Software Testing, Verification and Reliability

Cover image for Vol. 25 Issue 1

Early View (Online Version of Record published before inclusion in an issue)

Edited By: Jeff Offutt and Robert M. Hierons

Impact Factor: 1.2

ISI Journal Citation Reports © Ranking: 2013: 37/105 (Computer Science Software Engineering)

Online ISSN: 1099-1689

Associated Title(s): Journal of Software: Evolution and Process, Software Process: Improvement and Practice, Software: Practice and Experience

VIEW

  1. 1 - 16
  1. Special Issue Papers

    1. A survey of race bug detection techniques for multithreaded programmes

      Shin Hong and Moonzoo Kim

      Article first published online: 19 DEC 2014 | DOI: 10.1002/stvr.1564

      Thumbnail image of graphical abstract

      Many race bug detection techniques have been developed to find concurrency errors in multithreaded programs. Because these techniques have different views on concurrent executions and detect race bugs of various types, it is difficult to compare different race bug detection techniques systematically. This paper presents a formal model that uniformly presents various views on concurrent executions. Then, we classify 43 race bug detection techniques on whether or not a target race bug violates operation block specification and/or data association specification.

    2. Higher accuracy and lower run time: efficient mutation analysis using non-redundant mutation operators

      René Just and Franz Schweiggert

      Article first published online: 11 DEC 2014 | DOI: 10.1002/stvr.1561

      Thumbnail image of graphical abstract

      This paper studies redundancies in commonly used mutation operators and provides non-redundant versions of the conditional operator replacement, unary operator insertion, and relational operator replacement mutation operators. The empirical study in this paper shows how the inclusion redundant mutants affect the efficiency and accuracy of mutation analysis. In summary, the total mutation analysis run time decreased by more than 20% by removing redundant mutants, and the inclusion of redundant mutants led to an overestimated mutation score for all analyzed test suites.

  2. Research Articles

    1. Reducing execution profiles: techniques and benefits

      Joan Farjo, Rawad Abou Assi and Wes Masri

      Article first published online: 1 DEC 2014 | DOI: 10.1002/stvr.1563

      Thumbnail image of graphical abstract

      This work studied the impact of the size of execution profiles. It presented several reduction techniques and comparatively evaluated them by measuring the reduction rate, information loss, and impact on two software analysis techniques. The results were promising as the average reduction rate ranged from 92% to 98%, most techniques were lossless or slightly lossy, and reducing execution profiles was shown to benefit software analysis in terms of efficiency and/or effectiveness.

    2. Directed test suite augmentation: an empirical investigation

      Zhihong Xu, Yunho Kim, Moonzoo Kim, Myra B. Cohen and Gregg Rothermel

      Article first published online: 5 NOV 2014 | DOI: 10.1002/stvr.1562

      Thumbnail image of graphical abstract

      Our empirical results show that the primary factor affecting the effectiveness and efficiency of test case augmentation techniques is the choice of test case generation algorithm. The manner in which new and existing test cases are used also usually affects efficiency and in a few cases affects effectiveness. The order in which target code elements are considered affects the efficiency of genetic test case generation techniques but has no affect on concolic test case generation techniques.

  3. Special Issue Papers

    1. Advances in noise-based testing of concurrent software

      J. Fiedor, V. Hrubá, B. Křena, Z. Letko, S. Ur and T. Vojnar

      Article first published online: 5 SEP 2014 | DOI: 10.1002/stvr.1546

      Thumbnail image of graphical abstract

      The paper presents multiple recent achievements from the area of noise-based testing of concurrent software, which is based on influencing the scheduling in order to witness many different thread interleavings. Multiple noise heuristics (defining where, when and how to inject noise) are introduced, including several previously unpublished ones, and experimentally evaluated using concurrency coverage metrics. Further, recommendations for setting up noise-based testing are given together with a novel use of the genetic algorithm for finding suitable parameters of noise-based tests.

    2. MuRanker: a mutant ranking tool

      Akbar Siami Namin, Xiaozhen Xue, Omar Rosas and Pankaj Sharma

      Article first published online: 11 AUG 2014 | DOI: 10.1002/stvr.1542

      Thumbnail image of graphical abstract

      MuRanker introduces and further implements the idea of ranking mutants. The tool ranks mutants according to their complexity in being detected by a test pool. The tool captures the distance between a mutant and the original program in deciding about ranking mutants. The empirical evaluation demonstrates the validity of the hypothesis stating that detecting medium and hard-to-kill mutants first will automatically detect easy-to-kill mutants, and thus, it reduces the number of test cases needed to achieve the mutation adequacy criterion.

    3. Are concurrency coverage metrics effective for testing: a comprehensive empirical investigation

      Shin Hong, Matt Staats, Jaemin Ahn, Moonzoo Kim and Gregg Rothermel

      Article first published online: 23 JUN 2014 | DOI: 10.1002/stvr.1539

      Thumbnail image of graphical abstract

      We explore the impact of concurrency coverage metrics on testing effectiveness and examine the relationship between coverage, fault detection, and test size. We study eight existing coverage metrics and six new metrics formed by combining complementary metrics. Our results indicate that the metrics are moderate to strong predictors of testing effectiveness and effective at providing test generation targets. Nevertheless, metric effectiveness varies across programs, even for the combinations of metrics. This result highlights the need for improving concurrency coverage metrics.

    4. Reducing mutation costs through uncovered mutants

      Pedro Reales Mateo and Macario Polo Usaola

      Article first published online: 15 MAY 2014 | DOI: 10.1002/stvr.1534

      Thumbnail image of graphical abstract

      Mutant Schema Improved with extra Code (MUSIC) annotates the statements covered by test cases in the original program. Later, when mutants are executed, the execution engine avoids going through uncoverable mutants. Our empirical results prove that music is an efficient cost reduction technique. Copyright © 2014 John Wiley & Sons, Ltd.

    5. Quality metrics for mutation testing with applications to WS-BPEL compositions

      Antonia Estero-Botaro, Francisco Palomo-Lozano, Inmaculada Medina-Bulo, Juan José Domínguez-Jiménez and Antonio García-Domínguez

      Article first published online: 9 MAY 2014 | DOI: 10.1002/stvr.1528

      Thumbnail image of graphical abstract

      Mutation testing is a successful testing technique. However, it can be very costly. Cost reduction can be aided by an analysis of mutation operators, but this requires the definition of specialized metrics. A better quality metric for mutants would be a first step towards improved cost reduction techniques. This work introduces such a metric and a firm mutation tool for WS-BPEL compositions. Experimental results obtained by comparing different metrics on several compositions are presented. Copyright © 2014 John Wiley & Sons, Ltd.

    6. Model-based mutation testing from security protocols in HLPSL

      Frédéric Dadeau, Pierre-Cyrille Héam, Rafik Kheddam, Ghazi Maatoug and Michael Rusinowitch

      Article first published online: 29 APR 2014 | DOI: 10.1002/stvr.1531

      Thumbnail image of graphical abstract

      This article proposes a model-based mutation testing approach for security protocols written in HLPSL. Mutation operators for protocol models, expressing real-world implementation choices or mistakes, are presented and evaluated on a large bench of real-world protocols. Finally, it describes a framework that helps automating the execution of the generated test cases. Copyright © 2014 John Wiley & Sons, Ltd.

    7. Using mutation to assess fault detection capability of model review

      Paolo Arcaini, Angelo Gargantini and Elvinia Riccobene

      Article first published online: 25 APR 2014 | DOI: 10.1002/stvr.1530

      Thumbnail image of graphical abstract

      Model review is a static analysis approach that aims at determining if a model owns certain quality attributes. This paper presents a methodology for evaluating the fault detection capability of the NuSMV model advisor. The approach is based on the use of mutation analysis; to improve the quality of the analysis, the equivalence between a NuSMV model and any of its mutants is checked. Some experiments assess the fault detecting capability, precision, and accuracy of the NuSMV model advisor. Copyright©2014 John Wiley & Sons, Ltd.

  4. Special Issue Paper

    1. Towards an automation of the mutation analysis dedicated to model transformation

      Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit Baudry and Jean-Luc Dekeyser

      Article first published online: 25 APR 2014 | DOI: 10.1002/stvr.1532

      Thumbnail image of graphical abstract

      Mutation analysis for model transformations is perceived as cumbersome because of the test set improvement manual step that requires a strong expertise and analysis from the tester. This paper presents a solution to go towards a full automation of the mutation analysis for model transformations. This solution uses model transformation traceability and mutation operator modelization embedded into an assistant that helps the tester to easily create new test models to improve the test set. Copyright©2014 John Wiley & Sons, Ltd.

  5. Special Issue Papers

    1. Employing second-order mutation for isolating first-order equivalent mutants

      Marinos Kintis, Mike Papadakis and Nicos Malevris

      Article first published online: 21 APR 2014 | DOI: 10.1002/stvr.1529

      Thumbnail image of graphical abstract

      This paper presents a new technique to tackle the equivalent mutant problem. The salient feature of this approach is the employment of higher-order mutation in the classification process. More precisely, the classification scheme utilises code coverage information and second-order mutation to classify a given set of first-order mutants as possibly killable or possibly equivalent ones. The results suggest that the proposed method outperforms its predecessors with respect to the recall metric, without significant loss of classification precision. Copyright © 2014 John Wiley & Sons, Ltd.

    2. UNICORN: a unified approach for localizing non-deadlock concurrency bugs

      Sangmin Park, Richard Vuduc and Mary Jean Harrold

      Article first published online: 9 MAR 2014 | DOI: 10.1002/stvr.1523

      Thumbnail image of graphical abstract

      UNICORN is an automated dynamic pattern-detection-based technique that finds problematic memory access patterns for non-deadlock concurrency bugs. It detects significant classes of bug types, including order violations and both single-variable and multi-variable atomicity violations. This paper describes the UNICORN approach and its implementations in Java and C++, and evaluates these implementations empirically. Copyright © 2014 John Wiley & Sons, Ltd.

    3. Killing strategies for model-based mutation testing

      Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert Schlick and Stefan Tiran

      Article first published online: 3 FEB 2014 | DOI: 10.1002/stvr.1522

      Thumbnail image of graphical abstract

      This paper presents a model-based test case generation approach that automatically derives test cases from UML state machines. The technique is based on the mutation analysis of test models. In the two case studies, different fault-based test case generation strategies are compared. Copyright © 2014 John Wiley & Sons, Ltd.

    4. Metallaxis-FL: mutation-based fault localization

      Mike Papadakis and Yves Le Traon

      Article first published online: 9 SEP 2013 | DOI: 10.1002/stvr.1509

      Thumbnail image of graphical abstract

      This paper proposes Metallaxis, a fault localization approach based on mutation analysis. The innovative part of Metallaxis is that is it uses mutants and links them with the faulty program places. Thus, mutants that are killed mostly by failing tests provide a good indication about the location of a fault. Experimentation using Metallaxis suggests that it is significantly more effective than statement-based approaches. This is true even in the case that mutation cost-reduction techniques, such as mutant sampling, are facilitated.

VIEW

  1. 1 - 16

SEARCH

SEARCH BY CITATION