Journal of Cellular Biochemistry

Cover image for Vol. 116 Issue 12

Edited By: C. Fred Fox, Gary S. Stein, and Max M. Burger

Impact Factor: 3.263

ISI Journal Citation Reports © Ranking: 2014: 93/184 (Cell Biology); 107/289 (Biochemistry & Molecular Biology)

Online ISSN: 1097-4644

Recently Published Issues

See all

Top Cited Articles 2014

Gillies, L. A. and Kuwana, T.
Apoptosis Regulation at the Mitochondrial Outer Membrane
Journal of Cellular Biochemistry 2014, vol. 115, p. 632

Song, L., Li, Y., Li, W., Wu, S. and Li, Z.
miR-495 Enhances the Sensitivity of Non-Small Cell Lung Cancer Cells to Platinum by Modulation of Copper-Transporting P-type Adenosine Triphosphatase A (ATP7A)
Journal of Cellular Biochemistry 2014, vol. 115, p. 1234

Shang, J., Yang, F., Wang, Y., Wang, Y., Xue, G., Mei, Q., Wang, F. and Sun, S..
MicroRNA-23a Antisense Enhances 5-Fluorouracil Chemosensitivity Through APAF-1/Caspase-9 Apoptotic Pathway in Colorectal Cancer Cells
Journal of Cellular Biochemistry 2014, vol. 115, p. 772

Tsimbouri, P., Gadegaard, N., Burgess, K., White, K., Reynolds, P., Herzyk, P., Oreffo, R. and Dalby, M. J
Nanotopographical Effects on Mesenchymal Stem Cell Morphology and Phenotype
Journal of Cellular Biochemistry 2014, vol. 115, p. 380

Cai, Y., Cai, T. and Chen, Y.
Wnt Pathway in Osteosarcoma, from Oncogenic to Therapeutic
Journal of Cellular Biochemistry 2014, vol. 115, p. 625

See More Here

SEO Tips for Authors

SEO Author

JCB Spotlight Article

Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies

Chui-Yee Fong, Arjunan Subramanian, Arijit Biswas and Ariff Bongso

Some cord blood banks freeze entire pieces of UC (mixed cord, MC) which after post-thaw yields mixed heterogeneous populations of mesenchymal stem cells (MSCs) from all its microanatomical compartments. Freezing of such entire tissues results in sub-optimal post-thaw cell recovery because of poor cryoprotectant diffusion and intracellular ice-formation, heat and water transport issues, and damage to intercellular junctions. To develop a simple method of harvesting pure homogeneous MSCs for cord blood banks, we compared the post-thaw behavior of three groups of frozen UC tissues: (i) freshly harvested WJ without cell separation; (ii) MSCs isolated from WJ (WJSC); and (iii) MC, WJ, and WJSC produced high post-thaw cell survival rates (93.52 ± 6.12% to 90.83 ± 4.51%) and epithelioid monolayers within 24 h in primary culture whereas post-thaw MC explants showed slow growth with mixed epithelioid and fibroblastic cell outgrowths after several days. Viability and proliferation rates of post-thawed WJ and hWJSC were significantly greater than MC. Post-thaw WJ and WJSC produced significantly greater CD24+ and CD108+ fluorescence intensities and significantly lower CD40+contaminants. Post-thaw WJ and WJSC produced significantly lesser annexin-V-positive and sub-G1 cells and greater degrees of osteogenic and chondrogenic differentiation compared to MC. qRT-PCR analysis of post-thaw MC showed significant decreases in anti-apoptotic gene expression (SURVIVIN, BCL2) and increases in pro-apoptotic (BAX) and cell cycle regulator genes (P53, P21, ROCK 1) compared to WJ and WJSC. We conclude that freezing of fresh WJ is a simple and reliable method of generating large numbers of clinically utilizable MSCs for cell-based therapies.



BIOCHEMISTRY EcThis content will be freely available to all through September 17th. Don't miss out.

New Content

Subscribe to RSS headline updates from: Journal of Cellular Biochemistry
Powered by FeedBurner