Supporting Information

High Aspect Ratio Elongated Microparticles for Enhanced Topical Drug Delivery in Human Volunteers

Anthony P. Raphael, Clare A. Primiero, Lynlee L. Lin, Ross Flewell Smith, Philip Dyer, H. Peter Soyer, and Tarl W. Prow*
Supporting Information

High aspect ratio elongated microparticles for enhanced topical drug delivery in human volunteers

Anthony P. Raphael, Clare A. Primiero, Lynlee L. Lin, H. Peter Soyer and Tarl W. Prow

Figure S1: Characterization of elongated microparticle (EMP) diameter (circles) and length (triangles). The EMPs had a diameter of $9.3 \pm 0.9 \mu m$ and a length of $303.4 \pm 208.7 \mu m$, with 50% of the EMPs having a length between 120.1 and 483.2 \mu m.
Figure S2: Characterization of elongated microparticle (EMP) penetration within volunteers. Reflectance confocal microscopy was used to analyse the number, distribution and penetration characteristics of the EMPs within the skin. The inset is a dermoscopy image showing the EMP treated region of the volunteer’s volar forearm. The small nature of the
Submitted to

EMPs resulted in no obvious disruption to the skin. The red box corresponds to the reflectance confocal microscopy analysed area. Scale bars are 1 mm and 2 mm in the inset.

Figure S3: Characterization of elongated microparticle (EMP) penetration within volunteers. The EMP penetration angle decreased from 12.5 ± 6.3 degrees to 5.5 ± 2.5 degrees over a two week period as the EMPs migrated to the surface of the skin and were eliminated.