Angewandte Chemie

Cover image for Vol. 128 Issue 7

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPlusChem, Zeitschrift für Chemie

Presse-Mitteilung

Angewandte Chemie 2006, 118, 1836–1839
doi: 10.1002/ange.200504241

Nr. 08/2006

Organische Wasserstoffspeicher

Mikroporöse Polymere aus miteinander verbundenen Kohlenwasserstoffringen

Kontakt: Neil B. McKeown, Cardiff University (Großbritannien)
Registrierte Journalisten können hier den Originalartikel herunterladen:
Towards Polymer-based Hydrogen Storage Materials: Engineering Ultramicroporous Cavities Within Polymers of Intrinsic Microporosity

Die Ressourcen an fossilen Brennstoffen sind begrenzt und ihre Verbrennung belastet die Umwelt. Deshalb sucht man schon lange nach Alternativen. Ein geeigneter und umweltverträglicher Treibstoff wäre der Wasserstoff. Leider gibt es bisher noch kaum technische Möglichkeiten sichere und effiziente Wasserstofftanks für Autos zu konstruieren. Eine mögliche Lösung sind mikroporöse Speichermaterialien, wie Zeolithe oder metallorganischen Verbindungen, die zahlreiche Hohlräume besitzen, welche sich als Speicher für Wasserstoff eignen und diesen bei Bedarf wieder freisetzen können.

Einen neuen Ansatz haben Neil McKeown (Cardiff), Peter Budd (Manchester), David Bock (Birmingham) und ihre Mitarbeiter gewählt: Sie haben ein rein organisches Polymer entwickelt, das in der Lage ist, nennenswerte Mengen an Wasserstoff aufzunehmen.

Die Molekülketten in den meisten organischen Polymeren sind so beweglich, dass sie dicht gepackte Strukturen bilden können. Deshalb gibt es in ihrem Inneren keine Hohlräume, in denen Substanzen adsorbiert werden könnten. Folglich konstruierten die Chemiker Polymere aus ineinander übergehenden fünf- und sechsgliedrigen Kohlenwasserstoffringen. An definierten Punkten im Molekül treffen zwei Fünfringe so aufeinander, dass Knicke und Verzerrungen in den starren makromolekularen Strukturen auftreten. Die verzerrten Moleküle können keine dicht gepackten Schichten bilden, es entstehen Lücken und Zwischenräume. Diese „Polymere mit intrinsischer Mikroporosität“ (PIMs) besitzen eine innere Oberfläche von mehr als 800 m2 /g – das entspricht der Fläche von drei Tennisplätzen.

In reproduzierbaren Syntheseschritten entstehen chemisch homogene Materialien mit einer einheitlichen Verteilung der Porengröße von 0,6-0,7 nm. Diese ultrakleinen Poren können zwischen 1,4 und 1,7% Wasserstoff aufnehmen und wieder abgeben. Je nach Wahl der Ausgangsbausteine erhält man unlösliche Netzwerke oder lösliche Polymere, die wie herkömmliche Kunststoffe bearbeitet und geformt werden können.

Damit die PIMs genug Wasserstoff speichern können um sich für technische Anwendungen zu eignen, müssen sie noch weiter optimiert werden. „Es gibt zahlreiche Möglichkeiten, um maßgeschneiderte PIMs über eine Anpassung der Syntheseverfahren und der weiteren Prozessierung der Polymere herzustellen,“ sagt McKeown, der damit rechnet, dass es bis zum Jahre 2010 gelingen wird, PIMs anzufertigen, die dann bis zu 6% Wasserstoff speichern können.

(2545 Anschläge)

SEARCH

SEARCH BY CITATION