Angewandte Chemie

Cover image for Vol. 127 Issue 23

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPlusChem, Zeitschrift für Chemie

Den vollständigen Artikel und die Anschrift des Autors finden Sie in Angew. Chem 2002, 114 (17), 3350 - 3352

Nr. 17/2002


Erbgut bald schneller entschlüsseln?

Einzelmolekül-Sequenzierung:
Die Grundlagen sind geschaffen

Die Sequenz des menschlichen Genoms ist weitgehend bekannt. Um die Zusammenhänge zwischen einzelnen Genomabschnitten und beispielswiese bestimmten Krankheiten zu verstehen, müssen nun die entsprechenden Gensequenzen identifiziert, charakterisiert und auf Mutationen untersucht werden. "Mit herkömmlichen Sequenziermethoden ist das viel zu langwierig," erklärt Susanne Brakmann von der Universität Leipzig. "Wenn es dagegen gelänge, einzelne DNA-Moleküle zu sequenzieren, ließen sich wesentlich längere Fragmente "ablesen" und die Sequenzinformationen um Größenordnungen schneller zusammensetzen." Gemeinsam mit Sylvia Löbermann vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen hat sie gerade einen weiteren Meilenstein für dieses Konzept aufgestellt.

Das Prinzip: Die DNA ist eine Doppelhelix aus zwei komplementären Strängen, zusammengehalten durch die Paarung ihrer Bausteine, der Nucleobasen A und T sowie G und C. Die beiden Stränge werden getrennt, einer der Einzelstränge dient nun als Matrize für die Anfertigung einer Kopie - mit Nucleobasen, die mit verschiedenen Fluoreszenzfarbstoffen markiert wurden. Erst kürzlich war es den Forscherinnen gelungen, ein Enzym zu finden, das auch aus sperrigen, markierten Nucleobasen korrekte Kopien synthetisiert (Angew.Chem. 2001, 113, 1473 - 1476). An winzige Kunststoffkügelchen gekoppelt lassen sich die so markierten DNA-Moleküle vereinzeln. Im nächsten Schritt muss der DNA nach dem Salamiprinzip vom Ende her eine Nucleobase nach der anderen abgeschnitten und identifiziert werden. Bereits seit zehn Jahren gibt es spektrometrische Verfahren, mit denen einzelne fluoreszierende Moleküle identifiziert werden können. Eine Hürde dagegen war bis vor kurzem, ein "Salamimesser" zu finden, ein Enzym, das die fluoreszierenden Nucleobasen wieder freisetzt, denn die markierte DNA ist sehr sperrig und windet sich auch anders als das unmarkierte Original.

Alle getesteten "Salamimesser", sprich Exonucleasen, scheiterten zunächst. Statt weitere "Messer" zu testen, variierten die Forscherinnen die Schneidbedingungen: Durch Zugabe des Lösemittels Dioxan konnten die Löslichkeit der DNA erhöht und der Schneidemodus des gewählten Enzyms, E. coli-Exonuclease III, verbessert werden. Werden außerdem nur zwei der vier Nucleobasensorten markiert, ist die DNA weniger sperrig. Wiederholt man das Experiment mit allen möglichen Permutationen, sollte auch so eine vollständige Sequenzanalyse gelingen. "Die Grundlagen für die Einzelmolekül-Sequenzierung sind damit gelegt," zeigt sich Brakmann optimistisch. "Vollautomatische Geräte könnten einzelne Abweichungen in Genabschnitten feststellen und eventuell sogar bis zu 1 Mio. Nucleobasen pro Tag entschlüsseln."

SEARCH

SEARCH BY CITATION