Angewandte Chemie

Cover image for Vol. 129 Issue 23

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPhotoChem, ChemPlusChem, Zeitschrift für Chemie

Presse-Mitteilung

Angewandte Chemie 2006, ,
doi: 10.1002/ange.200601104

Nr. 31/2006

Codierte Nano-Drähte entlarven Biowaffen

Streifenförmige Nanodrähte aus Silber und Gold als Basis für den simultanen Nachweis verschiedener Pathogene

Kontakt: Jeffrey B.-H. Tok, Lawrence Livermore National Laboratory (USA)
Registrierte Journalisten können hier den Originalartikel herunterladen:
Metallic Striped Nanowires as Multiplexed Immunoassay Platforms for Pathogen Detection

Beim Verdacht auf eine gefährliche Infektionskrankheit oder gar auf biologische Kampfstoffe ist rasche Hilfe notwendig. Als erster Schritt ist eine verlässliche, empfindliche, eindeutige – dabei aber schnelle und einfache Identifizierung des Krankheitserregers wichtig, die möglichst gleich vor Ort, nicht erst im Labor, möglich sein sollte. Tragbare, miniaturisierte Biodetektionssysteme, die mehrere Erreger gleichzeitig nachweisen können, wären ideal für diese Aufgabe. Amerikanische Forscher um Jeffrey Tok vom Lawrence Livermore National Laboratory haben in Zusammenarbeit mit Teams von der Stanford University, der University of California, Davis, und von Oxonia Inc. (früher Nanoplex Technologies) nun eine neue Basis für ein solches Multiplex-Gerät entwickelt: Sie nutzen Silber-Gold-„gestreifte“ Nanodrähte als Träger für simultane immunologische Tests auf mehrere Erreger. Das individuelle Streifenmuster übernimmt dabei die Rolle eines „Barcodes“.

Die „nanocodierten“ Partikel werden bei Oxonia durch elektrochemische Abscheidung von Metallen hergestellt, winzige zylindrische Poren von Tonerden dienen dabei als „Gussform“. Wenn die abgeschiedenen Metalle Gold und Silber dabei in definierter Weise abgewechselt werden, lassen sich Nanodrähte mit unterschiedlichen, charakteristischen Streifenmustern erzeugen. Anhand ihrer optischen Reflexionsmuster lassen sich diese Streifenabfolgen später – genau wie bei einem Barcode – eindeutig wiedererkennen.

An diese Drähte können nun Antikörper geknüpft werden, die gegen bestimmte Erreger gerichtet sind. Tok und Kollegen wählten für ihre Tests drei harmlose Modell-Substanzen aus, die Anthrax-Sporen, Pocken-Viren und Protein-Toxine wie Ricin und Botulinum-Toxin simulieren. Soll ein simultaner Test durchgeführt werden, würden z.B. die Anthrax-Antikörper an Streifenmuster 1, die Pocken-Antikörper an Streifenmuster 2 und die Toxin-Antikörper an Streifenmuster 3 geknüpft.

Ist der entsprechende Modell-Erreger in einer Probe vorhanden, wird er von den zugehörigen Antikörpern „erkannt“ und gebunden. Nun werden freie Antikörper zugegeben, die mit einem Fluoreszenzfarbstoff markiert sind. Sie docken ebenfalls an den Erreger an, so dass dieser wie der Belag eines Sandwiches von zwei Brotscheiben umfasst wird, daher der Name „Sandwich-Immunoassay“. Die Messung der Fluoreszenz gibt jetzt Auskunft über die Erreger-Konzentration. Per Bildanalyse der Reflexionsmuster wird der „Barcode“ der fluoreszierenden Nanodrähte abgelesen. Fluoreszieren dann z.B. nur Drähte mit Streifenmuster 1, enthielt die Probe Anthrax-Sporen. Besonderer Vorteil der Nanodrähte gegenüber anderen Antikörper-Trägern: Die Tests laufen nicht an einer Oberfläche, sondern in Suspension und damit deutlich schneller und genauer ab. Werden zusätzlich Nickelstreifchen auf die Enden der Drähte gezogen, lassen sich diese während der notwendigen Waschschritte magnetisch abtrennen – Voraussetzung für einen tragbaren Mikro-Biodetektor.

(3113 Anschläge)

SEARCH

SEARCH BY CITATION