Angewandte Chemie

Cover image for Vol. 128 Issue 40

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPlusChem, Zeitschrift für Chemie

Presse-Mitteilung

Den vollständigen Artikel und die Anschrift des Autors finden Sie in Angew. Chem. 2003, 115 (37), 4639 – 4641

Nr. 37/2003


Glitzersteinchen

Große Kristalle, niedrige Temperatur: Wirtschaftliches Verfahren zu Herstellung synthetischer Diamanten

Diamanten sind nicht nur "a girl’s best friend", auch Techniker mögen die Glitzersteinchen, die dank ihrer besonderen Härte sowie interessanter thermischer und optoelektronischer Eigenschaften in vielen Bereichen Anwendung gefunden haben: Nicht nur als Schleif-, Bohr- und Schneidmittel hat diese Kohlenstoff-Modifikation Karriere gemacht, sondern beispielsweise auch in der Mikroelektronik, als Material für Messfühler sowie in Form von schützenden Beschichtungen. Für solche technischen Anwendungen werden im allgemeinen keine natürlichen, sondern synthetische Mini-Diamanten eingesetzt. Chinesische Forscher haben nun ein neues Verfahren zur Herstellung von Diamanten entwickelt, das mit geringeren Temperaturen auskommt als herkömmliche Prozesse und so eine wirtschaftliche Alternative darstellen könnte.

Industrielle Verfahren zu Herstellung von Diamanten basieren meist auf der Umwandlung von Graphit in Diamant bei extrem hohen Drücken und Temperaturen (ca. 1,4 kbar und bis zu 1400 °C) . Daneben existieren einige alternative Techniken, die aber ebenfalls Energiefresser sind und immerhin Temperaturen von 800 bis 1000 °C benötigen.

Vergleichsweise bescheiden machen sich da die 500 °C, die der neuen Methode des Forscherteams um Qianwang Chen ausreichen. Und auch sonst kommt das Verfahren ohne besonders aufwändige Schritte aus: In einem Autoklaven werden Magnesiumcarbonat (MgCO3) und metallisches Natrium erhitzt. Bei diesen Temperaturen pyrolysiert MgCO3 zu Magnesiumoxid (MgO) und Kohlendioxid (CO2), und im Autoklaven baut sich ein hoher Druck auf. Bei der anschließenden Reaktion von Natrium mit CO2 entstehen Natriumcarbonat (Na2CO3) und elementarer Kohlenstoff – in Form von Graphit und Diamant. Einer der Erfolgsfaktoren: Unter diesen Druck- und Temperaturverhältnissen liegt das CO2 im überkritischen Zustand vor und weist so eine höhere Polarität auf als im gasförmigen Zustand, was seine Adsorption an der Oberfläche des Natriums und die nachfolgende Reaktion erleichtert.

Aus dem entstehenden Produktgemisch lassen sich relativ große Diamant-Körnchen isolieren. Elektronenmikroskopische Aufnahmen zeigen gut auskristallisierte Mini-Diamanten, die Durchmesser bis zu 0,5 mm erreichen. Die Diamant-Ausbeute hängt stark von den genauen Reaktionsbedingungen ab. Unterhalb von 500 °C entsteht ausschließlich Graphit. Bei optimalen Bedingungen wird eine Diamant-Ausbeute von 6,6 % erreicht.

SEARCH

SEARCH BY CITATION