Journal of Research in Science Teaching

Cover image for Vol. 54 Issue 2

Edited By: Fouad Abd-El-Khalick and Dana L. Zeidler

Impact Factor: 3.052

ISI Journal Citation Reports © Ranking: 2015: 6/230 (Education & Educational Research)

Online ISSN: 1098-2736

All Virtual Issues



Attending to Affect in Science Education
June 2014

David Fortus

Abit more than 10 years after Alsop andWatts pointed out that “Despite the widespread belief that emotions are a central part of learning and teaching, contemporary work in science education exploring affect is scant” (2003, p. 1043), the level of attention given by science education researcher to affect has changed little. In the 11 years spanning 2001–2011, less than 10% of the articles published in the Journal of Research in Science Teaching (JRST), Science Education (SciEd), and the International Journal of Science Education (IJSE) have dealt with emotional perspectives on teaching and learning science, such as interest, motivation, attitudes, and selfefficacy, sometimes called affect (Alsop & Watts, 2003). While this 10% actually reflects a significant number of articles (138), when one considers the centrality of affect to teaching and learning and the broad range of topics that are related to affect, it is concerning that it has received relatively so little attention.

With the hope of promoting awareness of the importance of this topic and past research on it, the rest of this article provides (A) my hypothesis why affect has been under-attended to by the science education research community and the ramifications of this under-attendance and (B) an overview of the research on affect in science education that has been published in JRST, SciEd, and IJSE between 2001 and 2011. I have made no attempt to synthesize or do a meta-analysis of this research; my purpose is to provide readers with a sense of some of the important work that has been done, to guide researchers and teachers to articles that may be relevant to their work, and to point out some weaknesses that should be avoided in the future. The overview ends by directing readers to a virtual issue of JRST on affect which presents some excellent examples of studies on affect that were published by JRSTin the past decade.

Learning environment, motivation, and achievement in high school science

Susan Bobbitt Nolen

In a study of the relationship between high school students’ perceptions of their science learning environments and their motivation, learning strategies, and achievement, 377 students in 22 introductory science classrooms completed surveys in the fall and spring of their ninth-grade year. Hierarchical linear regression was used to model the effects of variables at both the classroom and individual level simultaneously. High intraclass agreement (indicated by high parameter reliability) on all classroom environment measures indicated that students shared perceptions of the classroom learning environment. Controlling for other factors, shared perceptions that only the most able could succeed in science classrooms and that instruction was fast-paced and focused on correct answers negatively predicted science achievement, as measured on a districtwide curriculum-linked test. Shared perceptions that classrooms focused on understanding and independent thinking positively predicted students’ self-reported satisfaction with learning. Implications of these results for both teaching and research into classroom environments are discussed.

Developing a sustained interest in science among urban minority youth

Sreyashi Jhumki Basu, Angela Calabrese Barton

This study draws upon qualitative case study to investigate the connections between the ‘‘funds of knowledge’’ that urban, high-poverty students bring to science learning and the development of a sustained interest in science. We found that youth developed a sustained interest in science when: (1) their science experiences connected with how they envision their own futures; (2) learning environments supported the kinds of social relationships students valued; and (3) science activities supported students’ sense of agency for enacting their views on the purpose of science.

Teacher beliefs and intentions regarding the implementation of science education reform strands

Jodi J. Haney, Charlene M. Czerniak and Andrew T. Lumpe

The purpose of this study was to determine the factors influencing teachers’ intentions to implement the four strands (inquiry, knowledge, conditions, and applications) of the State of Ohio’s (US.) Competency Based Science Model. Ajzen’s Theory of Planned Behavior was used to examine the influence of three primary constructs (attitude toward the behavior, subjective norm, and perceived behavioral control) on teachers’ intentions to engage in the targeted behaviors. The teachers’ salient beliefs for each of the primary constructs were further examined to determine their degree of contribution. Differences between various teacher populations for both intent and the three primary constructs were also investigated. The data were obtained using survey research (N = 800 Ohio teachers, randomly selected and stratified by grade level and state region). Backward solution multiple regression and analysis of variance techniques were used for statistical analyses. Results indicated that the attitude toward the behavior construct held the greatest influence of Ohio teachers’ intent to implement all four strands of the science model; several salient beliefs for each of the three constructs significantly contribute to the constructs; and significant differences exist between various teacher populations for both intent and the three constructs.

Evaluating the impact of science-enrichment programs on adolescents' science motivation and confidence: The splashdown effect

Jayne E. Stake and Kenneth R. Mares

The impact of summer science-enrichment programs on high-school students’ science motivation and confidence was evaluated in a 7-month period following program completion. The programs took place on a college campus. The splashdown effect was defined as program-related changes the program graduates recognized in themselves that became apparent to them after reentry to their home high school. The effect was studied in a group of 88 gifted girls and boys from 38 high schools. On qualitative and quantitative measures obtained during private interviews, students reported a strong splashdown effect after returning to their high school. Results supported the validity of the splashdown concept. Splashdown motivation and splashdown confidence (i.e., recognition of program-related gains in motivation and confidence that occurred after high-school reentry) predicted change in corresponding science attitudes during the follow-up period. As predicted by social comparison theory, the intensity of the splashdown effect was associated with average school achievement in the student’s home high school. Students from academically weaker schools reported stronger splashdown effects. Implications for enhancing and evaluating the effect of science-enrichment programs on students’ science attitudes are discussed.

The cultural production of science in reform-based physics: Girls' access, participation, and resistance

Heidi B. Carlone

Recent literature in science education suggests that, to transform girls’ participation, learning, and identities within school science, we must think about ways to engage girls in different kinds of educational activities that promote broader meanings of science and scientist. This study was designed to examine more deeply this call for a changed science curriculum and its implications for girls’ participation, interest, and emerging science identities. In this ethnographic study, I examine the culturally produced meanings of science and scientist in a reform-based physics classroom that used a curriculum called Active Physics, how these meanings reproduced and contested larger sociohistorical (and prototypical) meanings of science and scientist, and the ways girls participated within and against these meanings. The girls in this upper middle class school were mostly concerned with accessing and maintaining a good student identity (rather than connecting to science in any meaningful way) and resisted promoted meanings of science and scientist that they perceived as threatening to their good student identities. Their embrace of the ways school defined success (via grades and college admission) produced a meaning of Active Physics as a way to get credentials on a transcript and ensured their disconnection from real-world, meaningful science and science identities. The story of girls’ participation and resistance in Active Physics complicates our quest for gender-fair science and highlights the power of sociohistorical meanings of schooling and science in producing educational subjects.

Motivation for learning science in kindergarten: Is there a gender gap and does integrated inquiry and literacy instruction make a difference

Helen Patrick,, Panayota Mantzicopoulos and Ala Samarapungavan

We investigated whether kindergarten girls’ and boys’ (N¼162) motivation for science (perceived competence and liking) differed. Children were ethnically and linguistically diverse, primarily from low-income families, and attended one of three schools. One school offered a typical kindergarten science experience. Kindergarteners in the other two schools participated in the Scientific Literacy Project (SLP)—a program based on a conceptually coherent sequence of integrated science inquiry and literacy activities. SLP lasted either 5 or 10 weeks. Regardless of sex, both groups of SLP children had greater motivation for science than children who had only the regular science experience. Moreover, children receiving 10 weeks of SLP reported greater science competence than those who received 5 weeks. Boys in regular classrooms reported liking science more than did girls, however there was no sex difference for SLP children. These results are supported by interview data accessing children’s ideas about science. The findings suggest that early meaningful participation in science is likely to promote girls’ and boys’ motivation for science.

Is science me? High school students' identities, participation and aspirations in science, engineering, and medicine

Pamela R. Aschbacher, Erika Li and Ellen J. Roth

This study follows an ethnically and economically diverse sample of 33 high school students to explore why some who were once very interested in science, engineering, or medicine (SEM) majors or careers decided to leave the pipeline in high school while others persisted. Through longitudinal interviews and surveys, students shared narratives about their developing science identities, SEM participation and aspirations. In analysis, three groups emerged (High Achieving Persisters, Low Achieving Persisters, and Lost Potentials), each experiencing different interactions and experiences within science communities of practice in and outside of school and within the extended family. These different microclimates framed students’ perceptions of their SEM study, abilities, career options, and expected success, thereby shaping their science identities and consequent SEM trajectories. School science was often hard and discouraging; there were very few science advocates at school or home; and meaningful opportunities to work with real science professionals were scarce, even in schools with science or health academies. Students expressed positive attitudes toward science and non-science pursuits where they experienced success and received support from important people in their lives. Results underscore the key role communities of practice play in career and identity development and suggest a need for interventions to help socializers better understand the value and purpose of science literacy themselves so as to encourage students to appreciate science, be aware of possible career options in science and enjoy learning and doing science.

Adolescents’ declining motivation to learn science: Inevitable or not?

Dana Vedder-Weiss and David Fortus

There is a growing awareness that science education should center not just on knowledge acquisition but developing the foundation for lifelong learning. However, for intentional learning of science to occur in school, out of school, and after school, there needs to be a motivation to learn science. Prior research had shown that students’ motivation to learn science tends to decrease during adolescence [Anderman and Young [1994] Journal of Research in Science Teaching 31: 811–831; Lee and Anderson [1993] American Educational Research Journal 30: 585–610; Simpson and Oliver [1990] Science Education 74: 1–18]. This study compared 5th through 8th grade students’ self-reported goal orientations, engagement in science class, continuing motivation for science learning, and perceptions of their schools’ and parents’ goals emphases, in Israeli traditional and democratic schools. The results show that the aforementioned decline in adolescents’ motivation for science learning in school and out of school is not an inevitable developmental trend, since it is apparent only in traditional schools but not in democratic ones. The results suggest that the non-declining motivation of adolescents in democratic schools is not a result of home influence but rather is related to the school culture .





Celebrating 50 Years!
2013

In celebration of the Journal of Research and Science Teaching’s 50th anniversary, we have put together a special virtual issue highlighting the most influential works over the past 50 years, with complementary access to each article. We had young career award winners select the most influential articles and write a commentary for each. *[See full list of references here (PDF 190KB)]


1963 - 1969

The role of inquiry in science teaching
Rutherford, F. J. (1964)

Commentary by Julie Bianchini
     In 1964, almost 50 years ago, Rutherford argued that teachers should become well- grounded in the history and philosophy of science so as to effectively teach science as inquiry in their classrooms. He defined scientific inquiry as part of the content of science itself. “To separate conceptually scientific content from scientific inquiry,” he underscored, “is to make it highly probable that the student will properly understand neither” (p. 84). Rutherford also discussed two ways teachers should engage their students in inquiry learning: (1) inquiry as content, where the process of discovery and investigation is integrated into the examination of science facts, laws, principles, and theories; and (2) inquiry as technique, where students conduct first-hand investigations of select topics to understand the nature of scientific inquiry as it actually happens.
     Science educators, at least those in the US, should re/read Rutherford’s (1964) brief article for two reasons. One, it serves as a reminder that our efforts to make inquiry processes/science and engineering practices central to the teaching and learning of K-12 science extend at least as far back as the NSF-funded curriculum development projects of the post-World War II era. (Rutherford was a key contributor to Harvard Project Physics.) Now as then, science educators stand “unalterably opposed to the rote memorization of the mere facts and minutiae of science . . . and foursquare . . . for the teaching of . . . the inquiry method [now called practices]” (p. 80). As a second reason, even though the recent Framework for K-12 Science Education (National Research Council, 2012) gives less time and attention to the nature and history of science, understanding the history and philosophy of science remains inextricably intertwined with reform-based science teaching. The ongoing debate over how to distinguish the practice of arguing from evidence, grounded in Toulmin’s (1958) work, from the practice of constructing explanations is a case in point (see Berland & McNeill, 2012; Osborne & Patterson, 2011, 2012). “Until science teachers have acquired a rather thorough grounding in the history and philosophy of the sciences they teach, . . . not much progress toward the teaching of science as inquiry can be expected” (Rutherford, 1964, p. 84).

Commentary by Fouad Abd-El-Khalick
     Since its ‘infancy,’ JRST has played a critical role in shaping research and development in science education through consistently identifying and disseminating highly impactful work. This conceptual paper, published in JRST’s second volume, most likely was F. James Rutherford’s first journal publication. This is the same Rutherford who later would co-direct Harvard Project Physics with Gerald Holton and Fletcher Watson and co-author the famed Project Physics Course textbooks (e.g., Rutherford, Holton, & Watson, 1970), and eventually co-author with Andrew Ahlgren Science for All Americans (AAAS, 1990), arguably one of the most influential documents in the history of our field. Particularly significant is that this paper introduced or, at least, was the first to elucidate, the distinction between two meanings of scientific inquiry in the context of precollege science teaching, namely, “inquiry as content,” that is “as it appears in the scientific enterprise” and “inquiry as pedagogic technique,” that is “using the method of scientific inquiry to learn some science” (p. 80). This distinction continues to thrive and pervade our present discourse under rubrics, such as ‘inquiry as an end’ or developing understandings about scientific inquiry, and ‘inquiry as means’ or learning science content through inquiry (e.g., NRC, 2000). Equally important, Rutherford argued that inquiry and content are intertwined, “the wrap and woof of a single fabric” (p. 83) affirming that the effective teaching of science as inquiry becomes possible when science teachers “come to understand just how inquiry is in fact conducted in the sciences” (p. 84). Toward that end, Rutherford proposed a coupling that has guided and continues to guide a longstanding professional development agenda for teachers by unequivocally asserting that “until science teachers have acquired a rather thorough grounding in the history and philosophy of the sciences they teach, this kind of understanding will elude them, in which event not much progress toward the teaching of science as inquiry can be expected” (p. 84). In effect, Rutherford had tasked us with developing teachers’ understandings of nature of science, a task that continues to exercise extensive research and development efforts almost 50 years after the publication of his paper.

Development and learning
Piaget, J. (1964)

Commentary by Grady Venville
     This is an amazing paper from an historical point of view, written and presented as a lead paper for two conferences held in 1964 at Cornell University and University of California, Berkeley by the Swiss developmental psychologist Gene Piaget and published in the second volume JRST. I understand from the preface of this issue of JRST that it was very difficult to convince Piaget to attend or present at international conferences, and I believe that the 50 delegates were privileged to attend the two conferences where he was chief consultant. Likewise, as NARST members, we are privileged to have access to these words from Piaget published in JRST. There is so much in the lines that reflect Piaget’s legacy as a pioneer of constructivist theory. One aspect of Piaget’s paper that struck me on reading it again recently is Piaget’s lucid distinction between development and learning that influenced education and science education in important and substantial ways. My own research agenda in science education has been contextualised within both developmental and learning frameworks and I find it empowering to go back to Piaget’s original descriptions of these epistemological constructs.
     I was fortunate in the early stages of my career to work with Philip Adey during a postdoctoral research assistantship at King’s College, London where we did research on cognitive acceleration, that is, the potential to accelerate children’s cognitive development and broaden their cognitive processing in order to enable enhanced science learning. The influence of Piagetian theory on this avenue of research in science education was strong and radical, but not without controversy. This paper represents, for me, the kernel of the successful underpinning Piagetian theory of the work on cognitive acceleration by Philip Adey, Michael Shayer, Carolyn Yates, and colleagues that has been one of the few research programs that has genuinely translated into measurable cognitive gains and improvement in student achievement in science.

Relation of wait-time and rewards to the development of language, logic, and fate control: Part II-Rewards
Rowe, M.B. (1974)

Commentary by Julie Bianchini
     Rowe’s (1974a) construct of wait-time is straightforward. She found that both the length and the quality of students’ responses increase when teachers slow the pace of instruction and give themselves and their students more time. She recommended teachers wait at least three seconds before (wait-time 1) and after (wait-time 2) students speak to enhance the “language and logic” of their answers (p. 81). Extended wait-time, Rowe continued, also increases the number of students who participate (including those labeled struggling by teachers) and the kinds of responses they generate (including new questions, evidence-inference statements, and responses to other students).
     Rowe’s (1974) research on wait-time is much more complex than the construct itself. She recorded over a thousand hours of instruction in elementary classrooms where NSF-funded, inquiry-oriented materials were implemented. She then used a servo-chart plotter to systematically track the speech, pauses, and silences of teachers and students during their conversations. Indeed, it took Rowe (see also 1974b, 1974c) three articles across three JRST issues to fully articulate her research methods and findings.
     Forty years later, Rowe’s (1974) recommendation for wait-time remains well known, but her purpose in calling for its implementation appears less so. Rowe viewed wait-time as central to effective implementation of inquiry instruction. She understood that close attention to the substance, forms, and fluency of students’ every day and science talk was necessary to nurture their curiosity and to support their investigations of natural phenomena. She persuasively argued for movement from “interchanges between teachers and children [that] . . . more closely resemble an inquisition [a sequence of rapid-fire questions and answers]” to “a joint investigation or a reasonable conversation” (p. 82). As such, our current emphasis on science discourse as integral to reform-based science education (Duschl, Schweingruber, & Shouse, 2007; National Research Council, 2012) has firm historical roots. The work of Rowe (and others) can inform our understanding of how best to promote student-student and student-teacher talk in the teaching and learning of science.

Encouraging the transition from concrete to formal cognitive functioning-An experiment
Lawson, A. E., & Wollman, W. T. (1976)

Commentary by Hsin-Kai Wu
     Anton Lawson’s work has been helping us interpret and examine Piaget’s theory and provided profound insight into the improvement of science teaching. Rather than taking a position that teachers must wait until students are cognitively ready, Lawson and Wollman (1976) conducted a well-planned and thoughtful experiment to illustrate the complex interplay between development and instruction. The study showed that given appropriate instruction children are capable to achieve a cognitive level higher than the one indicated by the stage-like developmental theory. The results contribute significantly to the instruction literature and provide evidence that children’s capabilities are sensitive and amenable to instruction and that children’s development can be advanced under well-designed instruction. Thus, the developmentally appropriate science education should not only concern students’ starting points suggested by developmental psychology but should also take classroom instruction into consideration.
Another significant contribution of Lawson’s series of studies to scientific reasoning is the development of a valid instrument for measuring cognitive levels and reasoning skills. Although most of the tasks in the instrument were adopted from the literature, Lawson and Wollman (1976) and Lawson (1978) successfully transformed these reasoning tasks into a useful classroom test and developed scoring rubrics to grade students’ responses. The reasoning test has become one of the most widely used instruments in science education and been frequently chosen as the criterion to establish the validity of a newly developed test. This valid and reliable instrument of scientific reasoning allows follow-up researchers to explore important issues in science learning and teaching, and is an important resource for research on scientific thinking, inquiry skills, and science abilities. Science teaching and the development of reasoning

Science teaching and the development of reasoning
Karplus, R. (1977)

Commentary by Hsin-Kai Wu
     Like Lawson and Wollman (1976), Karplus (1977) was also built upon Piaget’s theory and emphasized the role of instruction in cognitive development. As the late Karplus stated on p. 174, “Piaget’s ideas can and should be used actively for instructional improvement, and should not be interpreted as implying that education must wait until development has occurred spontaneously.” In this short position paper, Karplus (1977) offered an excellent example of how a cognitive theory can be translated into observable learning performances and feasible instructional methods. He dissected the concrete and formal reasoning into two sets of reasoning patterns and demonstrated the applications of Piaget’s theory to teaching concepts of density and temperature, proposed the use of learning cycle to facilitate concept development, and illustrated the connections between Piaget’s theory and the three phases in the cycle.
     Additionally, three significant contributions are made in Karplus (1977). First, the article suggests a close connection between the formation of reasoning patterns and concept learning. Of much importance today, recent research has shown that scientific reasoning and conceptual development are intertwined in complicated ways. Second, the three-phase learning cycle has been one of the most influential instructional models in science and modified into various forms for constructivist and inquiry learning. This article captures the original ideas and theoretical foundations behind the model. Third, the notion of self-regulation and the active role played by the individual are recognized and emphasized in the article. These topics are still prominent in current studies of science learning, particularly those in the student-centered settings.

1980 – 1989

Adolescent reasoning in socio-scientific issues, part I: Social cognition
Fleming, R. (1986)

Commentary by Randy Bell
     In 1994, I entered the science education doctoral program at Oregon State University, fresh from the field, with six years of science teaching in a rural Oregon high school. Having some experience in teaching the nature of science, I began working with Norm Lederman. I soon learned that central to the rationale for nature of science instruction is the assertion that improved understandings of science and its processes will lead to better decisions on socio-scientific issues (Driver, Leach, Millar, & Scott, 1996). However, at the end of the 1990’s, when I was working on my dissertation, this assertion had little empirical support.
     Central to the conceptual framework for this line of research is Fleming’s (1986) manuscript that explored the nature of the interaction between adolescents' knowledge of the physical and social worlds when making decisions on STS related social issues. Working with high school students, Fleming found that the primary domain of reasoning for these adolescents lie within the area of social cognition. More specifically, participants’ reasoning focused on (a) the moral domain, which emphasizes concepts regarding the welfare and rights of others and justice, and (b) the personal domain, which emphasizes self-preservation, respect for individuality, and control over one's physical state.
     These findings, in conjunction with some of the early work of Zeidler and Lederman, led me to question the assumption that one’s understanding of the nature of science necessarily impacts decision making on socio-scientific issues. Testing this assumption became the focus of my dissertation and subsequent work (e.g., Bell & Lederman, 2003; Matkins & Bell , 2007; Bell, Matkins, & Gansneder, 2011). It turns out that the relationship is much more complicated than originally assumed, and delineating its complexity has occupied the efforts of many science educators. Those of us who have explored decision making on socio-scientific issues owe a debt of gratitude to Fleming’s original work more than 25 years ago.


Commentary by Troy Sadler

     By the time of this article’s publication in the mid 1980s, the science-technology-society (STS) approach to science education was well established. Fleming situates his work as a part of the STS movement, but he distinguishes the research by focusing on student negotiation of “socio-scientific issues” (p. 677) which he classifies as “multidimensional and ambiguous” (p. 679) and which necessarily require the synthesis of “knowledge of the physical world and knowledge of the social world” (p. 677). Fleming borrowed the term socio-scientific issues (SSI) from a philosophy of science text (Wessel, 1980), but he was the first to introduce the expression to the science education community. More important than the term is the article’s focus on how students balance moral issues, social conventions and personal reasoning as they consider complex issues at the intersection of science and society. In this article and a companion piece, also published in JRST, Fleming provides empirical evidence of how important these considerations are as well as the relatively limited contributions of science content knowledge in learners’ natural decision-making processes. This is not to say that science content and practices should not be a primary focus in the negotiation of SSI, but rather, that most students require significant supports in order to incorporate their scientific understandings as they consider complex SSI. Fleming argues that science educators should take advantage of students’ natural inclinations to respond to complex issues through social cognition as a “starting point for instruction” (p. 686). The STS movement remained prominent more than a decade beyond this publication. While some work classified under the STS banner was consistent with Fleming’s contribution, many STS projects moved in different directions. In the early 2000s, researchers began distinguishing SSI-themed work from the broader STS projects, and the themes Fleming discussed became central to these distinctions. Fleming’s article became a seminal reference for the emerging SSI movement.

Cognitive consequences of student estimation on linear and logarithmic scales
Berger, C. F., Pintrich, P. R., and Stemmer, P. M. (1987)

Commentary by Thomas R. Tretter
     Much of current science is well beyond our ability to directly perceive it – phenomena whose spatial scale are too big (e.g. cosmology) or too small (e.g. nanoscience), too fast (e.g. synapses firing) or too slow (e.g. geologic time). Yet in spite of our sensory limitations, we have made tremendous strides in scientific understanding at these extremes of scale, and this is reflected in our K-16 science curricula. A strand of my research has explored how people from elementary age through scientifically accomplished adults think about these types of scientific phenomena. One key resource to support the necessary thinking (intuitively or mathematically) is to be able to think logarithmically rather than linearly. Berger, Pintrich, and Stemmers’ (1987) study on student cognitive approaches to thinking logarithmically vs. linearly was one key reading that focused my thinking on this core cognitive issue and influenced my research. Their study measured middle school students’ performance on a computer-delivered estimation task (firing a virtual dart at a target, where the student input a numerical estimate of the location of the pictured target on a number line). After the dart hit at the student-estimated location, students got immediate feedback on the actual numerical position of the target, and repeated the exercise for 10 targets. Results showed that while linear estimations got progressively faster across the 10 trials, logarithmic ones did not, highlighting the need for cognitive processing time when thinking logarithmically. Both the linear and logarithmic tasks showed the lowest errors when the target was near one of the labeled endpoints and the highest errors when it was farthest from any labeled endpoint, with this error difference more pronounced for the logarithmic scenario. This result highlighted that when thinking logarithmically, having benchmark reference points as cognitive touchpoints is even more important than it is when thinking linearly.

The role of language in children’s formation and retention of mental images
Howe, A.; & Vasu, E. (1988)

Commentary by Bryan Brown
     JRST sustained a profound tradition of leading scholarship by planting the seeds of intellectual growth in critical areas of research. This tradition is evident in studies about relationship between discourse, cognition, and the culture of science learning.
     Two manuscripts exemplify this history. Ann Howe & Ellen Vasu’s (1988) examination of discourse and students’ retention of images provides as example of trend setting scholarship. They compared students’ retention of science cross-section images. Their work highlighted how understanding an image was differentially affected by producing a visual representation or verbal descriptions of the phenomenon. The power of this research lies in the illumination of the role of discourse as a dynamic cognitive device that has many forms (symbolic, mathematic, textual, and linguistic).
     Ohkee Lee’s (1997) editorial served as another example of JRST’s capacity to push or understanding of the role of discourse and students’ cognition. Lee argued that, “students bring with them their own ways of looking at the world that are representative of their cultural and language environments (p.221).” This piece and the line of scholarship in the special issue on science literacy illuminated how issues of discourse learning could ultimately be explored through understanding the relationship between students’ cultural discourse and those valued by classroom science.
     Both Howe & Vasu (1988) and Lee (1988) helped scholars reconsider how language plays a role in the mediation of science ideas. How & Vasu (1988) point to the cognitive difficulty of mastering the multimodal, dense, and complicated nature of science discourse. Conversely, Lee (1988) highlighted how science literacy has long be conceived us as the property of the western world and has largely misused the linguistic resources embedded in the everyday culture and discourse of people all over the world. Ultimately, our new era of research has much to learn from the tradition established by Howe & Vasu (1988) and Lee (1988). Developing a comprehensive understanding of how discourse, culture, and cognition are critical dimensions of science learning can enhance the science education community. Fortunately, the seeds of intellectual growth were sown for the JARST community to nourish for years to come.

1990 – 1999

Epistemological perspectives on conceptual change: Implications for education practice
Duschl, R. A., & Gitomer, D. H. (1991)


Commentary by Grady Venville
     This paper was published just as I moved from being a classroom science teacher to embarking on doctoral studies in the early 1990s. I found the article powerful because of the lucid and critical connections Rick Duschl and Drew Gitomer were able to make between the history and philosophy of science, cognitive psychology, science education theory, and the dynamics of the classroom, including assessment.
     The most commanding aspect of the paper is the description of portfolio culture that Duschl and Gitomer align with their view of conceptual change teaching and learning and integrate with assessment. What was new at that time for me, was the notion of students making a collection of their work that would enable them to evaluate their own knowledge claims and provide evidence of their own conceptual development. I was excited when I first read this article by the idea that creating a portfolio is an intentional and autonomous activity that students can undertake to take control of their own learning. The portfolio mechanism, described by Duschl and Gitomer, created for probably the first time in my mind a practical method where learning was transformed from something the teacher does to the learner, to something the learner does for themselves with the guidance of the teacher.
     I found three other aspects of the paper very helpful. First, the overview of conceptual change perspectives on learning included all the seminal papers up to that time and mapped the critical changes in the way that learning had been viewed historically. Second, the authors used an example from Earth science of plate tectonics to illustrate the logic of a developmental approach for conceptual change that helped to bring the complex theoretical discussion alive for me. Third, Table 1 outlined both traditional and portfolio cultures in science classrooms and the juxtaposition improved my understanding of science, curriculum goals, the role of the teacher and the role of the learning.

Rethinking science education: Beyond Piagetian constructivism toward a sociocultural model of teaching and learning
O'Loughlin, M. (1992)

Commentary by Heidi B. Carlone
     In Rethinking science education: Beyond Piagetian constructivism toward a sociocultural model of teaching and learning, Michael O’Loughlin (1992) challenged science education’s dominant assumptions about the processes of learning (Piagetian constructivism) and the pedagogy claimed to support robust learning (student-centered pedagogy). O’Loughlin argued that learning is tied to social, historical, material, and cultural processes, wrought with power, that operate at multiple levels, all of which Piagetian constructivism ignores. This piece spoke to me powerfully during my graduate work. As I Re-read it for this virtual special issue, I have a renewed appreciation for the ways it was a truly cutting edge article at the time and for its continued relevance for the field today.
     Piagetian constructivism, O’Loughlin argued, was not adequate to use as a foundation for radical educational change because of its conservative nature. Constructivism presented “the central problem of epistemology as coming to know reality as it is in order to successfully adapt to it” (p. 799), rather than with arming students with tools to critique and ultimately transform unjust realities. Furthermore, by placing technical rational thought at the top of the mental functioning hierarchy, Piaget’s constructivism disempowers learners since, as O’Loughlin argued, “abstraction is the source of mystification and oppression” (p. 801, drawing on Freire, 1989).
     O’Loughlin’s critiques are well-reasoned and point to the lack of consideration for human subjectivity, communication processes, and power relations inherent in school learning. He proposed a more critical, social, and situated view of learning (a sociocultural model) by threading together situated cognition theories from Lave (1988) and Wertsch (1991) and critical theories of education by Freire (1989) and Delpit (1988).
     O’Loughlin brought up hard-hitting questions that gave rise to a whole body of critical science education scholarship that followed, such as: How are we accounting for power relations inherent in processes of science learning? What about the cultural processes of schooling that make relevant people’s positions among larger social structures? What is the purpose of science education? Whose interests are served by positioning science learning as an abstract, decontextualized, disembodied activity? Our current theories of science teaching and learning might be well-served by asking similar questions.

Students’ and teachers’ conceptions of the nature of science: A review of the research
Lederman, N. G. (1992)

Commentary by Fouad Abd-El-Khalick
     JRST has consistently published manuscripts that shaped various domains of research in science education. Indeed, of the 25 most cited papers in the field, 12 appear in JRST. Lederman’s (1992) review of the research on nature of science (NOS) is a pronounced example of such papers. NOS is one of the most prominent and long-lived research domains in science education: At least 300 peer-refereed journal articles on teaching and learning about NOS have been published since the mid 1950s, with the overwhelming majority appearing after 1990. Lederman’s stands as an exemplar for effective literature reviews in terms of answering the two crucial questions, “What have we learned? and where are we headed” (p. 332). This review practically re-defined the domain, and continues to frame research and discussions around NOS two decades after its publication. Lederman opens with establishing the ubiquity and longevity of goals related to developing precollege students’ NOS understandings. He organizes the research into four overlapping, but largely sequential lines. The first was focused on assessing NOS conceptions; it established the prevalence of naïve NOS ideas among students, which were attributed to a lack of relevant knowledge. Thus, the next line of research focused on designing, implementing, and testing curricula aimed at improving student NOS conceptions. Initial assumptions and claims about the teacher-proof effectiveness of these curricula later gave way to realizing the centrality to such effectiveness of teacher understandings, interests, attitudes, and instructional practices. Next, the third line of research focused on assessing and improving teachers’ NOS conceptions, and was predicated on assuming that teacher conceptions directly transfer into their classroom practices, and that these conceptions directly affect student NOS understandings. The empirical failure of the latter two assumptions launched the fourth line of investigation, which focused on the myriad of factors that mediate the translation of teachers’ NOS conceptions into their practice, including teachers’ pedagogical content knowledge related to NOS. Lederman’s elucidation of the domain’s major assumptions, issues, and agendas serves to explain the far reaching impact of this paper, which at 370 citations stands as the most cited paper in the field of science education.

Commentary by Randy Bell
     From my earliest days of teaching science in a small community in Oregon’s high desert, I knew that I wanted to help mitigate the conflict that students often perceive between science and religion. Having been raised in the bible belt of Appalachia, I knew first-hand just how challenging it can be to reconcile the findings of science with deeply held religious convictions.
     Early influences on my thinking on science and religion included the writings of Stephen J. Gould and Carl Sagan. These writers emphasized the different natures of science and religion and the perspective that these disparate ways of knowing can and should complement each other. I became convinced that helping students develop accurate conceptions of the scientific enterprise was key to mitigating the conflict they perceived between science and religion. So, when I began my doctoral work, I knew that I wanted to work in the area of teaching and learning about the nature of science. But how was I to begin? The field was already rich, with more than four decades of research. How could I begin to find, let alone assimilate, all of this information?
     Thankfully for me, Norm Lederman had just completed a comprehensive review of the research on the nature of science (Lederman, 1992). The work was not a formal meta-analysis, but something even more useful—a guide to what we have learned and what is left to learn about teaching and learning the nature of science. In essence, it was the perfect advance organizer for my research program. Over the next 15 years, I referred to Lederman’s review countless times, which became a ubiquitous component of the conceptual frameworks of my nature of science research. I am not the only one who has found the review helpful—according to Google Scholar, this single work has been cited more than 1300 times! Norm’s review has served as a guide for many researchers, and the starting place for hundreds of investigations.
     A good review does more than summarize what is known. It serves as a map for where we should go next; a foundation for work to come. By that measure, Lederman’s (1992) manuscript is one of the most effective reviews ever published in JRST, and is still the definitive guide to early research on the nature of science. I have no doubt that it will continue to serve the science education community for many years to come.

Scientific literacy for all: What is it, and how can we achieve it?
Lee, O. (1997)

See commentary by Bryan Brown, above

Teaching science with homeless children: Pedagogy, representation, and identity
Calabrese Barton, A. (1998)

Commentary by Heidi B. Carlone
     This article was groundbreaking in its time, but I am struck by the fact that it still represents a cutting-edge perspective for science education. In this article, Calabrese Barton introduces issues that have since defined over a decade’s worth of critical science education research and continue to be relevant today—“questions of representation in science (what science is made to be) and identity in science (who we think we must be to engage in that science)” (p. 380). I remember reading this article as a graduate student and being so inspired! Here was a scholar who critiqued mainstream assumptions about what counted as “science” in science education, envisioned alternative realities that placed homeless youths’ lived experiences at the center of the science learning endeavor, and enacted an after-school program with homeless children to act on her vision. Drawing on critical and feminist perspectives, she “explore(d) the question of what it means to create a science for all from the vantage point of urban homeless children” (p. 379). Telling the stories of the ways three girls in a homeless shelter used science to make sense of their lived experiences, Calabrese Barton provided a radical, paradigm-shifting vision for equitable science education. Her pedagogical and theoretical approaches “decentered” science so that the goal of science at the homeless shelter (called “science time”) was “not to fit [youths’] experiences into science; it was to fit exploration of the natural world, questioning, and critique into their experiences” (p. 389). She wrote the case studies in vivid and compelling narratives, bringing in important aspects of the girls’ stories that, in previous science education literature, would have been seen as "irrelevant" to science learning.
     Calabrese Barton further challenged the thinking of the day by redefining “pedagogy” as the “production of scientific knowledge”, including content, processes, and discourses and as the “production of values and beliefs about how scientific knowledge is created and validated, as well as who we must be to engage in that process” (p. 380). She emphasized that one’s location along social, historical, and political dimensions affect meanings of science, self, and self-within-science. These are foundational aspects of a critical science education that emphasize the situated and political nature of science pedagogy. “Pedagogy in science classrooms is… about the struggle for identities and representations” (p. 382).
     Perhaps the aspect of this work that captures my imagination and inspires me the most is that Calabrese Barton walked the talk of the new vision of “science for all” she put forth; she did incredible work as a teacher/scholar/activist to enact her vision and reflect on the meanings the “science time” she spent with the youth meant to them and to her. Finally, she did this work with urban homeless children, those who “are most at risk for receiving an inequitable education” (p. 381).

2000 – Present

Embracing the essence of inquiry: New roles for science teachers
Crawford, B. A. (2000)

Commentary by Katherine L. McNeill
     I was exposed to Barbara Crawford’s (2000) article, Embracing the essence of inquiry: New roles for science teachers, during my doctoral program. This piece clearly illustrates the multiple, complex and demanding roles required for a science teacher to successfully orchestrate a reform-oriented classroom. Crawford’s work has pushed my thinking in two ways. First of all, the piece encouraged me to think about the fact that a science curriculum is not used in a vacuum, but rather the context and teacher significantly impact curricular enactment. As Crawford argues, “If we are to avoid the failures of our past related to giving teachers teacher-proof curriculum, we need to turn our attention to how best to support teachers in embracing the essence of inquiry” (p. 935). This idea fueled my dissertation work (McNeill, 2009) as well as subsequent research (McNeill, Pimentel & Strauss, in press) in which I have considered curricular design and use from the perspective of the teacher as a learner and a designer of his or her classroom community. Furthermore, this piece has an important message for my work, as well as the field more broadly, about the importance of bridging research and practice and writing publications that appeal to a wide audience. In her introduction, Crawford states, “Details of day-to-day events in the real world of classroom life are left to the imagination and often frustration of the classroom teacher striving to use inquiry-based strategies. The gap between research and practice may contribute to the disparity between the intended curriculum of the reforms and the implemented curriculum in classrooms” (p. 917). Personally, I have used her article with numerous pre-service and in-service teachers who find the article not only accessible, but also inspiring and transformative for their own classroom instruction. As we work as a field to change k-12 science education, we need to develop pieces, such as this one, which resonate not only with the research community, but also with a broader audience such as teachers, administrators, curriculum designers and policy makers. The broad dissemination of our work is essential to significantly impact actual classroom practice.

What kind of a girl does science?
Brickhouse, N.W., Lowery, P., & Schultz, K. (2000)

Commentary by Heidi B. Carlone
     This is a watershed article for gender, equity, and identity studies. Nancy Brickhouse, Patricia Lowery & Schultz describe the identity performances of four scientifically interested and capable African American girls across seventh and eighth grade school science. It is one of the first articles to explicitly name and operationalize the notion of “school science identity” and continues to be, even today, one of the few in-depth, longitudinal case studies of students’ identity performances. The article is highly cited; it had a big influence on the field, and on my own work.
     The authors contest deficit-based, homogeneous stories of girls in science by focusing on four successful African American girls who believed they were good in science and were not alienated by science. Much of the gender literature in science education, up to this point, had focused on White girls, confirmed deficit-based perspectives, and/or tried to explain the gender gap in science. By focusing on scientific identities of different African American girls, this article contested essentialized, static portrayals of girls, African Americans, and African American girls.
     The authors describe learning as identity formation rather than a process of constructing understandings. At the time, this was a radical notion. They argue, “[W]e have not sufficiently attended to the more fundamental question of whether students see themselves as the kind of people who would want to understand the world scientifically and thus participate in the kinds of activities that are likely to lead to the appropriation of scientific meanings” (p. 443). This view of science learning prompted multiple new questions of learning and contexts that had been heretofore ignored in the science education literature. For instance, how do students perform themselves and get recognized by others? How do race, class, gender and other social identities get intertwined with that recognition? How do those identities intersect with students’ views of scientific identities?
     Brickhouse and colleagues also illustrated the explanatory power of identity for equity studies by attending to micro- and macro- contexts. This view of identity “accounts for the importance of both individual agency as well as societal structures that constrain individual possibilities” (p. 444). This lens enabled valuable new insights about school science and why and how gender gaps persist, even for academically capable girls. For instance, Brickhouse and colleagues critically examine the identities that are celebrated in school science and, incidentally, those identities were not particularly “scientific” and reproduced school-sanctioned gender norms. “This raises the question of whether girls who are being encouraged to continue in high-level science in the short-run… are actually the ones who are most likely to stay engaged in science over the long term” (p. 456). I do not believe science education scholars have yet answered this question, nor have they consistently asked this question.

Deep time framework: A preliminary study of U.K. primary teachers’ conceptions of geological time and perceptions of geosciences
Trend, R.D. (2001)

Commentary by Thomas R. Tretter
     Many human sensory modes tend to operate in a logarithmic fashion (Weber’s Law). For example, this includes the haptic sense of weight whereby holding 100g in one hand may be haptically distinguishable from 110g in the other hand, but 1000g vs. 1010g may not be (whereas 1000g vs. 1100g is). A similar logarithmic scaling occurs in our sense of sound volume (dB) and in our sense of brightness (luminosity). Yet, in spite of this inherent logarithmic nature to some of our direct senses, our minds tend to default to processing inputs linearly. Because of the tendency for people to confound direct logarithmic perceptions with linear thinking, a research measurement scenario aimed at unpacking intuitive logarithmic thinking that asks people to directly report their thinking may likewise confound the two. To avoid this potential problem, it would be methodologically important to measure magnitude perceptions and ideas in a manner that minimizes a potential confound between logarithmic and linear. Trend’s (2001) article exploring preservice teachers’ conceptions of deep geologic time offered a helpful model for implementation of a useful measurement approach, including an approach for analyses and interpretation that has served me as a model for a number of studies that included an emphasis on participants’ cognitive orientation to extreme scales. In particular, Trend’s analyses prioritized the within-participant ranking of sets of objects or events rather than absolute values as indicators of participants’ intuitive conceptions. So, while a particular object may vary widely across participants’ conceptions of absolute size, the relative ranking of that object may be stable across participants. Combining this analysis approach with an interpretative lens that considers gaps in average rankings across a group to represent a collective conceptual break-point from one scale to the next, has proven to be helpful for uncovering people’s intuitive scale perceptions.

Fostering students' knowledge and argumentation skills through dilemmas in human genetics
Zohar, A., & Nemet, F. (2002)

Commentary by Troy Sadler
     In the last decade, argumentation has become one of the most important research areas in science education. From my perspective, the attention paid to argumentation helped to highlight deficiencies in the ways in which inquiry was commonly implemented in school science. That is, although argumentation is a key aspect of doing science and should be a necessary element of classroom-based inquiry, learning experiences labeled as inquiry tend not to direct enough emphasis on learners’ opportunities to engage in argumentation. This situation helped to motivate the shift in focus for national reform of science education toward the prioritization of scientific practices. This article is one of several high quality, argumentation-focused research studies published in JRST; I chose to highlight this particular article because I see it as one of the initial publications which helped to establish the research basis of the argumentation theme within our field. I also selected this article because it has been a very useful resource for my own work. I stumbled upon an early version of this manuscript as I worked on my dissertation research, which focused on student reasoning in the context of socio-scientific issues. Zohar and Nemet frame their investigation by drawing upon literature from psychology and philosophy. The authors succinctly but effectively discuss and present a framework to disentangle knowledge and reasoning, formal and informal reasoning, and argumentation and informal reasoning. More importantly, they use this framework to develop research questions, methods, and conclusions. All researchers should present well-aligned theoretical and conceptual frameworks, questions, methods, and findings; but this alignment is not always achieved or at least clearly presented. As a novice researcher, I found this piece to be an excellent example of how a research study should be framed. The study provided evidence of the positive impacts of explicit teaching of argumentation in terms of student understanding of biological knowledge and abilities to engage in argumentation practices. Given the significance of scientific argumentation, these are important findings, and for me, the study still serves as a model piece of scholarship.

Enhancing the quality of argumentation in school science
Osborne, J., Erduran, S. & Simon, S. (2004)

Commentary by Katherine L. McNeill
     Osborne, Erduran and Simon’s (2004) JRST article, Enhancing the quality of argumentation in school science, has greatly influenced my view and the fields view of what counts as scientific literacy for k-12 education. Originally, I was exposed to the study in 2002 which Jonathan Osborne presented this piece at NARST. At the time, I was in the first year of my doctoral program at the University of Michigan. When I began the doctoral program, I was specifically interested in the design of science curriculum to support scientific inquiry. However, I was struggling with what scientific inquiry meant to me as well as to the field more broadly. Furthermore, I was engaged in research around the design of a middle school science curriculum in which students initially struggled with making sense of the data they collected in their investigations and using that data to support claims (McNeill & Krajcik, 2007). Hearing Osborne speak and then reading the article provided me with a new perspective and new language to think about supporting classroom discourse in which students construct and critique claims using evidence. The article encourages the science education community to move beyond teaching science as just a body of content to include educating “our students and citizens about how we know and why we believe in the scientific worldview” (p. 995). This shift includes an essential focus on the role of evidence in the construction of explanations and a consideration of scientific criteria when engaging in scientific argumentation to develop and critique explanations. This seminal piece has been cited by many in the field including in the Framework for K-12 Science Education (NRC, 2012) in terms of the importance of engaging students in scientific practices, such as argumentation, as well as the need to support teachers in integrating these practices into their classrooms. The growing body of work around argumentation suggests that these issues have been taken up by the science education community as we attempt to transcend “the dogmatic, uncritical, and unquestioning nature of so much of the traditional fare offered in science classrooms” (Osborne et al., 2004, p. 1017).


Multicultural Science Education, Equity, and Social Justice

November 2011
Mary M. Atwater


This virtual issue identifies nine science education research articles and conception articles published from 1990 to 2010 that focused on multicultural science education, equity, or social justice. These articles have been identified by a committee of 13 to have started a systematic movement, advanced a systematic movement, or broke new ground in science education research on multicultural science education, equity, or social justice. Cutting across these articles are critical questions regarding the design of learning environments, the role of cultural knowledge and experience in the classroom, and teacher knowledge and practice for equity. Together, they also represent an important epistemological shift in how questions of equity are addressed in science education research. Across these articles, in particular, we see the research movement towards treating equity as a more complex set of cultural practices and conditions to be understood, critiqued and acted with and upon. Equity related research ultimately has grown from 1980's equity studies focused primarily on "leveling the playing field" into a much more diverse spectrum of work covering multicultural and social justice issues. These manuscripts focus on culture, class, language, and geographic context to help researchers understand that science teaching and learning are riddled with challenges. We believe that these articles speak broadly to science education researchers and policy makers who wish to be informed on these issues, even as we welcome other voices in the international science education research community in future JRST publications.


VI cover

Editorial: Significant Science Education Research on Multicultural Science Education, Equity, and Social Justice



Mary M. Atwater

The purpose of this virtual issue of the Journal of Research in Science Teaching (JRST) is to identify science education conceptual and research articles published from 1980 to 2010 that focused on multicultural science education (MSE), equity (EQ), or social justice (SJ) that science education researchers and policy makers should ponder. These articles started a systematic movement, advanced a systematic movement, or broke new ground in science education research on MSE, EQ, or SJ. In response to the Civil Rights Movement in the 1960s and 1970s, ethnic studies emerged as departments in higher education while in some institutions African American Studies, Latino Studies, and Native American Studies emerged as departments or institutes. In colleges and schools of education multicultural education (ME) emerged as a field of study. As ME began to mature as an academic discipline, theoretical perspectives such as critical theory, critical multiculturalism, and concepts such as EQ and SJ were incorporated. However, it took time for educational research disciplines to embrace ME. One of the first disciplines to embrace ME was social studies education; one of the last disciplines was science education. Eventually, conceptual papers and research studies began to be published in science education. However, in science education researchers used a variety of terms to denote the ideas found in the ME. Key words such as MSE, EQ, and SJ are used to describe conceptual papers and research studies in science education. Since a variety of terms are used to denote research related to culture, race, and ethnicity, it is important that science education researchers have the opportunity to know what publications in JRST are deemed those that broke new ground or started and advanced a systematic movement for studying cultural, EQ, and SJ issues in science education.

Social constructivism: Infusion into multicultural science research agenda



Mary M. Atwater

This article focuses on (a) theoretical underpinnings of social constructivism and multicultural education and (b) aspects of social constructivism that can provide frameworks for research in multicultural science education. According to the author, multicultural science education is “a field of inquiry with constructs, methodologies, and processes aimed at providing equitable opportunities for all students to learn quality science.” Multicultural science education research continues to be influenced by class, culture, disability, ethnicity, gender, and different lifestyles; however, another appropriate epistemology for this area of research is social constructivism. The essence of social constructivism and its implications for multicultural science education research includes an understanding of whatever realities might be constructed by individuals from various cultural groups and how these realities can be reconstituted, if necessary, to include a scientific reality. Hence, multicultural science education should be a field of study in which many science education researchers are generating new knowledge. The author strives to persuade other researchers to expand their research and teaching efforts into multicultural science education, a blending of social constructivism with multicultural science education. This blending is illustrated in the final section of this article.

Strategies for counterresistance: Toward sociotransformative constructivism and learning to teach science for diversity and for understanding



Alberto J. Rodriguez

This article reports on two types of resistance by preservice science teachers: resistance to ideological change and resistance to pedagogical change. The former has to do with the feelings of disbelief, defensiveness, guilt, and shame that Anglo-European preservice teachers experience when they are asked to confront racism and other oppressive social norms in class discussions. Resistance to pedagogical change has to do with the roles that preservice teachers feel they need to play to manage conflicting messages about what they are expected to do from their cooperating teachers (cover the curriculum and maintain class control) and from their university supervisors (implement student-centered, constructivist class activities), and about what they desire to do as emerging teachers. Although these two forms of resistance are closely linked, in the literature they are extensively reported separately. This study suggests a sociotransformative constructivist orientation as a vehicle to link multicultural education and social constructivist theoretical frameworks. By using this orientation, specific pedagogical strategies for counterresistance were found effective in helping preservice teachers learn to teach for diversity and understanding. These strategies for counterresistance were primarily drawn from the qualitative analysis of a yearlong project with secondary science preservice teachers.

Cross-cultural science education: A cognitive explanation of cultural phenomena



Glen S. Aikenhead and Olugbemiro J. Jegede

Recent developments in concept learning and in science-for-all curricula have stimulated our interest in two fields of study: how students move between their everyday life-world and the world of school science, and how students deal with cognitive conflicts between those two worlds. In the first field of study, Aikenhead conceptualized the transition between a student's life-world and school science as a cultural border crossing. In the second field, Jegede explained cognitive conflicts arising from cultural differences between students' life-world and school science in terms of collateral learning. This article (a) synthesizes cultural border crossing with its cognitive explanation (collateral learning) and (b) demonstrates by its example the efficacy of reanalyzing interpretive data published in other articles. The synthesis provides new intellectual tools with which to understand science for all in 21st-century science classrooms in developing and industrialized countries.

The culture of power and science education: Learning from Miguel



Angela Calabrese Barton and Kimberley Yang

In this paper we begin a discussion around the need for science educators to understand the relationship between cultural and socioeconomic issues and the science education of inner-city students. We refer to the works of critical scholars in science, education, and sociology in order to help us deconstruct the relationship between sociopolitical agendas and the lack of opportunity in science education for students from lower socioeconomic inner-city enclaves. Through our ethnographic case study of a homeless family in a major metropolitan area in the Northeast, we frame our analysis through the pedagogical questions of representation of science through culture, socioeconomic status, and “culture capital.” We use this analysis to raise questions for further research on the significance of understanding, accessing, and critiquing the “culture of power” in science education.

Rethinking diversity in learning science: The logics of everyday sense-making



Beth Warren, Cynthia Ballenger, Mark Ogonowski, Ann S. Rosebery and Josiane Hudicourt-Barnes

There are many ways to understand the gap in science learning and achievement separating low-income, ethnic minority and linguistic minority children from more economically privileged students. In this article we offer our perspective. First, we discuss in broad strokes how the relationship between everyday and scientific knowledge and ways of knowing has been conceptualized in the field of science education research. We consider two dominant perspectives on this question, one which views the relationship as fundamentally discontinuous and the other which views it as fundamentally continuous. We locate our own work within the latter tradition and propose a framework for understanding the everyday sense-making practices of students from diverse communities as an intellectual resource in science learning and teaching. Two case studies follow in which we elaborate this point of view through analysis of Haitian American and Latino students' talk and activity as they work to understand metamorphosis and experimentation, respectively. We conclude with a discussion of the implications of this new conceptualization for research on science learning and teaching.

"It isn't no slang that can be said about this stuff": Language, identity, and appropriate discourse



Bryan A. Brown

This investigation explores how underrepresented urban students made sense of their first experience with high school science. The study sought to identify how students' assimilation into the science classroom reflected their interpretation of science itself in relation to their academic identities. The primary objectives were to examine students' responses to the epistemic, behavioral, and discursive norms of the science classroom. At the completion of the academic year, 29 students were interviewed regarding their experiences in a ninth and tenth-grade life science course. The results indicate that students experienced relative ease in appropriating the epistemic and cultural behaviors of science, whereas they expressed a great deal of difficulty in appropriating the discursive practices of science. The implications of these findings reflect the broader need to place greater emphasis on the relationship between students' identity and their scientific literacy development.

Decolonizing methodologies and indigenous knowledge: The role of culture, place, and personal experience in professional development



Pauline W.U. Chinn

This study reports findings from a 10-day professional development institute on curricular trends involving 19 secondary mathematics and science teachers and administrators from Japan, Malaysia, Indonesia, Thailand, Korea, Philippines, the United States, and People's Republic of China. Participants explored the roles of culture, place, and personal experience in science education through writings and group discussions. Initially, Asian participants tended to view indigenous knowledge and practices more negatively than U.S. peers. After a presentation on indigenous Hawaiian practices related to place and sustainability, they evaluated indigenous practices more positively and critiqued the absence of locally relevant science and indigenous knowledge in their national curricula. They identified local issues of traffic, air, and water quality they would like to address, and developed lessons addressing prior knowledge, place, and to a lesser extent, culture. These findings suggested critical professional development employing decolonizing methodologies articulated by indigenous researchers Abbott and Smith has the potential to raise teachers' awareness of the connections among personal and place-based experiences, cultural practices and values, and teaching and learning. An implication was the development of a framework for professional development able to shift science instruction toward meaningful, culture, place, and problem-based learning relevant to environmental literacy and sustainability.

Test based accountability: Potential benefits and pitfalls of science assessment with student diversity



Randall D. Penfield and Okhee Lee

Recent test-based accountability policy in the U.S. has involved annually assessing all students in core subjects and holding schools accountable for adequate progress of all students by implementing sanctions when adequate progress is not met. Despite its potential benefits, basing educational policy on assessments developed for a student population of White, middle- and upper-class, and native speakers of English opens the door for numerous pitfalls when the assessments are applied to minority populations including students of color, low SES, and learning English as a new language. There exists a paradox; while minority students are a primary intended beneficiary of the test-based accountability policy, the assessments used in the policy have been shown to have many shortcomings when applied to these students. This article weighs the benefits and pitfalls that test-based accountability brings for minority students. Resolutions to the pitfalls are discussed, and areas for future research are recommended.




Research Informing Practice

August 2010
Edited by Julie A. Luft


This virtual issue of the Journal of Research in Science Teaching (JRST), with its focus on scientific inquiry, represents a commitment by two communities to bridge the research and practice gap: the community of science educators who craft the instruction that ensures student learning – the National Science Teachers Association (NSTA), and science education researchers who study classroom life in order to understand more about the process of teaching and learning - the National Association for Research in Science Teaching (NARST). In creating this virtual issue, the NSTA Research Committee sought out articles that directly supported points found in the NSTA position statement on inquiry, were written for science educators in the classroom, and that offered some insight into the teaching of scientific inquiry. The selected studies involve diverse study questions, methods, content areas and countries of origin. They are assembled here to help build a bridge between research and practice.



VI cover

Building a bridge between research and practice



Julie A. Luft

Educational research is conducted in order to understand and improve the way we learn and teach. Researchers often share their findings at conferences or in various publications. Sadly, the people who would benefit most from these studies do not always receive this information. Practitioners rarely attend educational research conferences because of the cost and time involved. They are not frequent readers of educational research journals, perhaps due to the cost, the academic jargon, or because the questions of study do not interest them. The disconnect between products of research and the needs of practitioners is often referred to as the “research to practice gap.” In science education, this gap has been around for decades—but this situation is about to change

Embracing the essence of inquiry: New roles for science teachers



Barbara A. Crawford

“This is the thing I really get excited about. There are some great ideas here, some really neat projects. Wanda and Joan are working on amphibian decline. Ann is interested in territorial behavior or some sort of feeding behavior in crawdads. That is a good one to study because crawdads are an important decomposer in the stream. We're looking at what kinds of criteria in a stream make it habitable for different kinds of organisms. And when you see those different combinations of organisms, what do they mean? How do you interpret them? I mean we're really getting into higher levels of thinking, because we're looking at different kinds of organisms and interpreting them in terms of stream health.” Jake, biology teacher, Northwestern High School.

Progressive inquiry in a computer-supported biology class



Kai Hakkarainen

The problem addressed in the study was whether 10- and 11-year-old children, collaborating within a computer-supported classroom, could engage in progressive inquiry that exhibits an essential principal feature of mature scientific inquiry: namely, engagement in increasingly deep levels of explanation. Technical infrastructure for the study was provided by the Computer-Supported Intentional Learning Environment (CSILE). The study was carried out by qualitatively analyzing written notes logged by 28 Grade 5/6 students to CSILE's database. Results of the study indicated that with teacher guidance, students were able to produce meaningful intuitive explanations about biological phenomena, guide this process by pursuing their own research questions, and engage in constructive peer interaction that helped them go beyond their intuitive explanations and toward theoretical scientific explanations. Expert evaluations by three widely recognized philosophers of science confirmed the progressive nature of students' inquiry.

Folk theories of “inquiry:” How preservice teachers reproduce the discourse and practices of an atheoretical scientific method



Mark Windschitl

Despite the ubiquity of the term “inquiry” in science education literature, little is known about how teachers conceptualize inquiry, how these conceptions are formed and reinforced, how they relate to work done by scientists, and if these ideas about inquiry are translated into classroom practice. This is a multicase study in which 14 preservice secondary science teachers developed their own empirical investigations—from formulating questions to defending results in front of peers. Findings indicate that participants shared a tacit framework of what it means to “do science” which shaped their investigations and influenced reflections on their inquiries. Some facets of the participants' shared model were congruent with authentic inquiry; however, the most consistent assumptions were misrepresentations of fundamental aspects of science: for example, that a hypothesis functions as a guess about an outcome, but is not necessarily part of a larger explanatory system; that background knowledge may be used to provide ideas about what to study, but this knowledge is not in the form of a theory or other model; and that theory is an optional tool one might use at the end of a study to help explain results. These ideas appear consistent with a “folk theory” of doing science that is promoted subtly, but pervasively, in textbooks, through the media, and by members of the science education community themselves. Finally, although all participants held degrees in science, the participants who eventually used inquiry in their own classrooms were those who had significant research experiences in careers or postsecondary study and greater science-content background.

Developing students' ability to ask more and better questions resulting from inquiry-type chemistry laboratories



Avi Hofstein, Oshrit Navon, Mira Kipnis, Rachel Mamlok-Naaman 

This study focuses on the ability of high-school chemistry students, who learn chemistry through the inquiry approach, to ask meaningful and scientifically sound questions. We investigated (a) the ability of students to ask questions related to their observations and findings in an inquiry-type experiment (a practical test) and (b) the ability of students to ask questions after critically reading a scientific article. The student population consisted of two groups: an inquiry-laboratory group (experimental group) and a traditional laboratory-type group (control group). The three common features investigated were (a) the number of questions that were asked by each of the students, (b) the cognitive level of the questions, and (c) the nature of the questions that were chosen by the students, for the purpose of further investigation. Importantly, it was found that students in the inquiry group who had experience in asking questions in the chemistry laboratory outperformed the control grouping in their ability to ask more and better questions

Characteristics of professional development that effect change in secondary science teachers' classroom practices



Bobby Jeanpierre, Karen Oberhauser, Carol Freeman

We studied the outcome of a professional development opportunity that consisted of 2-week-long resident institutes for teams consisting of a secondary science teacher and two students. The science content of the National Science Foundation (NSF)-funded professional development institute was monarch butterfly ecology. The first institute took place in Minnesota during the summer, and the second in Texas during the fall. Staff scientists provided intense instruction in inquiry, with numerous opportunities for participants to conduct short inquiry-based research projects. Careful attention was paid to introducing each step of the full inquiry process, from asking questions to presenting research findings. All participants conducted independent team full inquiry projects between the two institutes. Project findings show that the number of teachers providing opportunities for their students to conduct full inquiry increased significantly after their participation. A mixed-methodology analysis that included qualitative and quantitative data from numerous sources, and case studies of 20 teachers, revealed that the characteristics of the program that helped teachers successfully translate inquiry to their classrooms were: deep science content and process knowledge with numerous opportunities for practice; the requirement that teachers demonstrate competence in a tangible and assessable way; and providers with high expectations for learning and the capability to facilitate multifaceted inquiry experiences.

Science inquiry and student diversity: Enhanced abilities and continuing difficulties after an instructional intervention



Okhee Lee, Cory Buxton, Scott Lewis, Kathryn LeRoy

This study examines elementary students' abilities to conduct science inquiry through their participation in an instructional intervention over a school year. The study involved 25 third and fourth grade students from six elementary schools representing diverse linguistic and cultural groups. Prior to and at the completion of the intervention, the students participated in elicitation sessions as they conducted a semistructured inquiry task on evaporation. The results indicate that students demonstrated enhanced abilities with some aspects of the inquiry task, but continued to have difficulties with other aspects of the task even after instruction. Although students from all demographic subgroups showed substantial gains, students from non-mainstream and less privileged backgrounds in science showed greater gains in inquiry abilities than their more privileged counterparts. The results contribute to the emerging literature on designing learning environments that foster science inquiry of elementary students from diverse backgrounds.

Inscriptional practices in two inquiry-based classrooms: A case study of seventh graders' use of data tables and graphs



Hsin-Kai Wu, Joseph S. Krajcik

This case study characterizes the inscriptional practices demonstrated by seventh graders, particularly their use of data tables and graphs, in an inquiry-based learning environment. Using a naturalistic approach, we collected multiple sources of data during an 8-month instructional unit that emphasized water quality and relevant concepts. The analyses show that constructing and interpreting graphs and tables provided students with opportunities to discuss, review, and clarify questions about concepts and the inquiry process. At the end of the unit on water quality, students were capable of fully participating in designing a more complicated inscription and interpreting new inscriptions. The findings suggest that four features of the learning environment promoted the development of inscriptional practices: (1) embedding the use of inscriptions in students' science inquiry; (2) providing scaffolds to support students' inquiry process; (3) sequencing tasks and the inquiry process; and (4) engaging students in science inquiry in an iterated manner. This study provides insight into the design of a learning environment in which students can develop competent scientific practices.

Exploring teachers' informal formative assessment practices and students' understanding in the context of scientific inquiry



Maria Araceli Ruiz-Primo, Erin Marie Furtak

This study explores teachers' informal formative assessment practices in three middle school science classrooms. We present a model for examining these practices based on three components of formative assessment (eliciting, recognizing, and using information) and the three domains linked to scientific inquiry (epistemic frameworks, conceptual structures, and social processes). We describe the informal assessment practices as ESRU cycles—the teacher Elicits a question; the Student responds; the teacher Recognizes the student's response; and then Uses the information collected to support student learning. By tracking the strategies teachers used in terms of ESRU cycles, we were able to capture differences in assessment practices across the three teachers during the implementation of four investigations of a physical science unit on buoyancy. Furthermore, based on information collected in a three-question embedded assessment administered to assess students' learning, we linked students' level of performance to the teachers' informal assessment practices. We found that the teacher who more frequently used complete ESRU cycles had students with higher performance on the embedded assessment as compared with the other two teachers. We conclude that the ESRU model is a useful way of capturing differences in teachers' informal assessment practices. Furthermore, the study suggests that effective informal formative assessment practices may be associated with student learning in scientific inquiry classrooms.

The development of dynamic inquiry performances within an open inquiry setting: A comparison to guided inquiry setting



Irit Sadeh, Michal Zion

Dynamic inquiry learning emphasizes aspects of change, intellectual flexibility, and critical thinking. Dynamic inquiry learning is characterized by the following criteria: learning as a process, changes during the inquiry, procedural understanding, and affective points of view. This study compared the influence of open versus guided inquiry learning approaches on dynamic inquiry performances among high-school biology students. We hypothesized that open inquiry students who engage in the inquiry process from its initial stage, participating in the decision making process of asking inquiry questions and planning all aspects of the inquiry, will outperform students who experienced guided inquiry, in terms of developing dynamic inquiry performances. Students were divided into two groups: guided and open inquiry learning approaches. Both groups were followed throughout their 2-year inquiry learning process. The data sources included interviews, students' inquiry summary papers, logbooks, and reflections. A quantitative content analysis of the two groups, using a dynamic inquiry performances index, revealed that open inquiry students used significantly higher levels of performances in the criteria “changes during inquiry” and “procedural understanding.” However, the study's results indicated no significant differences in the criteria “learning as a process” and “affective points of view.” The implementation of dynamic inquiry performances during inquiry learning may shed light on the procedural and epistemological scientific understanding of students conducting inquiries.



Transforming Science Teacher Preparation for 21st Century Classrooms: Look to the Research
December 2015
Barbara A. Crawford

The present Journal of Research in Science Teaching (JRST) virtual issue focuses on Science Teacher Education, and its timing is important. Currently, there is a heightened concern about the state of affairs related to science education in the U.S., as well as other countries. A recent poll revealed that voters across the U.S. —in fact 97%—believe that improving the quality of science education is of utmost importance to the United States. Further, the grade given by a majority of people voting on the quality of science education is the grade “C” or below (see www.achieve.org/2012-science-poll). In other words, many believe our children need to learn better in our science classrooms. To put it bluntly, the U.S. is perceived by its own citizens, as not doing very well in teaching science to children across the populace.

Almost everyone is talking about the dire state of science education in U.S. schools, and there are a growing number of stakeholders addressing this issue. Other countries, as well, recognize that the economic future and even survival of a country depends on the education of its young people. As more science teachers are needed in future classrooms we ask, who will teach our children science? The increased alarm is evident in the U.S. 2011 State of the Union Address. President Obama sent out the call, “to train 100,000 new, excellent STEM teachers over the next 10 years to keep America vibrant and prosperous.” Stemming from the President’s call to action, 100Kin10 is a movement “to address the nation’s shortage of STEM teachers and to improve STEM learning for all students…by increasing the supply of excellent STEM teachers; hiring, developing, and retaining excellent STEM teachers; and building the 100Kin10 movement.” According to its website the partnership has currently over 100 partner organizations (including the National Association of Research in Science Teaching (NARST) and the National Science Teachers Association (NSTA), aimed at one goal: to prepare all U.S. students with the high-quality STEM knowledge and skills needed to address our most pressing national and global challenges.

The call to train new and excellent STEM teachers raises an important question, how should we do this? How can we prepare high quality teachers to teach children the “S” in Stem during the 21st century? In response to this problem the current JRST virtual issue highlights the teacher education research published in its volumes during the last decade. Before discussing the “how”, I propose we eliminate the word “train” in all future discussions of professional science teacher education. If we are to regard teaching as a profession, and it is my stance that it is, then we need to use another word such as prepare, develop, or support, that better describes the complex continuum of experiences and sophisticated reflection needed for high quality science teaching for the 21st century.

Full Introduction to Transforming Science Teacher Preparation for 21st Century Classrooms

Commentary on articles written by Barbara A. Crawford

Teaching the Nature of Science through Inquiry to Prospective Elementary Teachers: A Tale of Two Researchers

Julie A. Bianchini and Alan Colburn

It is necessary to define inquiry, and to provide a clear description of what science is and how science works. Bianchini and Colburn (2000) provide evidence that in reform-based classrooms the teacher is instrumental in assisting students in understanding nature of science ideas, yet there is a need to guide and support teachers in how to do this.

Professional Development and Reform in Science Education: The Role of Teachers' Practical Knowledge

Jan H. van Driel, Douwe Beijaard and Nico Verloop

Reform efforts may fail if teachers' existing knowledge, beliefs, and attitudes are not taken into account. Although the article by van Driel, Beijaard, and Verloop (2001) centers on teacher professional development, their work has important implications for teacher preparation programs. These researchers highlight the role of teachers' practical knowledge, defined as an integration of experiential knowledge, formal knowledge, and personal beliefs. They present effective strategies for long-term teacher growth, that include learning in networks, peer coaching, collaborative research by teachers, and the use of cases that provide teachers with examples of teaching in reform-based classrooms.

Elementary Student Teachers' Science Content Representations

Carla Zembal-Saul, Joseph Krajcik and Phyllis Blumenfeld

It is important to give new teachers the opportunity to substantially reflect on their beginning practice. In examining elementary teachers participating in an experimental teacher preparation program, Zembal-Saul, Krajcik, and Blumenfeld (2002) reveal the use of reflection that helped elementary prospective teachers maintain an emphasis on the subject matter they were teaching. Zembal-Saul and co-authors base their analyses on a framework researchers use to describe teachers’ abilities to translate science concepts--pedagogical content knowledge. They also caution us that a program generating large numbers of teachers quickly and inexpensively may likely not produce quality teachers, prepared to teach science to children in reform- based ways.

Folk Theories of “Inquiry:” How Preservice Teachers Reproduce the Discourse and Practices of an Atheoretical Scientific Method

Mark Windschitl

Many prospective secondary science teachers have inconsistent ideas about the way science works, as revealed by Windschitl (2004) in his article that foregrounds the ‘folk theories’ that many secondary science prospective teachers have about inquiry. In his study Windshitl challenges these ‘folk theories’ and models a way to involve prospective teachers in science as inquiry and reflecting upon their experiences. The prospective teachers who eventually used inquiry in their own classrooms were those who had significant research experiences, postsecondary study, and greater science-content background. Yet, none used an authentic approach to scientific thinking—model-based reasoning.

Learning to Teach Science for All in the Elementary Grades: What Do Preservice Teachers Bring?

Elaine V. Howes

It is important to assist prospective elementary teachers in developing effective, science instruction for all children, as highlighted in the study by Howes (2002). Howes targets teachers’ dispositions and encourages teacher educators to recognize the importance of all students’ thinking and model explicitly and reflectively the act of paying attention to students’ own ideas about the natural world. She proposes teachers study children’s thinking, value children’s wondering, and get to know their families and communities.

Does One Size Fit All? The Induction Experience of Beginning Science Teachers from Different Teacher-Preparation Programs

Gillian H. Roehrig and Julie A. Luft

Induction programs need ways to define and reinforce reform-based teaching strategies, in addition to making visible the philosophy behind these strategies. Roehrig and Luft (2006) examined first year teachers’ beliefs, instructional practices, and experiences in their classrooms. These beginning teachers had experienced different teacher preparation programs. One recommendation is the importance of a second science methods course, coordinated with an extended teaching experience, which may be critical to teachers developing deeper understanding of reform-based teaching.

Learning to Teach Science as Inquiry in the Rough and Tumble of Practice

Barbara A. Crawford

A critical factor influencing use of reform-based teaching is the teacher’s own complex set of personal beliefs about teaching and of science that develops over time. Crawford (2007) examined secondary science prospective teachers’ developing practices in the context of a “Professional Development School (PDS)” with a focus on inquiry. In this innovative teacher preparation model the university classes are moved from the “ivory tower” to the school setting, taught in collaboration with practicing teachers. Although all interns were given support in their yearlong internship, a few PDS prospective teachers used inquiry-based strategies and others used primarily teacher-centered traditional approaches.

Does Teaching Experience Matter? Examining Biology Teachers' Prior Knowledge for Teaching in an Alternative Certification Program

Patricia J. Friedrichsen, Sandra K. Abell, Enrique M. Pareja, Patrick L. Brown, Deanna M. Lankford and Mark J. Volkmann

New teachers should be engaged in communities of practice, in which teachers work together to assess student work, reflect on their practice, and share their successes in teaching. Friedrichsen et al. (2009) studied the influence of prior biology teaching experiences of several individuals in the context of an Alternative Teacher Education program. During their study none of the four participants used reform-based, inquiry-oriented teaching practices. Their results indicated there were few differences between teachers with prior teaching experience and those who had little experience.

Curriculum design for inquiry: Preservice elementary teachers' mobilization and adaptation of science curriculum materials

Cory T. Forbes and Elizabeth A. Davis

Curriculum materials that reflect reform-based methods are important tools for helping teachers engage students in inquiry science learning. Forbes and Davis (2010) aimed to gain a better understanding of how preservice elementary teachers are able to use existing science curriculum materials in order to develop inquiry-oriented science lessons. Positive findings include preservice teachers’ abilities to accurately assess the extent of the inquiry in existing curriculum materials and adapt material to make them more inquiry-based. Finally, Forbes and Davis suggest their findings could help curriculum designers to better meet the needs of beginning science teachers.

SEARCH

SEARCH BY CITATION