Cover image for Vol. 10 Issue 10

Editor: David Smith; Editorial Board Chairs: Matthias Beller, Gabriele Centi, Licheng Sun

Impact Factor: 7.116

ISI Journal Citation Reports © Ranking: 2015: 2/29 (Subject); 20/163 (Chemistry Multidisciplinary)

Online ISSN: 1864-564X

Associated Title(s): Angewandte Chemie International Edition, Chemistry - A European Journal, Chemistry – An Asian Journal, ChemCatChem, ChemElectroChem, ChemPhysChem, Energy Technology

6_07/2013Cover Picture: Overcoming Bottlenecks of Enzymatic Biofuel Cell Cathodes: Crude Fungal Culture Supernatant Can Help to Extend Lifetime and Reduce Cost (ChemSusChem 7/2013)

The cover image shows the wood-degrading fungus Trametes versicolor that naturally secretes the redox-enzyme laccase. Without further enzyme purification, the laccase-containing culture supernatant can be supplied to an enzymatic biofuel cell cathode, at which it catalyzes the oxygen reduction reaction. Kerzenmacher et al. show in their manuscript on page 1209 that the enzymes lose catalytic activity with time; for this reason, fresh culture supernatant is regularly resupplied to the electrode to replace the deactivated laccase enzymes. In this way, a comparably simple and cost-efficient enzymatic biofuel cell cathode with an extended lifetime can be established.

Read Full Text  | Table of Contents