physica status solidi (b)

Cover image for Vol. 253 Issue 9

Editor: Stefan Hildebrandt (Editor-in-Chief), Sabine Bahrs (Deputy Editor)

Online ISSN: 1521-3951

Associated Title(s): physica status solidi (a), physica status solidi (c), physica status solidi (RRL) - Rapid Research Letters

249_08/2012Front Cover: Binary copper oxide semiconductors: From materials towards devices (Phys. Status Solidi B 8/2012)

Copper oxide in its multiple phases may lead the way in the direction of clean, efficient, and affordable new sources of energy. In the Review Article by Bruno Meyer and coworkers (pp. 1487–1509), the authors shine new light onto obstacles for copper oxide-based solar cells. After thoroughly reviewing state-of-the-art knowledge of crystal structures, as well as the electronic and optical properties of Cu2O, Cu4O3, and CuO, they report on their own synthesis of all three phases. By accurately tuning the oxygen flow in their experiments, they were able to specifically grow films of each of the three compounds. Highly precise X-ray techniques confirm the quality and phase purity of the samples. Resistivity and optical absorption of the films are discussed, as these characteristics are particularly important for solar-cell applications. By performing photoluminescence and Raman measurements, valuable information on the defects is gained since these strongly affect the optoelectronic properties of the desired product. The measurements are complemented by electronic-structure calculations within density functional theory. This detailed understanding of the three copper oxides enables Bruno Meyer and coworkers to manufacture a Cu2O-based device as well as the first solar cell based on Cu4O3. The results already look promising, however, the most outstanding problem left for the future is the increase of efficiency. The outlook is optistic: During the 1970s controlling the conductivity of these materials was a main problem but this issue has been solved by the incorporation of nitrogen into the samples. In the same way, further experimental and theoretical understanding can lead to overcoming the remaining challenges.

Read Full Text  | Table of Contents