Angewandte Chemie

Cover image for Vol. 126 Issue 40

Chefredakteur: Peter Gölitz, Stellvertreter: Neville Compton, Haymo Ross

Online ISSN: 1521-3757

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemistryOpen, ChemPlusChem, Zeitschrift für Chemie

[Weitere Presse-Mitteilungen]

Presse-Mitteilung

Angewandte Chemie ,
doi: 10.1002/ange.201208840

Nr. 02/2013
17.1.2013

Verstopfte Poren für erhöhte Wirksamkeit

Molke-Protein stabilisiert Nanotransporter und steuert pH-abhängige Wirkstoff-Freisetzung

Kontakt: Freddy Kleitz, Université Laval, Québec (Kanada)
Registrierte Journalisten können hier den Originalartikel herunterladen:
pH-Responsive Nutraceutical–Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability

Wie können Pharmaka sicher durch das saure Milieu des Magens in den Darm geschleust werden? Ein kanadisch-australisches Team hat dazu einen neuartigen „Nanotransporter“ entwickelt, der aus porösen Partikeln aus Siliziumdioxid besteht, die mit einem Molke-Protein stabilisiert wurden. Im sauren Milieu bildet das Protein ein Gel, das die Poren verschließt. Bei höheren pH-Werten öffnen sich diese wieder.

Verstopfte Poren für erhöhte Wirksamkeit - Molke-Protein stabilisiert Nanotransporter und steuert pH-abhängige Wirkstoff-Freisetzung
© Wiley-VCH

Nicht nur der Wirkstoff, auch die Darreichungsform ist bei Pharmaka wichtig, denn sie entscheidet, wann und wo im Körper die Arznei ihre Wirkung entfaltet. Retard-Formulierungen sollen beispielsweise einen Wirkstoffpegel über einen längeren Zeitraum aufrecht erhalten, Tumormittel sollen möglichst selektiv in den erkrankten Zellen aktiv werden, um Nebenwirkungen gering zu halten. Dafür muss der Wirkstoff richtig „verpackt“ sein. Eine „Verpackung“ ist oft bereits bei oraler Gabe nötig, da viele Wirkstoffe durch die Magensäure zerstört werden, bevor sie den Darm erreichen, wo ihre Aufnahme in die Blutbahn erfolgen sollte. Ein Säureschutz tut not, der unter den Bedingungen des Darms jedoch den Wirkstoff freigeben muss.

Eine vielversprechende Wirkstoff-„Verpackung“ sind mesoporöse Siliziumdioxid-Nanopartikel. Sie sind biokompatibel, leicht mit der benötigten Poren- und Partikelgröße herzustellen und die Chemie ihrer inneren und äußeren Oberfläche kann breit variiert werden. Die Beladung mit Wirkstoff-Molekülen verschiedenster Größe funktioniert genauso problemlos wie deren kontrollierte Freisetzung. Allerdings neigen die Teilchen dazu, im physiologischen Milieu zu aggregieren, was deren Eigenschaften völlig verändern kann. Außerdem müssen Methoden entwickelt werden, die eine selektive Freisetzung am gewünschten Ziel auslösen. Der Wechsel des pH-Werts bei der Magen-Darm-Passage kann ein solcher Auslöser sein.

Das Team um Shi Zhang Qiao von der University of Queensland (Brisbane, Australien) und Freddy Kleitz von der Université Laval (Québec, Kanada) hat Siliziumdioxid-Nanotransporter nun weiterentwickelt und berichtet darüber in der Zeitschrift Angewandte Chemie. Erfolgsgeheimnis ist β-Lactoglobulin, ein als Nahrungsergänzungsmittel verwendetes Molke-Protein, das die Forscher an die äußere Oberfläche der porösen Nanopartikel anknüpfen. Dies stabilisiert die Nanopartikel gegenüber Aggregation und erhöht deren Biokompatibilität. Bei pH-Werten unterhalb von 5, wie im Magen, geliert β-Lactoglobulin, es quillt auf und bildet eine „Gelhülle“ um die Nanopartikel, die die Poren verstopft und verhindert, dass Wirkstoff austritt. Bei höheren pH-Werten, wie im Darm, liegt das Protein dagegen in Form diskreter Moleküle vor, die Poren werden frei, Wirkstoff kann austreten.

Nicht nur Magen und Darm, auch andere Organe unterscheiden sich in ihrem pH-Wert – und es finden sich sogar pH-Unterschiede zwischen bestimmten Tumoren und dem umgebenden gesundem Gewebe. Weiterentwicklungen des beschriebenen Ansatzes ließen sich vielleicht nutzen, um Nanotransporter zu konstruieren, die auf solche feineren pH-Unterschiede reagieren können.

(3183 Anschläge)

Über den Autor

Dr. Freddy Kleitz ist Professor am Department of Chemistry an der Laval University in Québec City, Kanada. Seine Arbeiten konzentrieren sich hauptsächlich auf das Design funktioneller nanoporöser Materialien sowie die Erforschung ihrer Eigenschaften als selektive Sorbentien, Katalysatoren und biomedizinische Komponenten. Er ist Mitglied des Research Center for Advanced Materials (CERMA) und des Quebec Center on Functional Materials (CQMF).

SEARCH

SEARCH BY CITATION