Development, Growth & Differentiation

Cover image for Vol. 58 Issue 8

Edited By: Harukazu Nakamura

Impact Factor: 2.412

ISI Journal Citation Reports © Ranking: 2015: 20/41 (Developmental Biology); 128/187 (Cell Biology)

Online ISSN: 1440-169X


Open Access via OnlineOpen
Authors of articles in Development, Growth & Differentiation can choose to make their articles open access and available free online for all readers through the payment of an author fee. Please refer to author guidelines for further details. Alternatively, the OnlineOpen form may be accessed here.

JSDB member discount on OnlineOpen fee is available from 2016 when a corresponding author of an article in Development, Growth & Differentiation is the society member. For further information and the discount code, please contact the society office (Email:

DGD Subscription for JSDB members:
JSDB membership includes access to Development, Growth and Differentiation. Please see detail at the society homepage.

Announcing the winners of the 2016 DGD Awards

The editorial board and The Japanese Society of Developmental Biologists would like to announce the 2016 winners for Editor-in-Chief Prize for 'Most Cited paper published in 2013' and Wiley Blackwell Prize for 'Most Downloaded Paper in 2015'.

First Authors received a certificate and prize of a US$200 book voucher for Wiley Blackwell books. Congratulations to all!

Editor-in-Chief Prize 2016

Most cited paper published in 2013

Adipose-derived mesenchymal stem cells and regenerative medicine

Masamitsu Konno, Atsushi Hamabe, Shinichiro Hasegawa, Hisataka Ogawa, Takahito Fukusumi, Shimpei Nishikawa, Katsuya Ohta, Yoshihiro Kano, Miyuki Ozaki, Yuko Noguchi, Daisuke Sakai, Toshihiro Kudoh, Koichi Kawamoto, Hidetoshi Eguchi, Taroh Satoh, Masahiro Tanemura, Hiroaki Nagano, Yuichiro Doki, Masaki Mori and Hideshi Ishii

Volume 55, Issue 3, pp 309-318

Wiley Blackwell Prize 2016

Most downloaded paper published in 2015

Fate of growth plate hypertrophic chondrocytes: Death or lineage extension?

Kwok Yeung Tsang, Danny Chan and Kathryn S. E. Cheah

Volume 57, Issue 2, pp 179-192

Young Investigator Paper Award 2016

Pou5f3.2-induced proliferative state of embryonic cells during gastrulation of Xenopus laevis embryo

Eriko Nishitani, Chong Li, Jaehoon Lee, Hiroyo Hotta, Yuta Katayama, Masahiro Yamaguchi and Tsutomu Kinoshita

Volume 57, Issue 9, pp 591–600

This manuscript reported regulation of Pou5f3.1 expression and its functions in early Xenopus embryos. Pou5f3.2 is expressed in mesodermal cells in gastrula embryos and its expression is directly induced by Xnr2 (Xenopus nodal) via Smad2. In addition, this study revealed that Pou5f3.2 stimulated proliferation of embryonic cells and inhibited their differentiation into mesodermal cells, while it positively regulated gastrulation. Taken together, this is an interesting manuscript showing a connection of Xnr1 and Pou5f3.2 and pivotal roles of Pou5f3.1 on switching proliferation and differentiation of early embryonic cells in Xenopus, and therefore this manuscript should be suitable for the DGD Award.

この論文では、Xenopus初期胚を用いてPou5f3.2が原腸陥入期胚の中胚葉で発現し、またこの発現はSmad2を介したXnr2 (nodal)による直接的な発現誘導であること、さらにPou5f3.2がCDK阻害因子のp27の抑制を介した初期胚細胞の細胞分裂の促進、未分化性の維持および原腸陥入の制御に係わっていることを示している。Pou5f3.2は哺乳動物のOct4 (Pou5f1)と同じPOU-Vファミリーの転写因子で、脊椎動物に広く存在している。Pou5f3はゼブラフィッシュでは、原腸陥入前後の形態形成などに働いている。またXenopusではPou5f3.1~3.3の3種類が存在し、Pou5f3.1, 3.2は中胚葉形成の制御に係わっていることが、これまでの研究により示されている。この研究では、Pou5f3.2の作用機構を詳しく調べ、nodalによる直接的な発現制御を受けて、初期胚未分化細胞の増殖の促進と分化の阻害を行う一方で、原腸陥入の進行を促進する働きがあることを示し、Pou5f3.2が増殖と分化のスイッチングに係わる可能性を示した興味深い内容になっており、DGD奨励賞にふさわしい論文であると判断できる。

Development of the thalamo-dorsal ventricular ridge tract in the Chinese soft-shelled turtle, Pelodiscus sinensis

Yasuhiko Tosa, Ayako Hirao, Ikumi Matsubara, Masahumi Kawaguchi, Makiko Fukui, Shigeru Kuratani and Yasunori Murakami

Volume 57, Issue 1, pp 40–57

Pattern of thalamic axons in birds and reptiles is different from that of mammals. The authors investigated the embryonic origin of the evolutionary change in thalamic axon guidance mechanism. The authors studied the expression patterns of axon guidance molecules in the embryonic brains of the chick and turtle, and found conserved as well as variant patterns of different sets of guidance molecules. Those observations are discussed in term of evolutionary difference in vertebrate brain patterns. The data and discussion are clear and this paper has a potential of becoming a standard reference in the field of comparative brain anatomy.

本論文は脊椎動物脳における視床軸索の走行経路が哺乳動物と爬虫類、鳥類とで異なることに着目し、神経走行パターンと軸索ガイダンス分子の発現分布を比較する事で、爬虫類、鳥類に特有なガイダンス機構があることを示したものである。実験データは軸索in situ hybridizationデータからなり、豊富な比較発生学の知識に裏付けられた考察がなされている。今後の評価次第で脳の比較発生学研究において重要な文献となる可能性を秘めておりDGD Awardにふさわしい。

miR-29a modulates tumor necrosis factor-α-induced osteogenic inhibition by targeting Wnt antagonists

Caixia Li, Pingping Zhang and Jieruo Gu

Volume 57, Issue 3, pp 264-237

Two related regulatory cascades have been documented concerning osteogenesis regulation: (1) TNF- inhibits osteogenesis via activation of inhibitory components of Wnt signaling; (2) miR-29a promotes osteogenesis via WNT signal activation. In this study, the authors unified these observations in a single model based on their experimental results using an osteocarcinoma cell line hFOB as a model. They found that an effect of TNF- is to downregulate miR-29a expression, while miR-29a inhibits DKK1 and GSK3 protein synthesis via direct interaction with respective mRNAs. Moreover, the authors demonstrated that TNF--dependent inhibition of osteogenesis is relieved by miR-29a overexpression. Therefore, TNF- inhibits osteogenesis via repression of miR-29a, which otherwise represses expression of WNT antagonists and thereby activates pro-osteogenic WNT signaling. This study represents an example of proper choices of in vitro model and experimental strategy that allow high-resolution analysis of developmental regulation.

硬骨の分化の制御に関して、2つの関連した観察が報告されていた。一つは、TNF-が、WNTシグナル阻害タンパク質の合成を活性化することによって、骨形成を抑制するというもの。もう一つは、miR-29aがWNTシグナルを活性化することによって、骨形成を促成というものである。本研究で著者たちは、hFOB骨がん細胞株を用いた実験によって、この2つの観察を一つの制御プロセスの中に統一した。miR-29aは、DKK1, GSK3などのmRNAと直接的に相互作用することによって、WNTシグナル阻害タンパク質の発現を抑制し、その結果、WNTシグナルを活性化して骨分化を促進する。一方、TNF-の骨形成に対する抑制効果は、miR-29aの発現を阻害することに起因する。適切な実験モデルと研究デザインの組み合わせで、発生過程の制御の詳細が明らかになった好例である。