Angewandte Chemie

Cover image for Vol. 128 Issue 36

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPlusChem, Zeitschrift für Chemie

[Weitere Presse-Mitteilungen]

Presse-Mitteilung

Angewandte Chemie ,
doi: 10.1002/ange.201207193

Nr. 50/2012
18.12.2012

Durch Wellenbrecher inspiriert

Hocheffizienter Elektrokatalysator für die Sauerstoffreduktion in Brennstoffzellen und Metall-Luft-Batterien

Kontakt: Jaephil Cho, Ulsan National Institute of Science and Technology (Rep. Korea)
Registrierte Journalisten können hier den Originalartikel herunterladen:
A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: N-Doped Ketjenblack Incorporated into Fe/Fe3C-Functionalized Melamine Foam

Ob Batterie, ob Brennstoffzelle – leistungsfähige Elektroden sind das A und O jeder elektrochemischen Zelle. Ein koreanisch-amerikanisches Team stellt in der Zeitschrift Angewandte Chemie jetzt ein neuartiges Elektrodenmaterial vor, das auf preiswertem Melaminschaum und Ruß basiert. Die hohe Porosität erleichtert den schnellen Massentransport erheblich und eine hohe Zahl an katalytisch aktiven Zentren verstärkt die Sauerstoff reduzierende Aktivität von Kathoden für Brennstoffzellen und Metall-Luft-Batterien drastisch.

Durch Wellenbrecher inspiriert - Hocheffizienter Elektrokatalysator für die Sauerstoffreduktion in Brennstoffzellen und Metall-Luft-Batterien
© Wiley-VCH

Die Reaktion, die in Brennstoffzellen sowie in Metall-Luft-Batterien an der Kathode stattfindet, ist eine Reduktion von Sauerstoff. Die Sauerstoff-Reduktions-Reaktion ist aufgrund ihrer schleppenden Reaktionsgeschwindigkeit jedoch deutlich gehemmt. Die Leistungsfähigkeit der Zellen ist geringer, als sie eigentlich sein könnte. Die katalytische Kathode muss dafür sorgen, dass Sauerstoff mit Wasser unter Aufnahme von Elektronen zu OH-Ionen reagiert, in alkalischer Lösung. Das Problem: Bei einem komplexen System, an dem feste, flüssige und gasförmige Partner beteiligt sind, laufen Transportprozesse oftmals nicht schnell genug ab und hemmen so den Prozess, besonders bei der Entladung mit höheren Stromdichten.

Kathoden aus einem porösen Kohlenstoffträger (Ruß), auf dem ein katalytisch aktives Edelmetall wie Platin fein dispergiert ist, können diese kinetische Hemmung zwar sehr effektiv verringern, aber sie sind teuer und nicht sehr stabil und daher nicht für den breiten Einsatz praktikabel. Ziel des Teams um Jaephil Cho vom Ulsan National Institute of Science and Technology (Südkorea) und Meilin Liu vom Georgia Institute of Technology (USA) war es daher, eine kostengünstigere Alternative zu entwickeln.

Die Tetrapodenstruktur (griechisch tetra: vier, podes: Füße) eines Wellenbrechers diente ihnen als Inspiration für die Synthese eines neuen hocheffizienten Elektrokatalysators. Tetrapoden, deren vier „Füße“ in die Ecken eines imaginären Tetraeders weisen, werden an der Küste, Dämmen oder Molen aufgeschichtet, um die Kraft der gegen das Ufer schlagenden Wasserwellen zu mindern. Gleichzeitig bieten diese Schichten dank ihrer zahlreichen großen Hohlräume Unterschlupf für marine Lebewesen. Wenn man Melaminharz pyrolisiert und mörsert, entstehen mikroskopisch kleine Bruchstücke, die an Tetrapoden erinnern.

Die Wissenschaftler behandelten Melaminharz mit Eisenchlorid und mit stickstoffdotiertem Ketjenblack, elektrisch leitfähigen Rußpellets, verkohlten es und laugten es mit Schwefelsäure aus. Die entstehenden, mit Rußnanopartikeln besetzten Nano-Tetrapoden bieten eine sehr hohe spezifische Oberfläche, eine hohe Zahl an katalytisch aktiven Zentren (Fe/Fe3C und CN-Gruppen) sowie viele Poren, die einen raschen Massentransport ermöglichen. Kathoden aus dem neuen Elektrodenmaterial zeigten eine hohe Beständigkeit und elektrochemische Leistungsdaten, die mit denen der edelmetallbasierten Kathoden konkurrieren können – bei einem wesentlich geringeren Preis. Sie sind ein vielversprechenden Ausgangspunkt für eine neue Generation preiswerter und hochleistungsfähiger Metall-Luft-Batterien und Brennstoffzellen.

(3292 Anschläge)

Über den Autor

Dr. Jaephil Cho ist Professor und Dekan an der Interdisciplinary School of Green Energy am UNIST (Südkorea). Er ist Direktor am Converging Research Center for Innovative Battery Technologies und am IT Research Center (beide gefördert durch die koreanische Regierung). Im Brennpunkt seiner derzeitigen Forschungen stehen derzeit vor allem Metall-Luft-Batterien und nanostrukturierte elektroaktive Matieralien für Lithium-Ionen-Batterien.

SEARCH

SEARCH BY CITATION