Angewandte Chemie

Cover image for Vol. 126 Issue 17

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, Zeitschrift für Chemie

Presse-Mitteilung

Angew. Chem. 2005, 117 (05), 275 – 277

Nr. 02/2005


Einer für alles

Eine poröse Chromoxidstruktur kann flüchtige organische Verbindungen aufnehmen und ihre Zersetzung zu Kohlendioxid katalysieren

Flüchtige organische Verbindungen (Volatile Organic Compounds - VOCs) wie Toluol oder Acetaldehyd stellen eine Gefahr für die Umwelt dar. Deshalb müssen sie aus der Abluft von Industrieanlagen restlos entfernt werden. Dies geschieht meist durch Adsorption , Rückgewinnung und anschließende katalytische Verbrennung. Als Katalystoren hierfür dienen oft Sauerstoffverbindungen der Metalle Mangan, Chrom, Kupfer oder Kobalt. Jetzt haben Forscher in Japan erstmals ein Material entwickelt, das beides kann: VOCs anlagern und ihre Oxidation zu Kohlendioxid katalysieren.

A. K. Sinha und K. Suzuki synthetisierten ein dreidimensionales kubisches Netzwerk aus Chromoxid wobei das Chrom in Oxidationsstufen von +2 bis +6 (Cr+6 ~ 4%) vorliegt. Die durchschnittliche Porengröße beträgt 7,9 nm und die Wandstärke von 13,3 nm; sie liegen im Bereich zwischen Mikrometern (1 µm = ein tausendstel Millimeter) und Nanometern (1 nm = ein Millionstel Millimeter). Das Material wird deshalb als mesoporöses Chromoxid bezeichnet (mesos ist das griechische Wort für mittleres, mitten zwischen). Die Forscher erzeugten diese mesoporöse Struktur, indem sie Chromsalze in Gegenwart eines speziellen Polymers, das als Schablone diente, langsam aus einem organischen Lösungsmittelgemisch auskristallisieren ließen. Durch Erhitzen des so erhaltenen Materials auf Temperaturen über von 400 °C konnten sie die Schablone anschließend vollständig entfernen.

Mesoporöses Chromoxid ist die erste bekannte Substanz, die VOCs bei Raumtemperatur nicht nur adsorbiert, sondern bereits unter diesen milden Bedingungen ihre Zersetzung katalysiert. So wurde beispielsweise Toluol innerhalb von 25 Stunden bei Raumtemperatur zu 52 % abgebaut, Acetaldehyd sogar zu 94 %. Eine Temperaturerhöhung auf 85 °C zerstörte 65 % des Toluols, oberhalb von 280 °C wurde Toluol zu 100 % entfernt. Durch Erhitzen auf 350 °C werden alle eventuell noch vorhandenen Reste von VOCs oxidiert, der Katalysator ist regeneriert und steht für den nächsten Einsatz bereit.

SEARCH

SEARCH BY CITATION