physica status solidi (a)

Cover image for Vol. 211 Issue 11

Editor: Stefan Hildebrandt (Editor-in-Chief), Sabine Bahrs (Deputy Editor)

Online ISSN: 1862-6319

Associated Title(s): physica status solidi (b), physica status solidi (c), physica status solidi (RRL) - Rapid Research Letters

209_08/2012Front Cover: Ultrahigh gain AlGaN/GaN high energy radiation detectors (Phys. Status Solidi A 8/2012)

Gallium nitride has a remarkable tolerance to high energy ionizing radiation, but its full potential has not yet been realized due to material issues that lead to persistent photoconductivity, poor sensitivity, and requirements for large operational voltages. However, J. D. Howgate et al. (pp. 1562–1567) demonstrate that the introduction of a two-dimensional electron gas channel, through the construction of AlGaN/GaN heterointerfaces, can be used to create “photomultiplier” equivalent amplification, while eliminating persistent photoconductivity, under operation with single volt bias at room temperature. These results are extremely promising for future ionizing radiation detector technologies for applications ranging from high energy physics to medical imaging. This is demonstrated on the front cover image, where a 3 × 3 mm flashlight bulb was scanned with ultra-low dose rate (thousands of photons per second) focused X-rays, clearly revealing the 50 μm thick spiral filament and the cavity in which it is mounted. Furthermore, such an image could be obtained within milliseconds via device miniaturization using conventional microelectronics techniques that allow for fabrication of integrated two-dimensional pixel detectors. These extreme sensitivities could, for example, enable patient exposures to harmful ionizing radiation to be dramatically reduced or offer low power personal dosimeters capable of giving real-time warning to radiation exposure.

Read Full Text  | Table of Contents