Angewandte Chemie

Cover image for Vol. 126 Issue 37

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPlusChem, Zeitschrift für Chemie

[Weitere Presse-Mitteilungen]

Presse-Mitteilung

Angewandte Chemie 2011, 123, 4470–4473
doi: 10.1002/ange.201101043

Nr. 16/2011
27.4.2011

2-D schlägt 3-D

Ceroxid in Plättchenform speichert mehr Sauerstoff als nanokristalline Form

Kontakt: Christopher B. Murray, University of Pennsylvania, Philadelphia (USA)
Registrierte Journalisten können hier den Originalartikel herunterladen:
Synthesis and Oxygen Storage Capacity of 2-D Ceria Nanocrystals

Dreidimensional ist nicht zwangsläufig besser als zweidimensional. Jedenfalls nicht, wenn es um Ceroxid geht. Ceroxid ist ein wichtiges Katalysatormaterial. Wegen seiner hervorragenden Fähigkeit, Sauerstoff zu speichern und wieder abzugeben, wird es vor allem bei Oxidationsreaktionen verwendet. Christopher B. Murray und ein Team von der University of Pennsylvania haben eine einfache Methode entwickelt, mit der sich Ceroxid in Form von Nanoplättchen herstellen lässt. Wie die Forscher in der Zeitschrift Angewandte Chemie berichten, erwiesen sich diese im Vergleich zu konventionellen dreidimensionalen Nanopartikeln als die besseren Sauerstoffspeicher.

2-D schlägt 3-D - Ceroxid in Plättchenform speichert mehr Sauerstoff als nanokristalline Form
© Wiley-VCH

Im Abgaskatalysator unserer Autos hilft Ceroxid, Kohlenwasserstoffspitzen auszugleichen. Ceroxid kann z.B. auch beim Entfernen von Ruß aus Dieselabgasen und von organischen Verbindungen aus Abwässern eingesetzt werden. In Brennstoffzellen kommt es als fester Elektrolyt zum Einsatz. Cer, ein Metall aus der Gruppe der seltenen Erden, kann leicht zwischen zwei verschiedenen Oxidationszuständen (+IV und +III) wechseln, entsprechend reibungslos läuft ein Wechsel zwischen CeO2 und Materialien mit geringerem Sauerstoffgehalt. Dies macht Ceroxid zu einem idealen Sauerstoffspeicher.

Ceroxid kann in Form verschiedener Nanomaterialien hergestellt werden. Fast alle beschriebenen Formen waren bisher dreidimensional. Das Team um Murray hat nun eine bequeme Methode für die Synthese zweidimensionaler Nanoplättchen entwickelt. Die Synthesemethode beruht auf einer thermischen Zersetzung von Ceracetat bei 320 bis 330 °C. Ganz entscheidend für den Erfolg ist die Anwesenheit eines Mineralisierungsmittels, das den Kristallisationsprozess beschleunigt und die Morphologie kontrolliert. In Abhängigkeit von den Reaktionsbedingungen erhielten die Forscher 2 nm dünne quadratische Plättchen mit etwa 12 nm Kantenlänge oder längliche mit Maßen von etwa 14 x 152 nm.

Für einen Vergleich der Sauerstoffspeicherfähigkeit der verschiedenen Ceroxid-Varianten etablierten die Forscher eine sehr einfache thermogravimetrische Methode: Sie setzen die Proben alternierend Sauerstoff und Wasserstoff aus und registrieren die Massenänderung, die der Sauerstoffaufnahme bzw. -abgabe entspricht. Die Nanoplättchen erwiesen sich gegenüber den konventionellen dreidimensionalen Nanopartikeln als deutlich überlegen und zeigen etwa die drei- bzw. vierfache Sauerstoffspeicherkapazität. Die Plättchen haben ein höheres Verhältnis von Oberfläche zu Volumen als die dreidimensionalen Partikel. Eine Bindung des Sauerstoffs allein an der Oberfläche erklärt die so viel höhere Sauerstoffaufnahme aber nicht, es muss definitiv eine Aufnahme ins Innere der Plättchen erfolgen. Bei einem Ceroxid-Kristall sind nicht alle Oberflächen gleich gut für die Aufnahme und Abgabe von Sauerstoff geeignet. Wie sich zeigte, sind die Oberflächen der Plättchen genau die richtigen dafür.

(2984 Anschläge)

SEARCH

SEARCH BY CITATION