10—C5177.6 (2)
C18—Sn1—N1—C1266.69 (18)C12—N1—C11—C1172.58 (19)
O1—Sn1—N1—C12153.92 (15)Sn1—N1—C11—C114.9 (3)
C17—Sn1—N1—C12109.84 (17)C2—C1—C11—N116.7 (3)
O2—Sn1—N1—C1215.41 (14)C9—C1—C11—N1172.39 (19)
Sn1—O1—C2—C125.0 (3)C11—N1—C12—C13154.31 (19)
Sn1—O1—C2—C3157.95 (14)Sn1—N1—C12—C1318.9 (2)
C11—C1—C2—O111.8 (3)C11—N1—C12—C1481.4 (2)
C9—C1—C2—O1177.39 (18)Sn1—N1—C12—C14105.37 (17)
C11—C1—C2—C3165.21 (18)Sn1—O2—C13—O3178.5 (2)
C9—C1—C2—C35.6 (3)Sn1—O2—C13—C121.3 (3)
O1—C2—C3—C4179.5 (2)N1—C12—C13—O3168.9 (2)
C1—C2—C3—C43.3 (3)C14—C12—C13—O368.6 (3)
C2—C3—C4—C100.3 (3)N1—C12—C13—O211.3 (3)
C10—C5—C6—C70.3 (5)C14—C12—C13—O2111.2 (2)
C5—C6—C7—C80.7 (5)N1—C12—C14—C1565.2 (3)
C6—C7—C8—C90.7 (5)C13—C12—C14—C1556.8 (3)
C7—C8—C9—C100.3 (4)N1—C12—C14—C16166.7 (2)
C7—C8—C9—C1178.9 (2)C13—C12—C14—C1671.3 (3)
(II) (RS)-Dimethyl{N-[(2-oxidonaphthalen-1-yl- κO)methylidene]valinato-κ2N,O}tin(IV) top
Crystal data top
[Sn(CH3)2(C16H15NO3)]Z = 2
Mr = 418.05F(000) = 420
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Melting point: 566 K
a = 8.3148 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6633 (5) ÅCell parameters from 35193 reflections
c = 12.4320 (8) Åθ = 1.7–29.6°
α = 71.030 (5)°µ = 1.53 mm1
β = 87.440 (6)°T = 153 K
γ = 84.553 (5)°Prism, yellow
V = 842.97 (9) Å30.40 × 0.38 × 0.31 mm
Data collection top
Stoe IPDS 2
diffractometer
3859 independent reflections
Radiation source: fine-focus sealed tube3798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ rotation scanθmax = 27.5°, θmin = 1.7°
Absorption correction: integration
(X-RED; Stoe & Cie, 2009)
h = 1010
Tmin = 0.744, Tmax = 0.866k = 1111
13032 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.5942P]
where P = (Fo2 + 2Fc2)/3
3859 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 2.39 e Å3
Crystal data top
[Sn(CH3)2(C16H15NO3)]γ = 84.553 (5)°
Mr = 418.05V = 842.97 (9) Å3
Triclinic, P1Z = 2
a = 8.3148 (5) ÅMo Kα radiation
b = 8.6633 (5) ŵ = 1.53 mm1
c = 12.4320 (8) ÅT = 153 K
α = 71.030 (5)°0.40 × 0.38 × 0.31 mm
β = 87.440 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3859 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2009)
3798 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.866Rint = 0.091
13032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.12Δρmax = 0.81 e Å3
3859 reflectionsΔρmin = 2.39 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.425842 (16)1.007258 (18)0.165931 (12)0.01402 (9)
O10.3887 (2)1.0148 (3)0.33583 (16)0.0193 (4)
O20.3633 (2)0.9359 (3)0.02311 (16)0.0184 (4)
O30.1818 (2)0.8450 (3)0.06185 (17)0.0222 (4)
N10.1792 (2)0.9414 (3)0.19614 (18)0.0138 (4)
C10.1046 (3)1.0973 (3)0.3260 (2)0.0149 (5)
C20.2607 (3)1.0844 (3)0.3716 (2)0.0143 (4)
C30.2798 (3)1.1468 (3)0.4634 (2)0.0181 (5)
H30.38191.13110.49850.022*
C40.1531 (3)1.2282 (4)0.5008 (2)0.0191 (5)
H40.16941.26960.56110.023*
C50.1321 (3)1.3430 (4)0.4897 (2)0.0227 (5)
H50.11371.38810.54780.027*
C60.2827 (3)1.3658 (4)0.4438 (3)0.0255 (6)
H60.36871.42430.47090.031*
C70.3091 (3)1.3020 (4)0.3562 (3)0.0240 (6)
H70.41321.31830.32380.029*
C80.1854 (3)1.2160 (4)0.3168 (2)0.0189 (5)
H80.20501.17550.25660.023*
C90.0291 (3)1.1869 (3)0.3646 (2)0.0152 (5)
C100.0039 (3)1.2535 (3)0.4521 (2)0.0166 (5)
C110.0734 (3)1.0090 (3)0.2515 (2)0.0140 (4)
H110.03690.99810.24100.017*
C120.1171 (3)0.8530 (3)0.1257 (2)0.0143 (5)
H120.00640.90390.10030.000*
C130.2257 (3)0.8778 (3)0.0196 (2)0.0149 (5)
C140.1036 (3)0.6707 (3)0.1928 (2)0.0183 (5)
H140.03430.66610.26140.022*
C150.2670 (4)0.5801 (4)0.2354 (3)0.0244 (6)
H15A0.25130.46720.28230.037*
H15B0.31690.63560.28090.037*
H15C0.33750.57920.17020.037*
C160.0187 (4)0.5852 (4)0.1240 (3)0.0295 (6)
H16A0.08740.57950.05900.044*
H16B0.08440.64710.09660.044*
H16C0.00100.47410.17240.044*
C170.6130 (3)0.8205 (4)0.2282 (2)0.0225 (5)
H17A0.64680.77140.16910.034*
H17B0.57400.73620.29540.034*
H17C0.70500.86710.24890.034*
C180.4036 (4)1.2643 (4)0.0897 (3)0.0240 (6)
H18A0.50221.30920.10250.036*
H18B0.31081.31130.12350.036*
H18C0.38761.29170.00780.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01081 (12)0.01644 (14)0.01635 (13)0.00040 (8)0.00060 (7)0.00753 (9)
O10.0138 (8)0.0273 (10)0.0185 (9)0.0021 (7)0.0016 (7)0.0108 (8)
O20.0154 (8)0.0268 (10)0.0173 (9)0.0046 (7)0.0026 (7)0.0128 (8)
O30.0226 (9)0.0301 (11)0.0169 (9)0.0034 (8)0.0013 (7)0.0113 (8)
N10.0105 (9)0.0165 (10)0.0165 (10)0.0015 (7)0.0009 (7)0.0081 (8)
C10.0152 (11)0.0171 (12)0.0139 (11)0.0033 (9)0.0001 (8)0.0065 (9)
C20.0137 (10)0.0170 (12)0.0121 (10)0.0016 (8)0.0005 (8)0.0048 (9)
C30.0177 (11)0.0242 (14)0.0136 (11)0.0029 (10)0.0031 (9)0.0072 (10)
C40.0231 (12)0.0215 (13)0.0145 (11)0.0021 (10)0.0019 (9)0.0081 (10)
C50.0269 (13)0.0239 (15)0.0199 (12)0.0015 (11)0.0018 (10)0.0121 (11)
C60.0233 (13)0.0285 (15)0.0262 (14)0.0048 (11)0.0043 (11)0.0135 (12)
C70.0163 (11)0.0295 (16)0.0272 (14)0.0021 (10)0.0005 (10)0.0117 (12)
C80.0155 (11)0.0224 (13)0.0208 (12)0.0003 (9)0.0009 (9)0.0097 (10)
C90.0165 (11)0.0150 (12)0.0142 (11)0.0015 (9)0.0018 (8)0.0051 (9)
C100.0199 (11)0.0169 (12)0.0130 (11)0.0019 (9)0.0003 (9)0.0050 (9)
C110.0118 (10)0.0176 (12)0.0136 (11)0.0011 (8)0.0001 (8)0.0063 (9)
C120.0125 (10)0.0190 (12)0.0142 (11)0.0012 (9)0.0016 (8)0.0089 (9)
C130.0152 (10)0.0134 (12)0.0164 (11)0.0001 (9)0.0010 (8)0.0053 (9)
C140.0201 (11)0.0183 (13)0.0183 (12)0.0060 (10)0.0019 (9)0.0077 (10)
C150.0282 (14)0.0189 (14)0.0239 (13)0.0003 (11)0.0006 (11)0.0045 (11)
C160.0383 (16)0.0252 (16)0.0300 (15)0.0159 (13)0.0000 (12)0.0120 (13)
C170.0154 (11)0.0255 (15)0.0235 (13)0.0064 (10)0.0023 (9)0.0058 (11)
C180.0268 (13)0.0188 (14)0.0274 (14)0.0008 (10)0.0034 (11)0.0094 (11)
Geometric parameters (Å, º) top
Sn1—C172.110 (3)C7—H70.9500
Sn1—C182.111 (3)C8—C91.419 (3)
Sn1—O12.1421 (19)C8—H80.9500
Sn1—O22.1593 (18)C9—C101.418 (3)
Sn1—N12.165 (2)C11—H110.9500
O1—C21.305 (3)C12—C131.532 (3)
O2—C131.301 (3)C12—C141.540 (4)
O3—C131.216 (3)C12—H121.0000
N1—C111.304 (3)C14—C151.528 (4)
N1—C121.474 (3)C14—C161.531 (4)
C1—C21.420 (3)C14—H141.0000
C1—C111.424 (3)C15—H15A0.9800
C1—C91.449 (3)C15—H15B0.9800
C2—C31.432 (3)C15—H15C0.9800
C3—C41.361 (4)C16—H16A0.9800
C3—H30.9500C16—H16B0.9800
C4—C101.431 (3)C16—H16C0.9800
C4—H40.9500C17—H17A0.9800
C5—C61.370 (4)C17—H17B0.9800
C5—C101.411 (4)C17—H17C0.9800
C5—H50.9500C18—H18A0.9800
C6—C71.405 (4)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.378 (4)
C17—Sn1—C18137.42 (12)C9—C10—C4118.8 (2)
C17—Sn1—O188.14 (9)N1—C11—C1127.3 (2)
C18—Sn1—O194.58 (10)N1—C11—H11116.3
C17—Sn1—O297.03 (10)C1—C11—H11116.3
C18—Sn1—O299.54 (10)N1—C12—C13108.33 (19)
O1—Sn1—O2152.46 (7)N1—C12—C14112.0 (2)
C17—Sn1—N1117.83 (10)C13—C12—C14112.5 (2)
C18—Sn1—N1104.43 (10)N1—C12—H12107.9
O1—Sn1—N179.92 (7)C13—C12—H12107.9
O2—Sn1—N173.74 (7)C14—C12—H12107.9
C2—O1—Sn1124.92 (16)O3—C13—O2123.6 (2)
C13—O2—Sn1121.47 (16)O3—C13—C12120.5 (2)
C11—N1—C12117.3 (2)O2—C13—C12116.0 (2)
C11—N1—Sn1122.78 (17)C15—C14—C16111.3 (3)
C12—N1—Sn1117.71 (15)C15—C14—C12112.4 (2)
C2—C1—C11120.8 (2)C16—C14—C12111.5 (2)
C2—C1—C9119.8 (2)C15—C14—H14107.1
C11—C1—C9119.0 (2)C16—C14—H14107.1
O1—C2—C1123.2 (2)C12—C14—H14107.1
O1—C2—C3117.7 (2)C14—C15—H15A109.5
C1—C2—C3119.0 (2)C14—C15—H15B109.5
C4—C3—C2120.6 (2)H15A—C15—H15B109.5
C4—C3—H3119.7C14—C15—H15C109.5
C2—C3—H3119.7H15A—C15—H15C109.5
C3—C4—C10122.1 (2)H15B—C15—H15C109.5
C3—C4—H4119.0C14—C16—H16A109.5
C10—C4—H4119.0C14—C16—H16B109.5
C6—C5—C10121.0 (3)H16A—C16—H16B109.5
C6—C5—H5119.5C14—C16—H16C109.5
C10—C5—H5119.5H16A—C16—H16C109.5
C5—C6—C7119.5 (3)H16B—C16—H16C109.5
C5—C6—H6120.3Sn1—C17—H17A109.5
C7—C6—H6120.3Sn1—C17—H17B109.5
C8—C7—C6120.6 (3)H17A—C17—H17B109.5
C8—C7—H7119.7Sn1—C17—H17C109.5
C6—C7—H7119.7H17A—C17—H17C109.5
C7—C8—C9121.2 (2)H17B—C17—H17C109.5
C7—C8—H8119.4Sn1—C18—H18A109.5
C9—C8—H8119.4Sn1—C18—H18B109.5
C10—C9—C8117.5 (2)H18A—C18—H18B109.5
C10—C9—C1119.3 (2)Sn1—C18—H18C109.5
C8—C9—C1123.1 (2)H18A—C18—H18C109.5
C5—C10—C9120.1 (2)H18B—C18—H18C109.5
C5—C10—C4121.1 (2)
C17—Sn1—O1—C2164.4 (2)C2—C1—C9—C103.3 (4)
C18—Sn1—O1—C258.2 (2)C11—C1—C9—C10170.1 (2)
O2—Sn1—O1—C262.7 (3)C2—C1—C9—C8174.9 (2)
N1—Sn1—O1—C245.7 (2)C11—C1—C9—C811.6 (4)
C17—Sn1—O2—C13112.0 (2)C6—C5—C10—C90.7 (4)
C18—Sn1—O2—C13107.4 (2)C6—C5—C10—C4179.4 (3)
O1—Sn1—O2—C1312.4 (3)C8—C9—C10—C50.8 (4)
N1—Sn1—O2—C135.0 (2)C1—C9—C10—C5179.2 (3)
C17—Sn1—N1—C11121.3 (2)C8—C9—C10—C4179.1 (2)
C18—Sn1—N1—C1153.3 (2)C1—C9—C10—C40.7 (4)
O1—Sn1—N1—C1138.8 (2)C3—C4—C10—C5177.9 (3)
O2—Sn1—N1—C11149.3 (2)C3—C4—C10—C92.0 (4)
C17—Sn1—N1—C1276.0 (2)C12—N1—C11—C1178.7 (2)
C18—Sn1—N1—C12109.37 (19)Sn1—N1—C11—C118.5 (4)
O1—Sn1—N1—C12158.45 (19)C2—C1—C11—N117.0 (4)
O2—Sn1—N1—C1213.45 (17)C9—C1—C11—N1169.6 (3)
Sn1—O1—C2—C130.0 (4)C11—N1—C12—C13144.9 (2)
Sn1—O1—C2—C3151.56 (19)Sn1—N1—C12—C1318.7 (3)
C11—C1—C2—O111.2 (4)C11—N1—C12—C1490.4 (3)
C9—C1—C2—O1175.5 (2)Sn1—N1—C12—C14105.9 (2)
C11—C1—C2—C3167.2 (2)Sn1—O2—C13—O3175.6 (2)
C9—C1—C2—C36.1 (4)Sn1—O2—C13—C123.9 (3)
O1—C2—C3—C4176.6 (3)N1—C12—C13—O3165.3 (2)
C1—C2—C3—C45.0 (4)C14—C12—C13—O370.4 (3)
C2—C3—C4—C100.9 (4)N1—C12—C13—O214.3 (3)
C10—C5—C6—C71.4 (5)C14—C12—C13—O2110.1 (3)
C5—C6—C7—C80.4 (5)N1—C12—C14—C1561.6 (3)
C6—C7—C8—C91.1 (5)C13—C12—C14—C1560.7 (3)
C7—C8—C9—C101.7 (4)N1—C12—C14—C16172.6 (2)
C7—C8—C9—C1180.0 (3)C13—C12—C14—C1665.1 (3)

Experimental details

(I)(II)
Crystal data
Chemical formula[Sn(CH3)2(C16H15NO3)][Sn(CH3)2(C16H15NO3)]
Mr418.05418.05
Crystal system, space groupTrigonal, P32Triclinic, P1
Temperature (K)200153
a, b, c (Å)11.6246 (5), 11.6246 (5), 11.5864 (5)8.3148 (5), 8.6633 (5), 12.4320 (8)
α, β, γ (°)90, 90, 12071.030 (5), 87.440 (6), 84.553 (5)
V3)1355.92 (10)842.97 (9)
Z32
Radiation typeMo KαMo Kα
µ (mm1)1.431.53
Crystal size (mm)0.40 × 0.18 × 0.180.40 × 0.38 × 0.31
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2009
Integration
(X-RED; Stoe & Cie, 2009)
Tmin, Tmax0.599, 0.7830.744, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
14770, 4140, 4082 13032, 3859, 3798
Rint0.0530.091
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.09 0.034, 0.096, 1.12
No. of reflections41403859
No. of parameters212212
No. of restraints80
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 1.070.81, 2.39
Absolute structureFlack (1983), ???? Friedel pairs?
Absolute structure parameter0.02 (1)?

Computer programs: X-AREA (Stoe & Cie, 2009), X-AREA (Stoe & Cie, 2009, X-RED (Stoe & Cie, 2009, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) for (I) top
Sn1—C182.106 (3)Sn1—N12.1422 (16)
Sn1—O12.1070 (17)Sn1—O22.1504 (17)
Sn1—C172.107 (2)
C18—Sn1—O193.14 (9)C17—Sn1—N1107.19 (10)
C18—Sn1—C17127.01 (12)C18—Sn1—O292.42 (10)
O1—Sn1—C1798.63 (10)O1—Sn1—O2153.64 (6)
C18—Sn1—N1125.71 (9)C17—Sn1—O298.47 (10)
O1—Sn1—N180.77 (6)N1—Sn1—O275.09 (6)
Selected geometric parameters (Å, º) for (II) top
Sn1—C172.110 (3)Sn1—O22.1593 (18)
Sn1—C182.111 (3)Sn1—N12.165 (2)
Sn1—O12.1421 (19)
C17—Sn1—C18137.42 (12)O1—Sn1—O2152.46 (7)
C17—Sn1—O188.14 (9)C17—Sn1—N1117.83 (10)
C18—Sn1—O194.58 (10)C18—Sn1—N1104.43 (10)
C17—Sn1—O297.03 (10)O1—Sn1—N179.92 (7)
C18—Sn1—O299.54 (10)O2—Sn1—N173.74 (7)
 

Acknowledgements

SF thanks the Freistaat Sachsen for a PhD fellowship (Sächsisches Landesstipendium).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science
First citationAl-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891–897.  Web of Science CSD CrossRef CAS
First citationBasu Baul, T. S., Dutta, S., Rivarola, E., Scopelliti, M. & Choudhuri, S. (2001). Appl. Organomet. Chem. 15, 947–953.  CrossRef CAS
First citationBasu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1999). Z. Kristallogr. New Cryst. Struct. 214, 361–362.
First citationBasu Baul, T. S., Masharing, C., Willem, R., Biesemans, M., Holcapek, M., Jirasko, R. & Linden, A. (2005). J. Organomet. Chem. 690, 3080–3094.  Web of Science CSD CrossRef CAS
First citationBeltrán, H. I., Damian-Zea, C., Hernández-Ortega, S., Nieto-Camacho, A. & Ramirez-Apan, M. T. (2007). J. Inorg. Biochem. 101, 1070–1085.  Web of Science PubMed
First citationBeltrán, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfán, N. (2003). Chem. Eur. J. 9, 2291–2306.  Web of Science CSD CrossRef PubMed CAS
First citationBöhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809.
First citationBrock, C. P., Schweizer, W. B. & Dunitz, J. D. (1991). J. Am. Chem. Soc. 113, 9811–9820.  CrossRef CAS Web of Science
First citationDakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationHolmes, R. R. (1984). Progress Inorg. Chem. 32, 119–235.  CrossRef CAS Web of Science
First citationKobakhidze, N., Farfán, N., Romero, M., Méndez-Stivalet, J. M., Ballinas-López, M. G., García-Ortega, H., Domínguez, O., Santillan, R., Sánchez-Bartéz, F. & Gracia-Mora, I. (2010). J. Organomet. Chem. 695, 1189–1199.  Web of Science CSD CrossRef CAS
First citationNath, M., Yadav, R., Gielen, M., Dalil, H., de Vos, D. & Eng, G. (1997). Appl. Organomet. Chem. 11, 727–736.  CrossRef CAS Web of Science
First citationNitta, H., Yu, D., Kudo, M., Mori, A. & Inoue, S. (1992). J. Am. Chem. Soc. 114, 7969–7975.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSmith, F. E., Hynes, R. C., Ang, T. T., Khoo, L. E. & Eng, G. (1992). Can. J. Chem. 70, 1114–1120.  CrossRef CAS Web of Science
First citationSmith, F. E., Khoo, L. E., Goh, N. K., Hynes, R. C. & Eng, G. (1996). Can. J. Chem. 74, 2041–2047.  CrossRef CAS Web of Science
First citationStoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
First citationTian, L., Shang, Z., Zheng, X., Sun, Y., Yu, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 20, 74–80.  Web of Science CSD CrossRef CAS
First citationWallach, O. (1895). Liebigs Ann. Chem. 286, 119–143.  CrossRef CAS
First citationWang, J., Zhang, Y., Xu, Y. & Wang, Z. (1992). Heteroatom Chem. 3, 599–602.  CrossRef CAS Web of Science
First citationWarncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46–52.  Web of Science CSD CrossRef CAS
First citationYin, H.-D., Wang, Q.-B. & Xue, S.-C. (2004). J. Organomet. Chem. 689, 2480–2485.  Web of Science CSD CrossRef CAS
First citationZamudio-Rivera, L. S., George-Tellez, R., Lopez-Mendoza, G., Morales-Pacheco, A., Flores, E., Höpfl, H., Barba, V., Fernandez, F. J., Cabirol, N. & Beltrán, H. I. (2005). Inorg. Chem. 44, 5370–5378.  Web of Science PubMed CAS

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds