Advanced Energy Materials

Cover image for Vol. 4 Issue 17

Early View (Online Version of Record published before inclusion in an issue)

Editor-in-Chief: Joern Ritterbusch, Deputy Editor: Carolina Novo

Impact Factor: 14.385

ISI Journal Citation Reports © Ranking: 2013: 3/83 (Energy & Fuels); 4/136 (Physics Applied); 5/136 (Chemistry Physical); 5/67 (Physics Condensed Matter); 7/251 (Materials Science Multidisciplinary)

Online ISSN: 1614-6840

Associated Title(s): Advanced Engineering Materials, Advanced Functional Materials, Advanced Healthcare Materials, Advanced Materials, Advanced Materials Interfaces, Advanced Optical Materials, Energy Technology, Fuel Cells, Particle & Particle Systems Characterization, Small

  1. Full Papers

    1. Natural Fiber Welded Electrode Yarns for Knittable Textile Supercapacitors

      Kristy Jost, David P. Durkin, Luke M. Haverhals, E. Kathryn Brown, Matthew Langenstein, Hugh C. De Long, Paul C. Trulove, Yury Gogotsi and Genevieve Dion

      Article first published online: 17 OCT 2014 | DOI: 10.1002/aenm.201401286

      Thumbnail image of graphical abstract

      Wearable electronics are quickly evolving, finding use in the clothing industry, but they still need an integrated textile power source. Steps towards making capacitive yarns for knitted electrochemical ­capacitors using a technique called natural fiber welding are described. Carbon materials are embedded into cotton, linen, bamboo, and viscose yarns and electrochemically characterized.

  2. Communications

    1. Solid Electrolyte: the Key for High-Voltage Lithium Batteries

      Juchuan Li, Cheng Ma, Miaofang Chi, Chengdu Liang and Nancy J. Dudney

      Article first published online: 14 OCT 2014 | DOI: 10.1002/aenm.201401408

      Thumbnail image of graphical abstract

      A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. The solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

    2. Novel Wearable Energy Devices Based on Aligned Carbon Nanotube Fiber Textiles

      Shaowu Pan, Huijuan Lin, Jue Deng, Peining Chen, Xuli Chen, Zhibin Yang and Huisheng Peng

      Article first published online: 13 OCT 2014 | DOI: 10.1002/aenm.201401438

      Thumbnail image of graphical abstract

      A novel wearable supercapacitor textile with the desired and combined properties of being thin, lightweight, transparent, and flexible is developed by stacking two aligned carbon nanotube fiber-based textile electrodes. The supercapacitor textile is further integrated to create a new energy textile that can convert solar energy to electric energy, in addition to storing it with a high entire photoelectric conversion and storage efficiency.

    3. Optically Switchable Smart Windows with Integrated Photovoltaic Devices

      Hyun-Keun Kwon, Kyu-Tae Lee, Kahyun Hur, Sung Hwan Moon, Malik M. Quasim, Timothy D. Wilkinson, Ji-Young Han, Hyungduk Ko, Il-Ki Han, Byoungnam Park, Byoung Koun Min, Byeong-Kwon Ju, Stephen M. Morris, Richard H. Friend and Doo-Hyun Ko

      Article first published online: 6 OCT 2014 | DOI: 10.1002/aenm.201401347

      Thumbnail image of graphical abstract

      An optically controlled energy-harvesting smart window that incorporates a semitransparent solar cell with a photo­sensitive liquid crystal (LC) layer is demonstrated. The LC layer can switch between a transparent (day mode) and an opaque (night mode) state depending upon the incident solar radiation. Combined with a photovoltaic cell, this window provides a template for future smart window systems.

  3. Full Papers

    1. Alveoli-Inspired Facile Transport Structure of N-Doped Porous Carbon for Electrochemical Energy Applications

      Dong Young Chung, Kyung Jae Lee, Seung-Ho Yu, Minhyoung Kim, Stanfield Youngwon Lee, Ok-Hee Kim, Hyun-Jin Park and Yung-Eun Sung

      Article first published online: 6 OCT 2014 | DOI: 10.1002/aenm.201401309

      Thumbnail image of graphical abstract

      Alveoli-inspired N-doped carbon materials with a high surface area and low transport resistance are synthesized. By incorporating a dopamine coating on a zeolitic imidazolate framework, pore size is modified and electrical conducting pathways are constructed, resulting in changes to the reaction kinetics. This is important for electrochemical energy applications.

  4. Communications

    1. High-Performance Solution-Processed Small-Molecule Solar Cells Based on a Dithienogermole-Containing Molecular Donor

      Yanming Sun, Jason Seifter, Lijun Huo, Yali Yang, Ben B. Y. Hsu, Huiqiong Zhou, Xiaobo Sun, Steven Xiao, Lei Jiang and Alan J. Heeger

      Article first published online: 6 OCT 2014 | DOI: 10.1002/aenm.201400987

      Thumbnail image of graphical abstract

      A novel dithienogermole-containing small-molecule donor termed p-DTG(FBTTh2)2 is synthesized and characterized, and its optical, thermal, and electrical properties are found to be comparable to its silicon analogue (p-DTS(FBTTh2)2). Solar cells based on an active layer of p-DTG(FBTTh2)2 and the fullerene PC70BM exhibit a power conversion efficiency of up to 6.9%, indicating that p-DTG(FBTTh2)2 is an excellent small-molecule donor.

  5. Full Papers

    1. Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes

      Zhirong Zhao-Karger, Xiangyu Zhao, Di Wang, Thomas Diemant, R. Jürgen Behm and Maximilian Fichtner

      Article first published online: 6 OCT 2014 | DOI: 10.1002/aenm.201401155

      Thumbnail image of graphical abstract

      Magnesium sulfur battery is one of the most promising energy storage systems. A new synthetic method for non-nucleophilic electrolytes provides a feasible way to optimize the physiochemical properties of the electrolytes for magnesium sulfur batteries. The first use of modified electrolytes in glymes and binary solvents shows significant beneficial effects on the performance of magnesium sulfur batteries.

  6. Communications

    1. Overcoming the Light-Soaking Problem in Inverted Polymer Solar Cells by Introducing a Heavily Doped Titanium Sub-Oxide Functional Layer

      Geunjin Kim, Jaemin Kong, Junghwan Kim, Hongkyu Kang, Hyungcheol Back, Heejoo Kim and Kwanghee Lee

      Article first published online: 30 SEP 2014 | DOI: 10.1002/aenm.201401298

      Thumbnail image of graphical abstract

      Light-soaking-free inverted polymer solar cell (i-PSC) devices are demonstrated by incorporating nitrogen doped sol–gel titanium sub-oxide (N-TiOx). A heavily doped electron transport layer in i-PSCs, N-TiOx on indium tin oxide yields an Ohmic contact with the bulk heterojunction layer that does not exhibit light-soaking processes. This results in highly efficient i-PSCs with power conversion efficiencies of 8.8%.

    2. Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non-Radiative Recombination

      Wolfgang Tress, Nevena Marinova, Olle Inganäs, Mohammad. K. Nazeeruddin, Shaik M. Zakeeruddin and Michael Graetzel

      Article first published online: 30 SEP 2014 | DOI: 10.1002/aenm.201400812

      Thumbnail image of graphical abstract

      The remarkably high open-circuit voltage of methylammonium lead iodide perov­skite solar cells is investigated. Both the theoretical maximum and the real open-circuit voltage are predicted from electroluminescence and photovoltaic external quantum efficiency spectra. Radiative and non-radiative recombination are quantified, where a source of non-radiative recombination is found in the mesoscopic structure, independent of the Al2O3 or TiO2 scaffold. Without a hole-transport layer, non-radiative recombination is strongly enhanced, which reduces the open-circuit voltage.

    3. A Three-Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution

      Hao Liu, Yao Zheng, Guoxiu Wang and Shi Zhang Qiao

      Article first published online: 29 SEP 2014 | DOI: 10.1002/aenm.201401186

      Thumbnail image of graphical abstract

      A Pd-phosphotungstic acid-mesoporous carbon nanocomposite exhibits superior catalytic activity for oxygen reduction reaction in aqueous alkaline electrolyte. This novel catalyst is promising to replace commercial Pt-C for ORR in alkaline fuel cells. This three-component architecture with synergistic coupling provides a new strategy for making advanced catalysts with excellent electrocatalytic activity.

  7. Full Papers

    1. Efficient, Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities

      Ardalan Armin, Mike Hambsch, Pascal Wolfer, Hui Jin, Jun Li, Zugui Shi, Paul L. Burn and Paul Meredith

      Article first published online: 29 SEP 2014 | DOI: 10.1002/aenm.201401221

      Thumbnail image of graphical abstract

      Monolithic large area organic solar cells are fabricated based on bulk hetero­junctions of a high molecular weight polymer and fullerene with balanced charge carrier mobilities. Thick junctions cast from high viscosity solutions can conformally coat low sheet resistance metal-grid anodes to produce efficient large area monolithic devices.

    2. In Situ Morphology Studies of the Mechanism for Solution Additive Effects on the Formation of Bulk Heterojunction Films

      Lee J. Richter, Dean M. DeLongchamp, Felicia A. Bokel, Sebastian Engmann, Kang Wei Chou, Aram Amassian, Eric Schaible and Alexander Hexemer

      Article first published online: 29 SEP 2014 | DOI: 10.1002/aenm.201400975

      Thumbnail image of graphical abstract

      Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.

  8. Communications

    1. The Scope and Limitations of Ternary Blend Organic Photovoltaics

      Brett M. Savoie, Scott Dunaisky, Tobin J. Marks and Mark A. Ratner

      Article first published online: 29 SEP 2014 | DOI: 10.1002/aenm.201400891

      Thumbnail image of graphical abstract

      Ternary organic photovoltaic donor:acceptor blend active materials composed of three distinct species possess remarkable advantages over neat semiconductors and binary donor:acceptor blends. A blended semiconductor is a foreign concept for inorganic semiconductors, whereas electronically disparate organic semiconductors can be mixed while mutually enhancing the properties of each. This feature allows ternary semiconductors to realize many of the advantages of tandem solar cells in a single layer.

  9. Full Papers

    1. Multifunctional Luminescent Down-Shifting Fluoropolymer Coatings: A Straightforward Strategy to Improve the UV-Light Harvesting Ability and Long-Term Outdoor Stability of Organic Dye-Sensitized Solar Cells

      Gianmarco Griffini, Federico Bella, Filippo Nisic, Claudia Dragonetti, Dominique Roberto, Marinella Levi, Roberta Bongiovanni and Stefano Turri

      Article first published online: 29 SEP 2014 | DOI: 10.1002/aenm.201401312

      Thumbnail image of graphical abstract

      A new multifunctional coating system based on a photocurable fluoropolymer that incorporates luminescent-down shifting, UV-screening, and easy-cleaning functionalities is presented. The use of such coating in organic dye-sensitized solar cell (DSSC) devices allows for significant improvement of the power conversion efficiency of uncoated devices and imparts outstanding long-term device stability in real outdoor operating conditions.

  10. Communications

    1. High-Efficiency Organic Photovoltaic Cells Based on the Solution-Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS

      Nir Yaacobi-Gross, Neil D. Treat, Pichaya Pattanasattayavong, Hendrik Faber, Ajay K. Perumal, Natalie Stingelin, Donal D. C. Bradley, Paul N. Stavrinou, Martin Heeney and Thomas D. Anthopoulos

      Article first published online: 25 SEP 2014 | DOI: 10.1002/aenm.201401529

      Thumbnail image of graphical abstract

      The use of copper thiocyanate (CuSCN) as a universal solution-processable and highly transparent hole-transporting layer in organic bulk-heterojunction photo­voltaic cells is demonstrated. When CuSCN is employed as a replacement for the commonly used poly(3,4-ethyl­­enedioxythiophene):polystyrenesulfonate (PEDOT:PSS), organic solar cells with maximum power conversion efficiency of 8%, are realized; this value is 1.27 times higher than that for optimized control cells based on PEDOT:PSS.

  11. Full Papers

    1. A High Areal Capacity Flexible Lithium-Ion Battery with a Strain-Compliant Design

      Abhinav M. Gaikwad, Brian V. Khau, Greg Davies, Benjamin Hertzberg, Daniel A. Steingart and Ana Claudia Arias

      Article first published online: 23 SEP 2014 | DOI: 10.1002/aenm.201401389

      Thumbnail image of graphical abstract

      Flexible lithium-ion batteries with a high areal capacity of ≈1 mAh cm-2 and an open-circuit potential of 2.6 V are demonstrated. Due to the reinforced electrode design, the batteries are able to maintain their capacity, even after repeated flexing up to a bend radius of 10 mm.

    2. Integrated Design of Organic Hole Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells

      Bo Xu, Haining Tian, Lili Lin, Deping Qian, Hong Chen, Jinbao Zhang, Nick Vlachopoulos, Gerrit Boschloo, Yi Luo, Fengling Zhang, Anders Hagfeldt and Licheng Sun

      Article first published online: 22 SEP 2014 | DOI: 10.1002/aenm.201401185

      Thumbnail image of graphical abstract

      A series of triphenylamine-based small molecular hole transport materials (HTMs) are systematically investigated in solid-state dye-sensitized solar cell (ssDSCs). Among these HTMs, X3- and X35-based devices exhibit desirable power conversion efficiencies of 5.8% and 5.5%, which are better than those for the device using the state-of-the-art Spiro-OMeTAD (5.4%). This makes these new HTMs promising for high-efficiency ssDSCs or perovskite solar cells.

    3. Optimization of Carbon- and Binder-Free Au Nanoparticle-Coated Ni Nanowire Electrodes for Lithium-Oxygen Batteries

      Sun Tai Kim, Nam-Soon Choi, Soojin Park and Jaephil Cho

      Article first published online: 22 SEP 2014 | DOI: 10.1002/aenm.201401030

      Thumbnail image of graphical abstract

      Au nanoparticle-coated Ni nanowire substrates are used as the electrode (Au/Ni electrode) for Li-O2 batteries. This optimized Au/Ni electrode demonstrates improved capacity of ≈600 mAh g−1Au. More importantly, it exhibits improved cyclability over 200 cycles at full discharge and charge conditions between 2.3 and 4.3 V.

    4. Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid-State Perovskite-Sensitized Solar Cells

      Jie Zhang, Philippe Barboux and Thierry Pauporté

      Article first published online: 22 SEP 2014 | DOI: 10.1002/aenm.201400932

      Thumbnail image of graphical abstract

      Efficient perovskite-sensitized solar cells are prepared based on designed electrodeposited zinc oxide scaffold layers. They combine Cl-doped vertically oriented nanowire arrays and an intermediate thin overlayer of low n-type doped ZnO. Very large photocurrents and open-circuit voltages are achieved and a power conversion efficiency as high as 10.28% is demonstrated.

  12. Communications

    1. Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li2O2 for Li-O2 Batteries

      Dongdong Xiao, Shanmu Dong, Jing Guan, Lin Gu, Shanming Li, Nijie Zhao, Chaoqun Shang, Zhenzhong Yang, Hao Zheng, Chun Chen, Ruijuan Xiao, Yong-Sheng Hu, Hong Li, Guanglei Cui and Liquan Chen

      Article first published online: 22 SEP 2014 | DOI: 10.1002/aenm.201400664

      Thumbnail image of graphical abstract

      The structure of the discharge product, Li2O2, in lithium-oxygen batteries is revealed directly on the atomic scale. A unique stage ordering that the peroxide vacancy occupies preferentially in every other layer along the c-axis of Li2O2 is observed. This finding provides new insight into the relationship between the structure of Li2O2 and the discharge/charge behavior of Li-O2 batteries.

SEARCH

SEARCH BY CITATION