Since risky positions in multivariate portfolios can be offset by various choices of capital requirements that depend on the exchange rules and related transaction costs, it is natural to assume that the risk measures of random vectors are set-valued. Furthermore, it is reasonable to include the exchange rules in the argument of the risk measure and so consider risk measures of set-valued portfolios. This situation includes the classical Kabanov's transaction costs model, where the set-valued portfolio is given by the sum of a random vector and an exchange cone, but also a number of further cases of additional liquidity constraints. We suggest a definition of the risk measure based on calling a set-valued portfolio acceptable if it possesses a selection with all individually acceptable marginals. The obtained selection risk measure is coherent (or convex), law invariant, and has values being upper convex closed sets. We describe the dual representation of the selection risk measure and suggest efficient ways of approximating it from below and from above. In the case of Kabanov's exchange cone model, it is shown how the selection risk measure relates to the set-valued risk measures considered by Kulikov (, *Theory Probab. Appl*. 52, 614–635), Hamel and Heyde (, *SIAM J. Financ. Math*. 1, 66–95), and Hamel, Heyde, and Rudloff (, *Math. Financ. Econ*. 5, 1–28).

This paper studies the price-setting problem of market makers under risk neutrality and perfect competition in continuous time. The classic approach of Glosten–Milgrom is followed. Bid and ask prices are defined as conditional expectations of a true value of the asset given the market makers' partial information that includes the customers' trading decisions. The true value is modeled as a Markov process that can be observed by the customers with some noise at Poisson times. A mathematically rigorous analysis of the price-setting problem is carried out, solving a filtering problem with endogenous filtration that depends on the bid and ask price processes quoted by the market maker. The existence and uniqueness of the bid and ask price processes is shown under some conditions.

]]>In this paper, we propose a sensitivity-based analysis to study the nonlinear behavior under nonexpected utility with probability distortions (or “distorted utility” for short). We first discover the “monolinearity” of distorted utility, which means that after properly changing the underlying probability measure, distorted utility becomes locally linear in probabilities, and the derivative of distorted utility is simply an expectation of the sample path derivative under the new measure. From the monolinearity property, simulation algorithms for estimating the derivative of distorted utility can be developed, leading to gradient-based search algorithms for the optimum of distorted utility. We then apply the sensitivity-based approach to the portfolio selection problem under distorted utility with complete and incomplete markets. For the complete markets case, the first-order condition is derived and optimal wealth deduced. For the incomplete markets case, a dual characterization of optimal policies is provided; a solvable incomplete market example with unhedgeable interest rate risk is also presented. We expect this sensitivity-based approach to be generally applicable to optimization problems involving probability distortions.

]]>The risk of a financial position is usually summarized by a risk measure. As this risk measure has to be estimated from historical data, it is important to be able to verify and compare competing estimation procedures. In statistical decision theory, risk measures for which such verification and comparison is possible, are called elicitable. It is known that quantile-based risk measures such as value at risk are elicitable. In this paper, the existing result of the nonelicitability of expected shortfall is extended to all law-invariant spectral risk measures unless they reduce to minus the expected value. Hence, it is unclear how to perform forecast verification or comparison. However, the class of elicitable law-invariant coherent risk measures does not reduce to minus the expected value. We show that it consists of certain expectiles.

]]>We propose a fast and accurate numerical method for pricing European swaptions in multifactor Gaussian term structure models. Our method can be used to accelerate the calibration of such models to the volatility surface. The pricing of an interest rate option in such a model involves evaluating a multidimensional integral of the payoff of the claim on a domain where the payoff is positive. In our method, we approximate the exercise boundary of the state space by a hyperplane tangent to the maximum probability point on the boundary and simplify the multidimensional integration into an analytical form. The maximum probability point can be determined using the gradient descent method. We demonstrate that our method is superior to previous methods by comparing the results to the price obtained by numerical integration.

]]>To assure price admissibility—that all bond prices, yields, and forward rates remain positive—we show how to control the state variables within the class of arbitrage-free linear price function models for the evolution of interest rate yield curves over time. Price admissibility is necessary to preclude cash-and-carry arbitrage, a market imperfection that can happen even with a risk-neutral diffusion process and positive bond prices. We assure price admissibility by (i) defining the state variables to be scaled partial sums of weighted coefficients of the exponential terms in the bond pricing function, (ii) identifying a simplex within which these state variables remain price admissible, and (iii) choosing a general functional form for the diffusion that selectively diminishes near the simplex boundary. By assuring that prices, yields, and forward rates remain positive with tractable diffusions for the physical and risk-neutral measures, an obstacle is removed from the wider acceptance of interest rate methods that are linear in prices.

]]>Many investment models in discrete or continuous-time settings boil down to maximizing an objective of the quantile function of the decision variable. This quantile optimization problem is known as the quantile formulation of the original investment problem. Under certain monotonicity assumptions, several schemes to solve such quantile optimization problems have been proposed in the literature. In this paper, we propose a change-of-variable and relaxation method to solve the quantile optimization problems without using the calculus of variations or making any monotonicity assumptions. The method is demonstrated through a portfolio choice problem under rank-dependent utility theory (RDUT). We show that this problem is equivalent to a classical Merton's portfolio choice problem under expected utility theory with the same utility function but a different pricing kernel explicitly determined by the given pricing kernel and probability weighting function. With this result, the feasibility, well-posedness, attainability, and uniqueness issues for the portfolio choice problem under RDUT are solved. It is also shown that solving functional optimization problems may reduce to solving probabilistic optimization problems. The method is applicable to general models with law-invariant preference measures including portfolio choice models under cumulative prospect theory (CPT) or RDUT, Yaari's dual model, Lopes' SP/A model, and optimal stopping models under CPT or RDUT.

]]>We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced-form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton–Jacobi–Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.

]]>We propose a tractable framework for quantifying the impact of loss-triggered fire sales on portfolio risk, in a multi-asset setting. We derive analytical expressions for the impact of fire sales on the realized volatility and correlations of asset returns in a fire sales scenario and show that our results provide a quantitative explanation for the spikes in volatility and correlations observed during such deleveraging episodes. These results are then used to develop an econometric framework for the forensic analysis of fire sales episodes, using observations of market prices. We give conditions for the identifiability of model parameters from time series of asset prices, propose a statistical test for the presence of fire sales, and an estimator for the magnitude of fire sales in each asset class. Pathwise consistency and large sample properties of the estimator are studied in the high-frequency asymptotic regime. We illustrate our methodology by applying it to the forensic analysis of two recent deleveraging episodes: the Quant Crash of August 2007 and the Great Deleveraging following the default of Lehman Brothers in Fall 2008.

]]>This paper studies stability of the exponential utility maximization when there are small variations on agent's utility function. Two settings are considered. First, in a general semimartingale model where random endowments are present, a sequence of utilities defined on converges to the exponential utility. Under a uniform condition on their marginal utilities, convergence of value functions, optimal payoffs, and optimal investment strategies are obtained, their rate of convergence is also determined. Stability of utility-based pricing is studied as an application. Second, a sequence of utilities defined on converges to the exponential utility after shifting and scaling. Their associated optimal strategies, after appropriate scaling, converge to the optimal strategy for the exponential hedging problem. This complements Theorem 3.2 in [Nutz, M. (): Risk aversion asymptotics for power utility maximization. *Probab. Theory & Relat. Fields* 152, 703–749], which establishes the convergence for a sequence of power utilities.

This paper develops the procedure of multivariate subordination for a collection of independent Markov processes with killing. Starting from *d* independent Markov processes with killing and an independent *d*-dimensional time change , we construct a new process by time, changing each of the Markov processes with a coordinate . When is a *d*-dimensional Lévy subordinator, the time changed process is a time-homogeneous Markov process with state-dependent jumps and killing in the product of the state spaces of . The dependence among jumps of its components is governed by the *d*-dimensional Lévy measure of the subordinator. When is a *d*-dimensional additive subordinator, *Y* is a time-inhomogeneous Markov process. When with forming a multivariate Markov process, is a Markov process, where each plays a role of stochastic volatility of . This construction provides a rich modeling architecture for building multivariate models in finance with time- and state-dependent jumps, stochastic volatility, and killing (default). The semigroup theory provides powerful analytical and computational tools for securities pricing in this framework. To illustrate, the paper considers applications to multiname unified credit-equity models and correlated commodity models.

In this paper we ask whether, given a stock market and an illiquid derivative, there exists arbitrage-free prices at which a utility-maximizing agent would always want to buy the derivative, irrespectively of his own initial endowment of derivatives and cash. We prove that this is false for any given investor if one considers *all* initial endowments with finite utility, and that it can instead be true if one restricts to the endowments in the interior. We show, however, how the endowments on the boundary can give rise to very odd phenomena; for example, an investor with such an endowment would choose not to trade in the derivative even at prices arbitrarily close to some arbitrage price.

This paper deals with multidimensional dynamic risk measures induced by conditional *g*-expectations. A notion of multidimensional *g*-expectation is proposed to provide a multidimensional version of nonlinear expectations. By a technical result on explicit expressions for the comparison theorem, uniqueness theorem, and viability on a rectangle of solutions to multidimensional backward stochastic differential equations, some necessary and sufficient conditions are given for the constancy, monotonicity, positivity, and translatability properties of multidimensional conditional *g*-expectations and multidimensional dynamic risk measures; we prove that a multidimensional dynamic *g*-risk measure is nonincreasingly convex if and only if the generator *g* satisfies a quasi-monotone increasingly convex condition. A general dual representation is given for the multidimensional dynamic convex *g*-risk measure in which the penalty term is expressed more precisely. It is shown that model uncertainty leads to the convexity of risk measures. As to applications, we show how this multidimensional approach can be applied to measure the insolvency risk of a firm with interacting subsidiaries; optimal risk sharing for -tolerant *g*-risk measures, and risk contribution for coherent *g*-risk measures are investigated. Insurance *g*-risk measure and other ways to induce *g*-risk measures are also studied at the end of the paper.

This paper discusses the problem of hedging not perfectly replicable contingent claims using the numéraire portfolio. The proposed concept of benchmarked risk minimization leads beyond the classical no-arbitrage paradigm. It provides in incomplete markets a generalization of the pricing under classical risk minimization, pioneered by Föllmer, Sondermann, and Schweizer. The latter relies on a quadratic criterion, requests square integrability of claims and gains processes, and relies on the existence of an equivalent risk-neutral probability measure. Benchmarked risk minimization avoids these restrictive assumptions and provides symmetry with respect to all primary securities. It employs the real-world probability measure and the numéraire portfolio to identify the minimal possible price for a contingent claim. Furthermore, the resulting benchmarked (i.e., numéraire portfolio denominated) profit and loss is only driven by uncertainty that is orthogonal to benchmarked-traded uncertainty, and forms a local martingale that starts at zero. Consequently, sufficiently different benchmarked profits and losses, when pooled, become asymptotically negligible through diversification. This property makes benchmarked risk minimization the least expensive method for pricing and hedging diversified pools of not fully replicable benchmarked contingent claims. In addition, when hedging it incorporates evolving information about nonhedgeable uncertainty, which is ignored under classical risk minimization.

We provide conditions on a one-period-two-date pure exchange economy with rank-dependent utility agents under which Arrow–Debreu equilibria exist. When such an equilibrium exists, we show that the state-price density is a weighted marginal rate of intertemporal substitution of a representative agent, where the weight depends on the differential of the probability weighting function. Based on the result, we find that asset prices depend upon agents' subjective beliefs regarding overall consumption growth, and we offer a direction for possible resolution of the equity premium puzzle.

This paper discusses the gambling contest introduced in Seel and Strack (, Gambling in Contests, *Journal of Economic Theory*, 148(5), 2033–2048) and considers the impact of adding a penalty associated with failure to follow a winning strategy. The Seel and Strack model consists of *n*-agents each of whom privately observes a transient diffusion process and chooses when to stop it. The player with the highest stopped value wins the contest, and each player's objective is to maximize her probability of winning the contest. We give a new derivation of the results of Seel and Strack based on a Lagrangian approach. Moreover, we consider an extension of the problem to a behavioral finance context in the sense of regret theory. In particular, an agent is penalized when her chosen strategy does not win the contest, but there existed an alternative strategy that would have resulted in victory.

The short-time asymptotic behavior of option prices for a variety of models with jumps has received much attention in recent years. In this work, a novel second-order approximation for at-the-money (ATM) option prices is derived for a large class of exponential Lévy models with or without Brownian component. The results hereafter shed new light on the connection between both the volatility of the continuous component and the jump parameters and the behavior of ATM option prices near expiration. In the presence of a Brownian component, the second-order term, in time-*t*, is of the form , with *d*_{2} only depending on *Y*, the degree of jump activity, on σ, the volatility of the continuous component, and on an additional parameter controlling the intensity of the “small” jumps (regardless of their signs). This extends the well-known result that the leading first-order term is . In contrast, under a pure-jump model, the dependence on *Y* and on the separate intensities of negative and positive small jumps are already reflected in the leading term, which is of the form . The second-order term is shown to be of the form and, therefore, its order of decay turns out to be independent of *Y*. The asymptotic behavior of the corresponding Black–Scholes implied volatilities is also addressed. Our method of proof is based on an integral representation of the option price involving the tail probability of the log-return process under the share measure and a suitable change of probability measure under which the pure-jump component of the log-return process becomes a *Y*-stable process. Our approach is sufficiently general to cover a wide class of Lévy processes, which satisfy the latter property and whose Lévy density can be closely approximated by a stable density near the origin. Our numerical results show that the first-order term typically exhibits rather poor performance and that the second-order term can significantly improve the approximation's accuracy, particularly in the absence of a Brownian component.

We give a general formulation of the utility maximization problem under nondominated model uncertainty in discrete time and show that an optimal portfolio exists for any utility function that is bounded from above. In the unbounded case, integrability conditions are needed as nonexistence may arise even if the value function is finite.

Classical put–call symmetry relates the price of puts and calls under a suitable dual market transform. One well-known application is the semistatic hedging of path-dependent barrier options with European options. This, however, in its classical form requires the price process to observe rather stringent and unrealistic symmetry properties. In this paper, we develop a general self-duality theorem to develop valuation schemes for barrier options in stochastic volatility models with correlation.

We study an optimal control problem related to swing option pricing in a general non-Markovian setting in continuous time. As a main result we uniquely characterize the value process in terms of a first-order nonlinear backward stochastic partial differential equation and a differential inclusion. Based on this result we also determine the set of optimal controls and derive a dual minimization problem.

We propose a *Fundamental Theorem of Asset Pricing* and a *Super-Replication Theorem* in a model-independent framework. We prove these theorems in the setting of finite, discrete time and a market consisting of a risky asset *S* as well as options written on this risky asset. As a technical condition, we assume the existence of a traded option with a superlinearly growing payoff-function, e.g., a power option. This condition is not needed when sufficiently many vanilla options maturing at the horizon *T* are traded in the market.

Hedge fund managers receive a large fraction of their funds' profits, paid when funds exceed their high-water marks. We study the incentives of such performance fees. A manager with long-horizon, constant investment opportunities and relative risk aversion, chooses a constant Merton portfolio. However, the effective risk aversion shrinks toward one in proportion to performance fees. Risk shifting implications are ambiguous and depend on the manager's own risk aversion. Managers with equal investment opportunities but different performance fees and risk aversions may coexist in a competitive equilibrium. The resulting leverage increases with performance fees—a prediction that we confirm empirically.

It is well known from the work of Schönbucher that the marginal laws of a loss process can be matched by a unit increasing time inhomogeneous Markov process, whose deterministic jump intensity is called local intensity. The stochastic local intensity (SLI) models such as the one proposed by Arnsdorf and Halperin allow to get a stochastic jump intensity while keeping the same marginal laws. These models involve a nonlinear stochastic differential equation (SDE) with jumps. The first contribution of this paper is to prove the existence and uniqueness of such processes. This is made by means of an interacting particle system, whose convergence rate toward the nonlinear SDE is analyzed. Second, this approach provides a powerful way to compute pathwise expectations with the SLI model: we show that the computational cost is roughly the same as a crude Monte Carlo algorithm for standard SDEs.

We consider the pricing of American put options in a model-independent setting: that is, we do not assume that asset prices behave according to a given model, but aim to draw conclusions that hold in any model. We incorporate market information by supposing that the prices of European options are known.

In this setting, we are able to provide conditions on the American put prices which are necessary for the absence of arbitrage. Moreover, if we further assume that there are finitely many European and American options traded, then we are able to show that these conditions are also sufficient. To show sufficiency, we construct a model under which both American and European options are correctly priced at all strikes simultaneously. In particular, we need to carefully consider the optimal stopping strategy in the construction of our process.

For longer horizons, assuming no dividend distributions, models for discounted stock prices in balanced markets are formulated as conditional expectations of nontrivial terminal random variables defined at infinity. Observing that extant models fail to have this property, new models are proposed. The new concept of a balanced market proposed here permits a distinction between such markets and unduly optimistic or pessimistic ones. A tractable example is developed and termed the discounted variance gamma model. Calibrations to market data provide empirical support. Additionally, procedures are presented for the valuation of path dependent stochastic perpetuities. Evidence is provided for long dated equity linked claims paying coupon for time spent by equity above a lower barrier, being underpriced by extant models relative to the new discounted ones. Given the popularity of such claims, the resulting mispricing could possibly take some corrections. Furthermore for these new discounted models, implied volatility curves do not flatten out at the larger maturities.

We consider a sequence of financial markets that converges weakly in a suitable sense and maximize a behavioral preference functional in each market. For expected *concave* utilities, it is well known that the maximal expected utilities and the corresponding final positions converge to the corresponding quantities in the limit model. We prove similar results for nonconcave utilities and distorted expectations as employed in behavioral finance, and we illustrate by a counterexample that these results require a stronger notion of convergence of the underlying models compared to the *concave* utility maximization. We use the results to analyze the stability of behavioral portfolio selection problems and to provide numerically tractable methods to solve such problems in complete continuous-time models.

We propose to interpret distribution model risk as sensitivity of expected loss to changes in the risk factor distribution, and to measure the distribution model risk of a portfolio by the maximum expected loss over a set of plausible distributions defined in terms of some divergence from an estimated distribution. The divergence may be relative entropy or another *f*-divergence or Bregman distance. We use the theory of minimizing convex integral functionals under moment constraints to give formulae for the calculation of distribution model risk and to explicitly determine the worst case distribution from the set of plausible distributions. We also evaluate related risk measures describing divergence preferences.

It is said that risky asset *h* *acceptance dominates* risky asset *k* if any decision maker who rejects the investment in *h* also rejects the investment in *k*. While in general acceptance dominance is a partial order, we show that it becomes a complete order if only infinitely short investment time horizons are considered. Two indices that induce different variants of this order are proposed, absolute acceptance dominance and relative acceptance dominance, and their properties are studied. We then show that many indices of riskiness that are compatible with the acceptance dominance order coincide with our indices in the continuous-time setup.

We derive rigorous asymptotic results for the magnitude of contagion in a large counterparty network and give an analytical expression for the asymptotic fraction of defaults, in terms of network characteristics. Our results extend previous studies on contagion in random graphs to inhomogeneous-directed graphs with a given degree sequence and arbitrary distribution of weights. We introduce a criterion for the resilience of a large financial network to the insolvency of a small group of financial institutions and quantify how contagion amplifies small shocks to the network. Our results emphasize the role played by “contagious links” and show that institutions which contribute most to network instability have both large connectivity and a large fraction of contagious links. The asymptotic results show good agreement with simulations for networks with realistic sizes.

]]>We analyze the behavior of the implied volatility smile for options close to expiry in the exponential Lévy class of asset price models with jumps. We introduce a new renormalization of the strike variable with the property that the implied volatility converges to a nonconstant limiting shape, which is a function of both the diffusion component of the process and the jump activity (Blumenthal–Getoor) index of the jump component. Our limiting implied volatility formula relates the jump activity of the underlying asset price process to the short-end of the implied volatility surface and sheds new light on the difference between finite and infinite variation jumps from the viewpoint of option prices: in the latter, the wings of the limiting smile are determined by the jump activity indices of the positive and negative jumps, whereas in the former, the wings have a constant model-independent slope. This result gives a theoretical justification for the preference of the infinite variation Lévy models over the finite variation ones in the calibration based on short-maturity option prices.

]]>The classical literature on optimal liquidation, rooted in Almgren–Chriss models, tackles the optimal liquidation problem using a trade-off between market impact and price risk. It answers the general question of optimal scheduling but the very question of the actual way to proceed with liquidation is rarely dealt with. Our model, which incorporates both price risk and nonexecution risk, is an attempt to tackle this question using limit orders. The very general framework we propose to model liquidation with limit orders generalizes existing ones in two ways. We consider a risk-averse agent, whereas the model of Bayraktar and Ludkovski only tackles the case of a risk-neutral one. We consider very general functional forms for the execution process intensity, whereas Guéant, Lehalle and Fernandez-Tapia are restricted to exponential intensity. Eventually, we link the execution cost function of Almgren–Chriss models to the intensity function in our model, providing then a way to see Almgren–Chriss models as a limit of ours.

In this paper, we investigate a method based on risk minimization to hedge observable but nontradable source of risk on financial or energy markets. The optimal portfolio strategy is obtained by minimizing dynamically the conditional value-at-risk (CVaR) using three main tools: a stochastic approximation algorithm, optimal quantization, and variance reduction techniques (importance sampling and linear control variable), as the quantities of interest are naturally related to rare events. As a first step, we investigate the problem of CVaR regression, which corresponds to a static portfolio strategy where the number of units of each tradable assets is fixed at time 0 and remains unchanged till maturity. We devise a stochastic approximation algorithm and study its a.s. convergence and weak convergence rate. Then, we extend our approach to the dynamic case under the assumption that the process modeling the nontradable source of risk and financial assets prices is Markovian. Finally, we illustrate our approach by considering several portfolios in connection with energy markets.

]]>We consider the optimal liquidation of a position of stock (long or short) where trading has a temporary market impact on the price. The aim is to minimize both the mean and variance of the order slippage with respect to a benchmark given by the market volume-weighted average price (VWAP). In this setting, we introduce a new model for the relative volume curve which allows simultaneously for accurate data fit, economic justification, and mathematical tractability. Tackling the resulting optimization problem using a stochastic control approach, we derive and solve the corresponding Hamilton–Jacobi–Bellman equation to give an explicit characterization of the optimal trading rate and liquidation trajectory.

]]>We study a class of optimization problems involving linked recursive preferences in a continuous-time Brownian setting. Such links can arise when preferences depend directly on the level or volatility of wealth, in principal–agent (optimal compensation) problems with moral hazard, and when the impact of social influences on preferences is modeled via utility (and utility diffusion) externalities. We characterize the necessary first-order conditions, which are also sufficient under additional conditions ensuring concavity. We also examine applications to optimal consumption and portfolio choice, and applications to Pareto optimal allocations.

]]>For an investor with constant absolute risk aversion and a long horizon, who trades in a market with constant investment opportunities and small proportional transaction costs, we obtain explicitly the optimal investment policy, its implied welfare, liquidity premium, and trading volume. We identify these quantities as the limits of their isoelastic counterparts for high levels of risk aversion. The results are robust with respect to finite horizons, and extend to multiple uncorrelated risky assets. In this setting, we study a Stackelberg equilibrium, led by a risk-neutral, monopolistic market maker who sets the spread as to maximize profits. The resulting endogenous spread depends on investment opportunities only, and is of the order of a few percentage points for realistic parameter values.

]]>Execution traders know that market impact greatly depends on whether their orders lean with or against the market. We introduce the OEH model, which incorporates this fact when determining the optimal trading horizon for an order, an input required by many sophisticated execution strategies. This model exploits the trader's private information about her trade's side and size, and how it will shift the prevailing order flow. From a theoretical perspective, OEH explains why market participants may rationally “dump” their orders in an increasingly illiquid market. We argue that trade side and order imbalance are key variables needed for modeling market impact functions, and their dismissal may be the reason behind the apparent disagreement in the literature regarding the functional form of the market impact function. We show that in terms of its information ratio OEH performs better than participation rate schemes and VWAP strategies. Our backtests suggest that OEH contributes substantial “execution alpha” for a wide variety of futures contracts. An implementation of OEH is provided in Python language.

]]>We propose a rank-dependent portfolio choice model in continuous time that captures the role in decision making of three emotions: hope, fear, and aspirations. Hope and fear are modeled through an inverse-S shaped probability weighting function and aspirations through a probabilistic constraint. By employing the recently developed approach of quantile formulation, we solve the portfolio choice problem both thoroughly and analytically. These solutions motivate us to introduce a fear index, a hope index, and a lottery-likeness index to quantify the impacts of three emotions, respectively, on investment behavior. We find that a sufficiently high level of fear endogenously necessitates portfolio insurance. On the other hand, hope is reflected in the agent's perspective on good states of the world: a higher level of hope causes the agent to include more scenarios under the notion of good states and leads to greater payoffs in sufficiently good states. Finally, an exceedingly high level of aspirations results in the construction of a lottery-type payoff, indicating that the agent needs to enter into a pure gamble in order to achieve his goal. We also conduct numerical experiments to demonstrate our findings.

]]>We propose a framework to study optimal trading policies in a one-tick pro rata limit order book, as typically arises in short-term interest rate futures contracts. The high-frequency trader chooses to post either market orders or limit orders, which are represented, respectively, by impulse controls and regular controls. We discuss the consequences of the two main features of this microstructure: first, the limit orders are only partially executed, and therefore she has no control on the executed quantity. Second, the high-frequency trader faces the overtrading risk, which is the risk of large variations in her inventory. The consequences of this risk are investigated in the context of optimal liquidation. The optimal trading problem is studied by stochastic control and dynamic programming methods, and we provide the associated numerical resolution procedure and prove its convergence. We propose dimension reduction techniques in several cases of practical interest. We also detail a high-frequency trading strategy in the case where a (predictive) directional information on the price is available. Each of the resulting strategies is illustrated by numerical tests.

]]>Motivated by analytical valuation of timer options (an important innovation in realized variance-based derivatives), we explore their novel mathematical connection with stochastic volatility and Bessel processes (with constant drift). Under the Heston (1993) stochastic volatility model, we formulate the problem through a first-passage time problem on realized variance, and generalize the standard risk-neutral valuation theory for fixed maturity options to a case involving random maturity. By time change and the general theory of Markov diffusions, we characterize the joint distribution of the first-passage time of the realized variance and the corresponding variance using Bessel processes with drift. Thus, explicit formulas for a useful joint density related to Bessel processes are derived via Laplace transform inversion. Based on these theoretical findings, we obtain a Black–Scholes–Merton-type formula for pricing timer options, and thus extend the analytical tractability of the Heston model. Several issues regarding the numerical implementation are briefly discussed.

]]>We prove a version of First Fundamental Theorem of Asset Pricing under transaction costs for discrete-time markets with dividend-paying securities. Specifically, we show that the no-arbitrage condition under the efficient friction assumption is equivalent to the existence of a risk-neutral measure. We derive dual representations for the superhedging ask and subhedging bid price processes of a contingent claim contract. Our results are illustrated with a vanilla credit default swap contract.

]]>We consider an illiquid financial market where a risk averse investor has to liquidate a portfolio within a finite time horizon [0, *T*] and can trade continuously at a traditional exchange (the “primary venue”) and in a dark pool. At the primary venue, trading yields a linear price impact. In the dark pool, no price impact costs arise but order execution is uncertain, modeled by a multidimensional Poisson process. We characterize the costs of trading by a linear-quadratic functional which incorporates both the price impact costs of trading at the primary exchange and the market risk of the position. The solution of the cost minimization problem is characterized by a matrix differential equation with singular boundary condition; by means of stochastic control theory, we provide a verification argument. If a single-asset position is to be liquidated, the investor slowly trades out of her position at the primary venue, with the remainder being placed in the dark pool at any point in time. For multi-asset liquidations this is generally not the case; for example, it can be optimal to oversize orders in the dark pool in order to turn a poorly balanced portfolio into a portfolio bearing less risk.

The problem of robust utility maximization in an incomplete market with volatility uncertainty is considered, in the sense that the volatility of the market is only assumed to lie between two given bounds. The set of all possible models (probability measures) considered here is nondominated. We propose studying this problem in the framework of second-order backward stochastic differential equations (2BSDEs for short) with quadratic growth generators. We show for exponential, power, and logarithmic utilities that the value function of the problem can be written as the initial value of a particular 2BSDE and prove existence of an optimal strategy. Finally, several examples which shed more light on the problem and its links with the classical utility maximization one are provided. In particular, we show that in some cases, the upper bound of the volatility interval plays a central role, exactly as in the option pricing problem with uncertain volatility models.

]]>Considering a positive portfolio diffusion *X* with negative drift, we investigate optimal stopping problems of the form

where *f* is a nonincreasing function, *τ* is the next random time where the portfolio *X* crosses zero and *θ* is any stopping time smaller than *τ*. Hereby, our motivation is the obtention of an optimal selling strategy minimizing the relative distance between the liquidation value of the portfolio and its highest possible value before it reaches zero. This paper unifies optimal selling rules observed for the quadratic absolute distance criteria in this stationary framework with bang–bang type ones observed for monetary invariant criteria but in finite horizon. More precisely, we provide a verification result for the general stopping problem of interest and derive the exact solution for two classical criteria *f* of the literature. For the power utility criterion with , instantaneous selling is always optimal, which is consistent with previous observations for the Black-Scholes model in finite observation. On the contrary, for a relative quadratic error criterion, , selling is optimal as soon as the process *X* crosses a specified function *φ* of its running maximum . These results reinforce the idea that optimal stopping problems of similar type lead easily to selling rules of very different nature. Nevertheless, our numerical experiments suggest that the practical optimal selling rule for the relative quadratic error criterion is in fact very close to immediate selling.

We consider a continuous-time framework featuring a central bank, private agents, and a financial market. The central bank's objective is to maximize a functional, which measures the classical trade-off between output and inflation over time plus income from the sales of inflation-indexed bonds minus payments for the liabilities that the inflation-indexed bonds produce at maturity. Private agents are assumed to have adaptive expectations. The financial market is modeled in continuous-time Black–Scholes–Merton style and financial agents are averse against inflation risk, attaching an inflation risk premium to nominal bonds. Following this route, we explain demand for inflation-indexed securities on the financial market from a no-arbitrage assumption and derive pricing formulas for inflation-linked bonds and calls, which lead to a supply-demand equilibrium. Furthermore, we study the consequences that the sales of inflation-indexed securities have on the observed inflation rate and price level. Similar to the study of Walsh, we find that the inflationary bias is significantly reduced, and hence that markets for inflation-indexed bonds provide a mechanism to reduce inflationary bias and increase central bank's credibility.

]]>An investor with constant absolute risk aversion trades a risky asset with general Itô-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated welfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.

We consider the problem of optimal investment when agents take into account their relative performance by comparison to their peers. Given *N* interacting agents, we consider the following optimization problem for agent *i*, :

where is the utility function of agent *i*, his portfolio, his wealth, the average wealth of his peers, and is the parameter of relative interest for agent *i*. Together with some mild technical conditions, we assume that the portfolio of each agent *i* is restricted in some subset . We show existence and uniqueness of a Nash equilibrium in the following situations:

- -unconstrained agents,
- -constrained agents with exponential utilities and Black–Scholes financial market.

We also investigate the limit when the number of agents *N* goes to infinity. Finally, when the constraints sets are vector spaces, we study the impact of the s on the risk of the market.

We present a general equilibrium model of a moral-hazard economy with many firms and financial markets, where stocks and bonds are traded. Contrary to the principal-agent literature, we argue that optimal contracting in an infinite economy is not about a tradeoff between risk sharing and incentives, but it is all about incentives. Even when the economy is finite, optimal contracts do not depend on principals’ risk aversion, but on market prices of risks. We also show that optimal contracting does not require relative performance evaluation, that the second best risk-free interest rate is lower than that of the first best, and that the second-best equity premium can be higher or lower than that of the first best. Moral hazard can contribute to the resolution of the risk-free rate puzzle. Its potential to explain the equity premium puzzle is examined.

In this paper, we study the dual representation for generalized multiple stopping problems, hence the pricing problem of general multiple exercise options. We derive a dual representation which allows for cash flows which are subject to volume constraints modeled by integer-valued adapted processes and refraction periods modeled by stopping times. As such, this extends the works by Schoenmakers (2012), Bender (2011a), Bender (2011b), Aleksandrov and Hambly (2010), and Meinshausen and Hambly (2004) on multiple exercise options, which either take into consideration a refraction period or volume constraints, but not both simultaneously. We also allow more flexible cash flow structures than the additive structure in the above references. For example, some exponential utility problems are covered by our setting. We supplement the theoretical results with an explicit Monte Carlo algorithm for constructing confidence intervals for prices of multiple exercise options and illustrate it with a numerical study on the pricing of a swing option in an electricity market.

]]>We investigate correlations of asset returns in stress scenarios where a common risk factor is truncated. Our analysis is performed in the class of normal variance mixture (NVM) models, which encompasses many distributions commonly used in financial modeling. For the special cases of jointly normally and *t*-distributed asset returns we derive closed formulas for the correlation under stress. For the NVM distribution, we calculate the asymptotic limit of the correlation under stress, which depends on whether the variables are in the maximum domain of attraction of the Fréchet or Gumbel distribution. It turns out that correlations in heavy-tailed NVM models are less sensitive to stress than in medium- or light-tailed models. Our analysis sheds light on the suitability of this model class to serve as a quantitative framework for stress testing, and as such provides valuable information for risk and capital management in financial institutions, where NVM models are frequently used for assessing capital adequacy. We also demonstrate how our results can be applied for more prudent stress testing.

We consider an optimal insurance design problem for an individual whose preferences are dictated by the rank-dependent expected utility (RDEU) theory with a concave utility function and an inverse-S shaped probability distortion function. This type of RDEU is known to describe human behavior better than the classical expected utility. By applying the technique of quantile formulation, we solve the problem explicitly. We show that the optimal contract not only insures large losses above a deductible but also insures small losses fully. This is consistent, for instance, with the demand for warranties. Finally, we compare our results, analytically and numerically, both to those in the expected utility framework and to cases in which the distortion function is convex or concave.

]]>In many applications of regression-based Monte Carlo methods for pricing, American options in discrete time parameters of the underlying financial model have to be estimated from observed data. In this paper suitably defined nonparametric regression-based Monte Carlo methods are applied to paths of financial models where the parameters converge toward true values of the parameters. For various Black–Scholes, GARCH, and Levy models it is shown that in this case the price estimated from the approximate model converges to the true price.

]]>We propose risk metrics to assess the performance of high-frequency (HF) trading strategies that seek to maximize profits from making the realized spread where the holding period is extremely short (fractions of a second, seconds, or at most minutes). The HF trader maximizes expected terminal wealth and is constrained by both capital and the amount of inventory that she can hold at any time. The risk metrics enable the HF trader to fine tune her strategies by trading off different metrics of inventory risk, which also proxy for capital risk, against expected profits. The dynamics of the midprice of the asset are driven by information flows which are impounded in the midprice by market participants who update their quotes in the limit order book. Furthermore, the midprice also exhibits stochastic jumps as a consequence of the arrival of market orders that have an impact on prices which can give rise to market momentum (expected prices to trend up or down). The HF trader’s optimal strategy incorporates a buffer to cover adverse selection costs and manages inventories to maximize the expected gains from market momentum.

]]>We study the optimal investment problem for a behavioral investor in an incomplete discrete-time multiperiod financial market model. For the first time in the literature, we provide easily verifiable and interpretable conditions for well-posedness. Under two different sets of assumptions, we also establish the existence of optimal strategies.

]]>The correction in value of an over-the-counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend-paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so-called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced-form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations.

]]>This and the follow-up paper deal with the valuation and hedging of bilateral counterparty risk on over-the-counter derivatives. Our study is done in a multiple-curve setup reflecting the various funding constraints (or costs) involved, allowing one to investigate the question of interaction between bilateral counterparty risk and funding. The first task is to define a suitable notion of no arbitrage price in the presence of various funding costs. This is the object of this paper, where we develop an “additive, multiple curve” extension of the classical “multiplicative (discounted), one curve” risk-neutral pricing approach. We derive the dynamic hedging interpretation of such an “additive risk-neutral” price, starting by consistency with pricing by replication in the case of a complete market. This is illustrated by a completely solved example building over previous work by Burgard and Kjaer.

]]>This paper proves a class of *static fund separation* theorems, valid for investors with a long horizon and constant relative risk aversion, and with stochastic investment opportunities. An optimal portfolio decomposes as a constant mix of a few preference-free funds, which are common to all investors. The weight in each fund is a constant that may depend on an investor’s risk aversion, but not on the state variable, which changes over time. Vice versa, the composition of each fund may depend on the state, but not on the risk aversion, since a fund appears in the portfolios of different investors. We prove these results for two classes of models with a single state variable, and several assets with constant correlations with the state. In the *linear* class, the state is an Ornstein–Uhlenbeck process, risk premia are affine in the state, while volatilities and the interest rate are constant. In the *square root* class, the state follows a square root diffusion, expected returns and the interest rate are affine in the state, while volatilities are linear in the square root of the state.

The left tail of the implied volatility skew, coming from quotes on out-of-the-money put options, can be thought to reflect the market’s assessment of the risk of a huge drop in stock prices. We analyze how this market information can be integrated into the theoretical framework of convex monetary measures of risk. In particular, we make use of indifference pricing by dynamic convex risk measures, which are given as solutions of backward stochastic differential equations, to establish a link between these two approaches to risk measurement. We derive a characterization of the implied volatility in terms of the solution of a nonlinear partial differential equation and provide a small time-to-maturity expansion and numerical solutions. This procedure allows to choose convex risk measures in a conveniently parameterized class, distorted entropic dynamic risk measures, which we introduce here, such that the asymptotic volatility skew under indifference pricing can be matched with the market skew. We demonstrate this in a calibration exercise to market implied volatility data.

]]>It is commonly believed that the trading of futures on a commodity enables the market to overcome short selling constraints on the spot commodity itself. This belief is embedded in the notion that trading strategies involving futures contracts enable traders to replicate the payoffs as if they were short the spot commodity. The purpose of this paper is to investigate this common belief in a general arbitrage-free semimartingale financial model with trading in futures and a short selling prohibition on the spot commodity. We show via various examples that, in general, this common belief is incorrect. Furthermore, we provide a set of sufficient conditions, albeit very restrictive, under which the common belief is true.

]]>This paper studies the class of single-good Arrow–Debreu economies in which all agents have isoelastic utility functions and homogeneous beliefs, but have possibly different cautiousness parameters and endowments. For each economy in this class, the equilibrium stochastic discount factor is an exponential function of the inverse mapping of a completely monotone function, evaluated at the aggregate consumption. This fact allows for general properties of the class to be studied analytically in terms of known properties of completely monotone functions. For example, conditions are presented under which the agents’ cautiousness parameters and a distribution of initial wealth can be recovered from an equilibrium stochastic discount factor, even if nothing is known about the agents’ endowments. This is a multiagent inverse problem since information about economic primitives is extracted from equilibrium prices. Several example economies are used to illustrate the results.

]]>We develop a finite horizon continuous time market model, where risk-averse investors maximize utility from terminal wealth by dynamically investing in a risk-free money market account, a stock, and a defaultable bond, whose prices are determined via equilibrium. We analyze the endogenous interaction arising between the stock and the defaultable bond via the interplay between equilibrium behavior of investors, risk preferences and cyclicality properties of the default intensity. We find that the equilibrium price of the stock experiences a jump at default, despite that the default event has no causal impact on the underlying economic fundamentals. We characterize the direction of the jump in terms of a relation between investor preferences and the cyclicality properties of the default intensity. We conduct a similar analysis for the market price of risk and for the investor wealth process, and determine how heterogeneity of preferences affects the exposure to default carried by different investors.

]]>The objective of this paper is to study the mean–variance portfolio optimization in continuous time. Since this problem is time inconsistent we attack it by placing the problem within a game theoretic framework and look for subgame perfect Nash equilibrium strategies. This particular problem has already been studied in Basak and Chabakauri where the authors assumed a constant risk aversion parameter. This assumption leads to an equilibrium control where the dollar amount invested in the risky asset is independent of current wealth, and we argue that this result is unrealistic from an economic point of view. In order to have a more realistic model we instead study the case when the risk aversion depends dynamically on current wealth. This is a substantially more complicated problem than the one with constant risk aversion but, using the general theory of time-inconsistent control developed in Björk and Murgoci, we provide a fairly detailed analysis on the general case. In particular, when the risk aversion is inversely proportional to wealth, we provide an analytical solution where the equilibrium dollar amount invested in the risky asset is proportional to current wealth. The equilibrium for this model thus appears more reasonable than the one for the model with constant risk aversion.

]]>We consider evaluation methods for payoffs with an inherent financial risk as encountered for instance for portfolios held by pension funds and insurance companies. Pricing such payoffs in a way consistent to market prices typically involves combining actuarial techniques with methods from mathematical finance. We propose to extend standard actuarial principles by a new market-consistent evaluation procedure which we call “two-step market evaluation.” This procedure preserves the structure of standard evaluation techniques and has many other appealing properties. We give a complete axiomatic characterization for two-step market evaluations. We show further that in a dynamic setting with continuous stock prices every evaluation which is time-consistent and market-consistent is a two-step market evaluation. We also give characterization results and examples in terms of *g*-expectations in a Brownian-Poisson setting.

Dynamic capital structure models with roll-over debt rely on widely accepted arguments that have never been formalized. This paper clarifies the literature and provides a rigorous formulation of the equity holders’ decision problem within a game theory framework. We spell out the linkage between default policies in a rational expectations equilibrium and optimal stopping theory. We prove that there exists a unique equilibrium in constant barrier strategies, which coincides with that derived in the literature. Furthermore, that equilibrium is the unique equilibrium when the firm loses all its value at default time. Whether the result holds when there is a recovery at default remains a conjecture.

]]>We generalize Merton’s asset valuation approach to systems of multiple financial firms where cross-ownership of equities and liabilities is present. The liabilities, which may include debts and derivatives, can be of differing seniority. We derive equations for the prices of equities and recovery claims under no-arbitrage. An existence result and a uniqueness result are proven. Examples and an algorithm for the simultaneous calculation of all no-arbitrage prices are provided. A result on capital structure irrelevance for groups of firms regarding externally held claims is discussed, as well as financial leverage and systemic risk caused by cross-ownership.

]]>We develop an arbitrage-free valuation framework for bilateral counterparty risk, where collateral is included with possible rehypothecation. We show that the adjustment is given by the sum of two option payoff terms, where each term depends on the netted exposure, i.e., the difference between the on-default exposure and the predefault collateral account. We then specialize our analysis to credit default swaps (CDS) as underlying portfolios, and construct a numerical scheme to evaluate the adjustment under a doubly stochastic default framework. In particular, we show that for CDS contracts a perfect collateralization cannot be achieved, even under continuous collateralization, if the reference entity’s and counterparty’s default times are dependent. The impact of rehypothecation, collateral margining frequency, and default correlation-induced contagion is illustrated with numerical examples.

]]>We prove that in a discrete-time market model the lower arbitrage bound of an American contingent claim is itself an arbitrage-free price if and only if it corresponds to the price of the claim optimally exercised under some equivalent martingale measure.

]]>We introduce a new approach for the numerical pricing of American options. The main idea is to choose a finite number of suitable excessive functions (randomly) and to find the smallest majorant of the gain function in the span of these functions. The resulting problem is a linear semi-infinite programming problem, that can be solved using standard algorithms. This leads to good upper bounds for the original problem. For our algorithms no discretization of space and time and no simulation is necessary. Furthermore it is applicable even for high-dimensional problems. The algorithm provides an approximation of the value not only for one starting point, but for the complete value function on the continuation set, so that the optimal exercise region and, for example, the Greeks can be calculated. We apply the algorithm to (one- and) multidimensional diffusions and show it to be fast and accurate.

]]>In this paper, having been inspired by the work of Kunita and Seko, we study the pricing of δ-penalty game call options on a stock with a dividend payment. For the perpetual case, our result reveals that the optimal stopping region for the option seller depends crucially on the dividend rate *d*. More precisely, we show that when the penalty δ is small, there are two critical dividends 0 < *d*_{1} < *d*_{2} < ∞ such that the optimal stopping region for the option seller takes one of the following forms: (1) an interval if *d* < *d*_{1}; (2) a singleton if *d*∈ [*d*_{1}, *d*_{2}]; or (3) an empty set if *d* > *d*_{2}. When *d*∈ [*d*_{1}, *d*_{2}], the value function is not continuously differentiable at the optimal stopping boundary for the option seller, therefore our result in the perpetual case cannot be established by the free boundary approach with smooth-fit conditions imposed on both free boundaries. For the finite time horizon case, the dependence of the optimal stopping region for the option seller on the time to maturity is exhibited; more precisely, when both δ and *d* are small, we show that there are two critical times 0 < *T*_{1} < *T*_{2} < *T*, such that the optimal stopping region for the option seller takes one of the following forms: (1) an interval if *t* < *T*_{1}; (2) a singleton if *t*∈ [*T*_{1}, *T*_{2}]; or (3) an empty set if *t* > *T*_{2}. In summary, for both the perpetual and the finite horizon cases, we characterize in terms of model parameters how the optimal stopping region for the option seller shrinks when the dividend rate *d* increases and the time to maturity decreases; these results complete the original work of Emmerling for the perpetual case and Kunita and Seko for the finite maturity case. In addition, for the finite time horizon case, we also extend the probabilistic method for the establishment of existence and regularity results of the classical American option pricing problem to the game option setting. Finally, we characterize the pair of optimal stopping boundaries for both the seller and the buyer as the unique pair of solutions to a couple of integral equations and provide numerical illustrations.