Angewandte Chemie

Cover image for Vol. 127 Issue 37

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPlusChem, Zeitschrift für Chemie

[Weitere Presse-Mitteilungen]

Presse-Mitteilung

Angewandte Chemie 2012, 124, 11181–11185
doi: 10.1002/ange.201203404

Nr. 40/2012
24.10.2012

Hybride Lichtmaschine

Bakterielles photosynthetisches Reaktionszentrum erntet mehr Licht dank maßgeschneiderter organischer Antenne

Kontakt: Massimo Trotta, Istituto per i Processi Chimico Fisici Nazionale delle Ricerche, Bari (Italien)
Registrierte Journalisten können hier den Originalartikel herunterladen:
Enhancing the Light Harvesting Capability of a Photosynthetic Reaction Center by a Tailored Molecular Fluorophore

Pflanzen können es, der Mensch kriegt es noch nicht so richtig hin: Die Gewinnung von Energie aus Sonnenlicht. Hybride Systeme aus natürlichen und künstlichen Komponenten könnten neue Wege für die Solarenergieerzeugung eröffnen. Italienische Forscher stellen in der Zeitschrift Angewandte Chemie den Ansatz für ein solches Konzept vor: Sie kombinierten den photochemischen Kern eines bakteriellen Photosynthesesystems mit einem organischen Farbstoff als „Antenne“, die den Lichteinfang deutlich verstärkt.

Hybride Lichtmaschine - Bakterielles photosynthetisches Reaktionszentrum erntet mehr Licht dank maßgeschneiderter organischer Antenne
© Wiley-VCH

Allen Photosynthese betreibende Organismen ist die funktionelle Organisation des Photosyntheseapparates gemeinsam: Pigment-Protein-Komplexe fangen das Licht ein wie ein Radioantenne die Radiowellen und leiten es an einen zentralen photochemischen Kern weiter, das Reaktionszentrum. Hier diese Energie in ein Elektron-Loch-Paar konvertiert: Ein negativ geladenes Elektron wird von seinem Molekülrumpf getrennt, wo es ein positiv geladenes „Loch“ hinterlässt. Dieser Zustand der Ladungstrennung muss lange genug erhalten bleiben, um ihn nutzen zu können. Der Organismus treibt damit seinen Metabolismus an. In der Technik kann die Ladungstrennung genutzt werden, um eine Redox-Reaktion anzutreiben, wie die Spaltung von Wasser in Wasserstoff und Sauerstoff.

Die Natur beherrscht alle diese Schritte optimal. Und es wurden auch künstliche Systeme geschaffen, die effizient Licht einfangen und die Energie zur Ladungstrennung weiterleiten, allerdings erreicht die Lebensdauer der Ladungstrennung kaum den Bereich von Millisekunden. Das reicht nicht aus, um die erzeugte Energie mit hoher Ausbeute abzuzapfen. Ein interessanter Ansatz ist es, hybride Systeme zu konstruieren, die eine maßgeschneiderte synthetische Antenne mit einem natürlichen „Lichtumwandler“ kombinieren. Als künstliche Antennen wurden bisher vor allem so genannte Quantenpunkte verwendet, nanoskopische Strukturen aus Halbleitermaterialien.

Die Forscher um Gianluca M. Farinola und Massimo Trotta wählten stattdessen ein maßgeschneidertes organisches Farbstoffmolekül als Antenne. Gegenüber den anorganischen Strukturen ergeben sich mehrere Vorteile: Die molekulare Vielfalt organischer Verbindungen erlaubt eine sehr feine Justierung der spektroskopischen und elektronischen Eigenschaften der Antenne. Gleichzeitig lassen sich die molekulare Form und Biegsamkeit so einstellen, dass die Antenne das Reaktionszentrum und dessen Funktion, anders als Quantenpunkte, so gut wie gar nicht beeinträchtigt. Eine organische Antenne lässt sich zudem an nahezu beliebige Stellen des Reaktionszentrums anknüpfen.

Ihre organische Antenne kombinierten die italienischen Wissenschaftler mit dem bereits gut erforschten Reaktionszentrum aus dem Purpurbakterium Rhodobacter sphaeroides R-26. Es zeigte sich, dass die Antenne die Funktion des natürlichen Lichtumwandlers nicht stört, sondern dessen Aktivität in einem Wellenlängenspektrum verbessert, in dem das rein biologische System nicht effizient absorbiert.

(3095 Anschläge)

Über den Autor

Dr Massimo Trotta ist Forscher am Institut für Physikalische Chemie des Italienischen Nationalen Forschungsrates. Er arbeitet seit mehr als 20 Jahren auf dem Gebiet der bakteriellen Photosynthese und deren Anwendungen in der Energieumwandlung sowie in umweltbezogenen Bereichen. Zudem war er Vorsitzender der COST-Aktion Molecular machinery for ion translocation across the membrane (Initiative für Europäische Zusammenarbeit in Wissenschaft und Technik).

SEARCH

SEARCH BY CITATION