A new method for analyzing linear elliptic partial differential equations in the interior of a convex polygon was developed in the late 1990s. This method does not rely on the classical approach of separation of variables and on the use of classical integral transforms and therefore is well suited for the investigation of the biharmonic equation. Here, we present a novel integral representation of the solution of the biharmonic equation in the interior of a convex polygon. This representation contains certain free parameters and therefore is more general than the one presented in [1]. For a given boundary value problem, by choosing these free parameters appropriately, one can obtain the simplest possible representation for the solution. This representation still involves certain unknown boundary values, thus for this formula to become effective it is necessary to characterize the unknown boundary values in terms of the given boundary conditions. This requires the investigation of certain relations refereed to as the *global relations*. A general approach for analyzing these relations is illustrated by solving several problems formulated in the interior of a semistrip. In addition, for completeness, similar results are presented for the Poisson equation by employing an integral representation for the Laplace equation which is more general than the one derived in the late 1990s.

This paper concerns the separable solutions of a generalized Burgers equation. Existence of separable solutions to the generalized Burgers equation is proved under certain conditions. A careful numerical study shows that these separable solutions of the generalized Burgers equation describe the large time asymptotic behavior of solutions of initial boundary value problems.

]]>Initial-boundary value problems for integrable nonlinear partial differential equations have become tractable in recent years due to the development of so-called unified transform techniques. The main obstruction to applying these methods in practice is that calculation of the spectral transforms of the initial and boundary data requires knowledge of too many boundary conditions, more than are required to make the problem well-posed. The elimination of the unknown boundary values is frequently addressed in the spectral domain via the so-called global relation, and types of boundary conditions for which the global relation can be solved are called *linearizable*. For the defocusing nonlinear Schrödinger equations, the global relation is only known to be explicitly solvable in rather restrictive situations, namely homogeneous boundary conditions of Dirichlet, Neumann, and Robin (mixed) type. General nonhomogeneous boundary conditions are not known to be linearizable. In this paper, we propose an explicit approximation for the nonlinear Dirichlet-to-Neumann map supplied by the defocusing nonlinear Schrödinger equations and use it to provide approximate solutions of general nonhomogeneous boundary value problems for this equation posed as an initial-boundary value problem on the half-line. Our method sidesteps entirely the solution of the global relation. The accuracy of our method is proven in the semiclassical limit, and we provide explicit asymptotics for the solution in the interior of the quarter-plane space-time domain.

On reexamining the hydrodynamic instability, Yu [1] showed that when the fully dynamical interactions are duly accounted for, and proper mathematical analysis is carried out, the positive feedback between the wave and evolving current can initiate and sustain rip current circulations with scales comparable to field observations on alongshore uniform beaches. In this study, we extend that analysis to consider nonplanar beaches, and to include a new branch of unstable modes that correspond to alongshore propagating horizontal circulations with the magnitudes of the flow growing in time. The latter has not previously been studied. These propagating unstable modes have typical time periods of tens of minutes and alongshore propagation speeds of a few centimeters per second. The physical implications of their spatial and slow time oscillations are discussed, as of relevance to occurrence and recurrence of transient rips, alongshore migration of rip currents and very low frequency pulsations in surf zone eddy circulations.

]]>A consistent Riccati expansion (CRE) is proposed for solving nonlinear systems with the help of a Riccati equation. A system having a CRE is then defined to be CRE solvable. The CRE solvability is demonstrated quite universal for various integrable systems including the Korteweg–de Vries, Kadomtsev–Petviashvili, Ablowitz–Kaup–Newell–Segur (and then nonlinear Schrödinger), sine-Gordon, Sawada–Kotera, Kaup–Kupershmidt, modified asymmetric Nizhnik–Novikov–Veselov, Broer–Kaup, dispersive water wave, and Burgers systems. In addition, it is revealed that many CRE solvable systems share a similar determining equation describing the interactions between a soliton and a cnoidal wave. They have a common nonlocal symmetry expression and they possess a formally universal once Bäcklund transformation.

]]>In the present study, oblique surface wave scattering by a submerged vertical flexible porous plate is investigated in both the cases of water of finite and infinite depths. Using Green's function technique, the boundary value problem is converted into a system of three Fredholm type integral equations. Various integrals associated with the integral equations are evaluated using appropriate Gauss quadrature formulae and the system of integral equations are converted into a system of algebraic equations. Further, using Green's second identity, expressions for the reflection and transmission coefficients are obtained in terms of the velocity potential and its normal derivative. Energy balance relations for wave scattering by flexible porous plates and permeable membrane barriers are derived using Green's identity and used to check the correctness of the computational results. From the general formulation of the submerged plate, wave scattering by partial plates such as (i) surface-piercing and (ii) bottom-standing plates are studied as special cases. Further, oblique wave scattering by bottom-standing and surface-piercing porous membrane barriers are studied in finite water depth as particular cases of the flexible plate problem. Various numerical results are presented to study the effect of structural rigidity, angle of incidence, membrane tension, structural length, porosity and water depth on wave scattering. It is found that wave reflection is more for a surface-piercing flexible porous plate in infinite water depth compared to finite water depth and opposite trend is observed for a submerged flexible porous plate. For a surface-piercing nonpermeable membrane, zeros in transmission coefficient are observed for waves of intermediate water depth which disappear with the inclusion of porosity. The study reveals that porosity has small influence on the wave-induced excitation of the structure with higher flexibility but it tends to reduce the deflection of a stiffer structure. In case of partial flexible plates and membrane barriers, irrespective of the gap length, full transmission occurs due to wave diffraction through the gap in the very long wave regime while, full reflection occurs by complete flexible impermeable barriers for similar wave condition.

]]>A numerical method is proposed for computing time-periodic and relative time-periodic solutions in dissipative wave systems. In such solutions, the temporal period, and possibly other additional internal parameters such as the propagation constant, are unknown priori and need to be determined along with the solution itself. The main idea of the method is to first express those unknown parameters in terms of the solution through quasi-Rayleigh quotients, so that the resulting integrodifferential equation is for the time-periodic solution only. Then this equation is computed in the combined spatiotemporal domain as a boundary value problem by Newton-conjugate-gradient iterations. The proposed method applies to both stable and unstable time-periodic solutions; its numerical accuracy is spectral; it is fast-converging; its memory use is minimal; and its coding is short and simple. As numerical examples, this method is applied to the Kuramoto–Sivashinsky equation and the cubic-quintic Ginzburg–Landau equation, whose time-periodic or relative time-periodic solutions with spatially periodic or spatially localized profiles are computed. This method also applies to systems of ordinary differential equations, as is illustrated by its simple computation of periodic orbits in the Lorenz equations. MATLAB codes for all numerical examples are provided in the Appendices to illustrate the simple implementation of the proposed method.

]]>The Kidder problem is with and where . This looks challenging because of the square root singularity. We prove, however, that for all . Other very simple but very accurate curve fits and bounds are given in the text; . Maple code for a rational Chebyshev pseudospectral method is given as a table. Convergence is geometric until the coefficients are when the coefficients . An initial-value problem is obtained if is known; the slope Chebyshev series has only a fourth-order rate of convergence until a simple change-of-coordinate restores a geometric rate of convergence, empirically proportional to . Kidder's perturbation theory (in powers of α) is much inferior to a delta-expansion given here for the first time. A quadratic-over-quadratic Padé approximant in the exponentially mapped coordinate predicts the slope at the origin very accurately up to about . Finally, it is shown that the singular case can be expressed in terms of the solution to the Blasius equation.

]]>The interface problem for the linear Schrödinger equations in one-dimensional piecewise homogeneous domains is examined by providing an explicit solution in each domain. The location of the interfaces is known and the continuity of the wave function and a jump in their derivative at the interface are the only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized domains are examined in detail. The problem and the method considered here extend that of an earlier paper by Deconinck et al. (2014) [1]. The dispersive nature of the problem presents additional difficulties that are addressed here.

]]>We examine the variable-coefficient Kortweg-de Vries equation for the situation when the coefficient of the quadratic nonlinear term changes sign at a certain critical point. This case has been widely studied for a solitary wave, which is extinguished at the critical point and replaced by a train of solitary waves of the opposite polarity to the incident wave, riding on a pedestal of the original polarity. Here, we examine the same case but for a modulated periodic wave train. Using an asymptotic analysis, we show that in contrast a periodic wave is preserved with a finite amplitude as it passes through the critical point, but a phase change is generated causing the wave to reverse its polarity.

]]>We consider the Caudrey–Beals–Coifman linear problem (CBC problem) and the theory of the Recursion Operators (Generating Operators) related to it in the presence of -reductions of Mikhailov type defined by Coxeter automorphism of the underlying algebra. We discuss mainly the spectral aspects of the theory of the Recursion Operators related to the expansions over the adjoint solutions of the CBC problem but pay attention also to the algebraic issues related to the recursion relations through which the hierarchies of the nonlinear evolution equations associated with the CBC auxiliary problem are obtained.

]]>The Landau–Lifshitz equation is analyzed via the inverse scattering method. First, we give the well-posedness theory for Landau–Lifshitz equation with the frame of inverse scattering method. The generalized Darboux transformation is rigorous considered in the frame of inverse scattering transformation. Finally, we give the high-order soliton solution formula of Landau–Lifshitz equation and vortex filament equation.

]]>This paper presents a straightforward procedure for using Renormalization Group methods to solve a significant variety of perturbation problems, including some that result from applying a nonlinear version of variation of parameters. A regular perturbation procedure typically provides asymptotic solutions valid for bounded *t* values as a positive parameter ε tends to zero. One can eliminate secular terms by introducing a slowly-varying amplitude obtained as a solution of an amplitude equation on intervals where is bounded. With sufficient stability hypotheses, the results may even hold for all . These ideas are illustrated for a number of nontrivial problems involving ordinary differential equations.

In this paper, we present new, unstable solutions, which we call quicksilver solutions, of a *q*-difference Painlevé equation in the limit as the independent variable approaches infinity. The specific equation we consider in this paper is a discrete version of the first Painlevé equation (*q*P_{I}), whose phase space (space of initial values) is a rational surface of type . We describe four families of almost stationary behaviors, but focus on the most complicated case, which is the vanishing solution. We derive this solution's formal power series expansion, describe the growth of its coefficients, and show that, while the series is divergent, there exist true analytic solutions asymptotic to such a series in a certain *q*-domain. The method, while demonstrated for *q*P_{I}, is also applicable to other *q*-difference Painlevé equations.