Journal of Cellular Biochemistry

Cover image for Vol. 117 Issue 1

Edited By: C. Fred Fox, Gary S. Stein, and Max M. Burger

Impact Factor: 3.263

ISI Journal Citation Reports © Ranking: 2014: 93/184 (Cell Biology); 107/290 (Biochemistry & Molecular Biology)

Online ISSN: 1097-4644

Recently Published Issues

See all

Top Cited Articles 2014

Gillies, L. A. and Kuwana, T.
Apoptosis Regulation at the Mitochondrial Outer Membrane
Journal of Cellular Biochemistry 2014, vol. 115, p. 632

Song, L., Li, Y., Li, W., Wu, S. and Li, Z.
miR-495 Enhances the Sensitivity of Non-Small Cell Lung Cancer Cells to Platinum by Modulation of Copper-Transporting P-type Adenosine Triphosphatase A (ATP7A)
Journal of Cellular Biochemistry 2014, vol. 115, p. 1234

Shang, J., Yang, F., Wang, Y., Wang, Y., Xue, G., Mei, Q., Wang, F. and Sun, S..
MicroRNA-23a Antisense Enhances 5-Fluorouracil Chemosensitivity Through APAF-1/Caspase-9 Apoptotic Pathway in Colorectal Cancer Cells
Journal of Cellular Biochemistry 2014, vol. 115, p. 772

Tsimbouri, P., Gadegaard, N., Burgess, K., White, K., Reynolds, P., Herzyk, P., Oreffo, R. and Dalby, M. J
Nanotopographical Effects on Mesenchymal Stem Cell Morphology and Phenotype
Journal of Cellular Biochemistry 2014, vol. 115, p. 380

Cai, Y., Cai, T. and Chen, Y.
Wnt Pathway in Osteosarcoma, from Oncogenic to Therapeutic
Journal of Cellular Biochemistry 2014, vol. 115, p. 625

See More Here

SEO Tips for Authors

SEO Author

JCB Spotlight Article

Fyn Accelerates M Phase Progression by Promoting the Assembly of Mitotic Spindle Microtubules

Mai Okamoto, Yuji Nakayama, Ayana Kakihana, Ryuzaburo Yuki, Noritaka Yamaguchi, Naoto Yamaguchi

The mitotic spindle is the major piece of cellular machinery essential for faithful chromosome segregation. Whereas Fyn, a member of Src-family kinases, is known to be localized to the meiotic and mitotic spindle microtubules, the role of Fyn in mitotic spindle formation has not yet been completely elucidated. In this study, we studied the role of Fyn in spindle formation and effects on M-phase progression. Re-expression of Fyn induced increases in the fluorescence intensity of mitotic spindle microtubules in SYF cells having triple knock-out mutations of c-Src, c-Yes, and Fyn. Cold treatment results showed that Fyn increases the maximum length of microtubules in HeLa S3 cells in a manner dependent on Fyn kinase activity. Complete depolymerization of microtubules under cold treatment and the following release into 37°C revealed that the increase in the microtubule length in Fyn-expressing cells may be attributed to the promotion of microtubule polymerization. After cold treatment, Fyn promotes the accumulation of EB1, which is a plus-end tracking protein and facilitates microtubule growth, in a manner dependent on the kinase activity. Furthermore, Fyn accelerates the M phase progression of cells from nocodazole arrest. These results suggest that Fyn facilitates mitotic spindle formation through the increase in microtubule polymerization, resulting in the acceleration of M-phase progression.

New Content

Subscribe to RSS headline updates from: Journal of Cellular Biochemistry
Powered by FeedBurner