Journal of Geophysical Research: Atmospheres

Cover image for Vol. 121 Issue 17

Impact Factor: 3.318

ISI Journal Citation Reports © Ranking: 2015: 27/184 (Geosciences Multidisciplinary)

Online ISSN: 2169-8996

Associated Title(s): Journal of Geophysical Research

Comparison with observations shows cloud simulations improving

Climate projections, such as those used by the Intergovernmental Panel on Climate Change, rely on models that simulate physical properties that affect climate, including clouds and water vapor content. Clouds and water vapor are difficult to simulate in global climate models because they are affected by small-scale physical processes, and cloud feedback on climate is therefore a large source of uncertainty in climate predictions. A new study finds that model simulations of vertically averaged cloud water amount have improved in recent years. Jiang et al. (2012) developed a quantitative scoring method to evaluate the accuracy of 19 climate models at various vertical heights between the surface and the tropopause (16-18 km in altitude) over the tropical oceans (30oN-30oS). They compared the models' simulated multiyear mean of cloud water content and water vapor with observations made using several NASA satellites. Many of the new models, which were submitted to phase 5 of the Coupled Model Intercomparison Project (CMIP5), have attempted to improve representation of clouds using finer-scale simulations. The authors found that more than half of the models did show improvement over previous models from CMIP3 in simulating the amount and distribution of clouds and water vapor over the tropical oceans. In addition, they found that the models simulated boundary layer water vapor amounts accurately. However, there were large differences among the models and between the models and observations at high altitudes in the upper troposphere.

Abstract | Full Text | PDF