Oikos

Cover image for Vol. 123 Issue 9

Edited By: Dries Bonte

Impact Factor: 3.559

ISI Journal Citation Reports © Ranking: 2013: 31/140 (Ecology)

Online ISSN: 1600-0706

Virtual Issues



Dispersal Evolution and Species’ Range

Dispersal Evolution and Species’ Range 2014

The distribution of species in space and time is one of the oldest puzzles in ecology. Today we know of many factors that influence species' ranges. However, the ecological and evolutionary interactions of these factors, which ultimately shape the geographical distributions of species are still not comprehensively understood.

In this virtual special issue we aim at providing an overview of the different factors that influence dispersal evolution and species' ranges. These eco-evolutionary forces may act at all levels of biological organization, from genes to (meta-)communities.

The studies collected here highlight that the complexities and non-linearities, which arise from these interactions, challenge our understanding of abundances and distributions. Consequently, it is of great importance to keep in mind that species and their traits are constantly and maybe rapidly evolving and that a whole range of ecological and evolutionary forces influence where they are, and why. This awareness is central for conservation, management and any kind of predictive ecology, especially since our climate and environment at large is permanently changing.


Dispersal, evolution and range dynamics
Alexander Kubish and Emanuel A. Fronhofer

Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal
Alexander Kubisch, Robert D. Holt, Hans-Joachim Poethke and Emanuel A. Fronhofer

Exploring the difficulties of studying futures in ecology: what do ecological scientists think?
Audrey Coreau, Sébastien Treyer, Pierre-Olivier Cheptou, John D. Thompson and Laurent Mermet

Metapopulation dynamics across gradients – the relation between colonization and extinction in shaping the range edge
Beáta Oborny, Jeromos Vukov, Gábor Csányi and Géza Meszéna

A metapopulation model of species boundaries
J. J. Lennon, J. R. G. Turner and D. Connell

The dynamics of climate-induced range shifting; perspectives from simulation modelling
Karen Mustin, Tim G. Benton, Calvin Dytham and Justin M. J. Travis

Which species will succesfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics
A. S. Best, K. Johst, T. Münkemüller and J. M. J. Travis

When range expansion rate is faster in marginal habitats
Reidar Andersen, Ivar Herfindel, Bernt-Erik Sæther, John D. C. Linnell, John Oddén and Olof Liberg

Interspecific interactions affect species and community responses to climate shifts
Alexander Singer, Justin M. J. Travis and Karin Johst

Can we disentangle predator–prey interactions from species distributions at a macro-scale? A case study with a raptor species
Aragón, P. and Sánchez-Fernández, D.

Evolution of dispersal traits along an invasion route in the wind-dispersed Senecio inaequidens (Asteraceae)
Monty, A. and Mahy, G.

Limits to the niche and range margins of alien species
Alexander, J. M. and Edwards, P. J.


Surf and Turf

Surf & Turf 2013

Edited by Randi Rotjan

The goal of a truly synthetic, cross-systems ecology has been often lauded but rarely implemented. Here, our authors have embraced the challenge to achieve synthesis via a multi-paper dialogue and we hope this format will act as a springboard for new ecological ideas, experiments and theories.

Randi Rotjan

Surf and Turf: Toward better sythesis by cross-systems understanding
Randi D. Rotjan and Joshua Idjadi

Regional effects as important determinants of local diversity in both marine and terrestrial systems
Howard V. Cornell and Susan P. Harrison

Is dispersal limitation more prevalent in the ocean?
Diane S. Srivastava and Pavel Kratina

Are regional effects on local diversity more important in marine than in terrestrial communities?
Jon D. Witman

Comparing aquatic and terrestrial grazing ecosystems: is the grass really greener?
Deron E. Burkepile

Green grass and high tides: grazing lawns in terrestrial and aquatic ecosystems (commentary on Burkepile 2013)
Daniel S. Gruner and Kailen A. Mooney

Re-examining the fundamentals of grazing: freshwater, marine and terrestrial similarities and contrasts (commentary on Burkepile 2013)
Raymond M. Newman and Randi D. Rotjan



Partial Migration front cover

Partial Migration – CAnMove 2011

Edited by Ben B. Chapman, Christer Brönmark, Jan-Åke Nilsson and Lars-Anders Hansson

Partial migration, where populations consist of both migratory and resident individuals, is widespread in nature and can have important ecological consequences. CAnMove, a VR-funded research constellation into the ecology and evolution of animal movement, recently hosted a symposium in partial migration at Lund University. From this meeting a number of original research articles were compiled to produce this thematic on partial migration, with the aim of synthesising ideas from a broad range of taxa and improving understanding of the causes and consequences of this phenomenon.

Partial migration: an introduction
Ben B. Chapman, Christer Brönmark, Jan-Åke Nilsson, and Lars-Anders Hansson

The ecology and evolution of partial migration
Ben B. Chapman, Christer Brönmark, Jan-Åke Nilsson, and Lars-Anders Hansson

Evolutionary genetics of partial migration – the threshold model of migration revis(it)ed
Francisco Pulido

Basal metabolic rate and energetic cost of thermoregulation among migratory and resident blue tits
Anna L. K. Nilsson, Jan-Åke Nilsson and Thomas Alerstam

Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors
Francesca Cagnacci, Stefano Focardi, Marco Heurich, Anja Stache et al.

Short-distance partial migration of Neotrpical birds: a community-level test of the foraging limitation hypothesis
W. Alice Boyle

Partial migration in expanding red deer populations at northern latitudes – a role for density dependence
Atle Mysterud, Leif Egil Loe, Barbara Zimmermann, Richard Bischof, Vebjørn Veiberg and Erling Meisingset

Directions in modeling partial migration: how adaption can cause a population decline and why the rules of territory acquisition matter
Hanna Kokko

Interplay between temperature, fish partial migration and trophic dynamics
Jakob Brodersen, Alice Nicolle, P. Anders Nilsson, Christian Skov, Christer Brönmark and Lars-Anders Hansson

The equilibrium, population size of a partially migratory population and its response to environmental change
Cortland K. Griswold, Caz M. Taylor and D. Ryan Morris

Demographic balancing of migrant and resident elk in a partially migratory population through forage–predation tradeoffs
Mark Hebblewhite and Evelyn H. Merrill

To breed or not to breed: a model of partial migration
Allison K. Shaw and Simon A. Levin


Sizemic Special Issue - Body Size and Ecosystem Dynamics

Body size and ecosystem dynamics - SIZEMIC 2010

Edited by Julia L. Blanchard, Andrea Belgrano, Bo Ebenman, Owen L. Petchey and F.J. Frank Van Veen

Body size influences many processes, ranging from individual biological rates up to the structure of food webs, resilience of ecosystems and their services. The ESF funded research network, SIZEMIC, has been synthesising ideas across pure and applied ecology and in both terrestrial and aquatic realms to improve understanding on the role of body size in ecosystems.

Body size and ecosystem dynamics: an introduction
Julia L. Blanchard

Taxonomic versus allometric constraints on non-linear interaction strengths
Björn Christian Rall, Gregor Kalinkat, David Ott, Olivera Vucic-Pestic and Ulrich Brose

The consequences of size dependent foraging for food web topology
Aaron Thierry, Owen L. Petchey, Andrew P. Beckerman, Philip H. Warren and Richard J Williams

Body sizes, cumulative and allometric degree distributions across natural food webs
Christoph Digel, Jens Riede and Ulrich Brose

Using sensitivity analysis to identify keystone species and keystone links in size-based food webs
Sofia Berg, Maria Christianou, Tomas Jonsson and Bo Ebenman

Body mass–abundance relationships are robust to cascading effects in marine food webs
Eoin J. O’Gorman and Mark C. Emmerson

How allometric scaling relates to soil abiotics
Christian Mulder, J. Arie Vonk, Henri A. Den Hollander, A. jan Hendriks and Anton M. Breure

The birds and the seas: body size reconciles differences in the abundance–occupancy relationship across marine and terrestrial vertebrates
Thomas J. Webb, Nicholas K. Dulvy, Simon Jennings and Nicholas V. C. Polunin

Across ecosystem comparisons of size structure: methods, approaches and prospects
Gabriel Yvon-Durocher, Julia Reiss, Julia Blanchard, Bo Ebenman, Daniel M. Perkins, Daniel C. Reuman, Aaron Thierry, Guy Woodward and Owen L. Petchey


SEARCH

SEARCH BY CITATION