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ABSTRACT
A flexible mathematical model of an asymmetric bronchial airway

bifurcation is presented. The bifurcation structure is automatically deter-
mined after the user specifies geometric parameters: radius of parent air-
way, radii of daughter airways, radii of curvature of the daughter branch
toroids, bifurcation angles, and radius of curvature of carina ridge.
Detailed shape in the region where the three airways merge is defined by
several explicit functions and can be changed with ease in accordance
with observed lung structure. These functions take into account the blunt
shape of the carina, the smooth transition from the outer transition zone
to the inner one, and the shift in carinal ridge starting position as a func-
tion of bifurcation asymmetry. We validated the bifurcation model by com-
paring it to a computed tomography image of a rat lung cast. Three-
dimensional representations of the bifurcation geometry can be viewed at
http://mae.ucdavis.edu/wexler/lungs/bifurc.htm. Anat Rec, 291:379–389,
2008. � 2008 Wiley-Liss, Inc.

Key words: lung airway; bifurcation model; anatomical
branched structures; CT image; simulated anneal-
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Much research suggests that air pollutants lead to
both acute and chronic health effects (Dockery and
Pope, 1994; Anderson et al., 1997). Studies using models
of intrapulmonary airways are an important research
tool for predicting the fate of inhaled pollutants in
human airways or for diagnostic purposes, especially
when detailed flow patterns and particle deposition
characteristics are of interest (Balashazy et al., 1996).
Therefore, mathematical models of airway bifurcations
are of great use to associated engineers and biologists.
Bifurcation models are very useful for studies in which
airway models with various shape are required to
observe, for example, effect of bifurcation angle on flow
dividing ratio, different flow patterns in successive air-
ways depending on whether successive bifurcations are
in the same plane or not, effect of carina shape on flow

patterns, and particle deposition (Andrade et al., 1998;
Heistracher and Hofmann, 1995; Lee et al., 2000).
Various types of model airways have been created for

both experiments and numerical studies, and most are
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specifically constructed whenever different structures of
model airways were necessary. Although these models
often represent reasonable shapes, some have unrealistic
structure such as symmetric branching, sharp carinas,
or abrupt change of shape in the transition zone. Most
of all, these models do not report information on detailed
shape nor suggest a general mathematical description of
airway structure (Isabey and Chang, 1982; Scherer and
Haselton, 1982; Balashazy et al., 1996; Hideki et al.,
2001; Lee and Lee, 2002; Zhang et al., 2002). A detailed
review of previous bifurcation models was given by
Hegedus et al. (2004).
Heistracher and Hofmann (1995) first suggested a

general mathematical model for a physiologically realis-
tic bifurcation geometry. In their model, the shape is
automatically determined whether or not important geo-
metric parameters are specified, taking into account the
blunt shape of carina and smoothly transitioning from
parent branch to daughter branches. However, unfortu-
nately the inner surface coordinates in the transition
zone are defined iteratively, not analytically. As dis-
cussed by Hegedus et al. (2004), this iterative process is
a numerically sensitive process and hard to reproduce.
To overcome this problem in the transition zone, Hege-
dus et al. (2004) suggested a mathematically rigorous
way to round in the carinal region.
Smooth stitching of two daughter airways in the cari-

nal region may be the most difficult part of the bifurca-
tion model to express in a mathematically closed form
and at the same time, it is open to various formulation
possibilities. As Hegedus et al. (2004) point out, carinal
rounding suggested in their study is not a perfect proce-
dure, but instabilities can occur depending on chosen
functions and input geometric parameters. Although the
mathematical descriptions are quite different, both stud-
ies (Heistracher and Hofmann, 1995; Hegedus et al.,
2004) used rounding circles to define the carinal ridge’s
shape. However, the carinal ridge’s shape may not be
well represented by this approach, such as when the
minor daughter diameter is much smaller than the
major one as is common in mammals with a monopodial
branching structure (see the Results section for further
discussion).
Observations of intrapulmonary airways show that

the carinal ridge, dividing the transition zone into left
and right parts, does not always start at the mid-posi-
tion of the parent branch; it is shifted toward the
smaller daughter branch. Previous models (Heistracher
and Hofmann, 1995; Hegedus et al., 2004) set the cari-
nal ridge starting point at the middle of parent branch,
which produces unrealistic bifurcations when the bifur-
cation is highly asymmetric (see the Results section for
further discussion). The degree of asymmetry varies sub-
stantially between species. For example, rat conducting
airways are very monopodial with an average asymme-
try factor (major to minor diameter ratio) as high as 2
(Raabe et al., 1976; Yeh et al., 1979; Phillips and Kaye,
1995), whereas in human, the branching is much more
symmetric. Bifurcation models need to produce a reason-
able structure not only for rather symmetric bifurcations
but also for highly asymmetric ones. In addition, previ-
ous bifurcation models were not validated against real
airways.
In this study, we suggest a new mathematical

approach for general asymmetric bifurcations where

shape of carinal ridge (inner transition zone) is defined
at each airway cross-section and different formulas are
introduced that handle highly asymmetric bifurcation.
Furthermore, the carinal ridge starts at a position that
realistically depends on the bifurcation asymmetry. Our
model is improved so that it can produce reasonable air-
way structures ranging from symmetric to highly asym-
metric. We also evaluated our bifurcation model by com-
paring it with airway image data. This technique can be
used for computerized measurements of pulmonary air-
ways, simulating airway structure for fluid flow or parti-
cle deposition simulations, as well as for evaluating
other bifurcation models. Although we propose a new
bifurcation model, the present study owes much to previ-
ous work (e.g., Heistracher and Hofmann, 1995; Hege-
dus et al., 2004) in which the bifurcation structure was
very well developed. A glossary of terms is provided in
Table 1.

CONSTRUCTION OF THE MODEL

Characterizing Parameters and Defining the

Geometry in the Main Plane

Outline of single bifurcation airway. Human
lung airways have a very complex structure but a single
bifurcation can be simplified (Fig. 1) by dividing it into
parent branch, transition zone, and daughter branch
sections. In the transition zone, there is a crease, the
carinal ridge, dividing it into left and right portions. The
blunt region at the end of transition zone is termed the
carina. Cross-sectional shape of human bronchial tree
was observed by Horsfield et al. (1971) for the first time.

TABLE 1. Glossary of terms

h y coordinate of boundary curve
i Equal to L for left branch, R for right branch
xb x coordinate of the point where the boundary curve

and carina circle meet
x�i x coordinates of the daughter toroid center in the

main plane at angle /I

DEi Error at the ith normal vector
F Objective function
Li Distance between centerline of torus and boundary

curve or distance between centerline of torus and
carina circle

Ldi,s Lengths of straight section of daughter airways
Lp,s Length of straight section of parent branch
Np Number of normal vectors that were originated from

parent branch
Nt Number of normal vectors that were originated from

transition zone
NL Number of normal vectors that were originated from

left daughter branch
NR Number of normal vectors that were originated from

right daughter branch
Rdi Radii of daughter branches
Rp Radius of parent airway
R�

i Radii of curvature of the daughter airway toroids
rc Radius of curvature of carina ridge in the main plane
si Rp 2 Rdi

bi Subtended angles of daughter airways
/�
i Angle at which two toroids divide into daughter

branches
ai Angle at which carina circle is in contact with two

daughter branches
a�
i Angle at which boundary curve meets carina circle
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Details of the anatomical structure of pulmonary air-
ways was summarized by Heistracher and Hofmann
(1995).
Figure 2 shows the shape of single bifurcation in the

cross-section. We used 11 independent geometric param-
eters to characterize the geometry as in the previous
models (Heistracher and Hofmann, 1995; Hegedus et al.,
2004): radius of parent airway (Rp); length of straight
section of parent branch (Lp,s); radii of daughter
branches (Rdi); lengths of straight section of daughter
airways (Ldi,s); subtended angles of daughter airways
(bi); radii of curvature of the daughter airway toroids
(Ri*); radius of curvature of carina ridge in the main
plane (rc); where throughout this paper, the subscript i
is L for the left branch and R for the right branch.

Defining the geometry in the main plane. Par-
ent branch with radius, Rp, bifurcates into two daughter

branches with radii, Rdi. Two toroids with radii of curva-
ture, Ri*, continuing to the subtended angles, bi, are con-
structed to define the shape of an airway in the main
plane. The primary difference between our model and
previous ones (Heistracher and Hofmann, 1995; Hegedus
et al., 2004) is that the center of each toroid is shifted by
si 5 Rp 2 Rdi, (Fig. 2). This modification improves the
shape of generated airway, especially highly asymmetric
bifurcations (see the Results section). Although introduc-
tion of shifted carinal ridge substantially changes mathe-
matical formulations from previous studies (Heistracher
and Hofmann, 1995), we reserve most of the details to
Appendix A for improved readability.

Equations Describing the Bifurcation, Except

for Near the Carina

We can easily describe the three-dimensional structure
of an airway except for the inner surface of the transition
zone, because all the surfaces are circular sections at dif-
ferent z positions or subtended angles. The inner transi-
tion zone is indicated by the dark region in Figure 1.
These final equations are summarized in Tables 2 and 3.

Fig. 1. Outline of single bifurcation geometry. The dark region rep-
resents the inner transition zone.

Fig. 2. Schematic representation of an asymmetric airway (cross-
sectional view).

TABLE 2. Summary of equations describing all but
the carina

Coordinates of surface points in straight parent branch

y ¼ Rp � sin u

x ¼ Rp � cos u
z ¼ l ð0 � l � Lp;sÞ

sgnðiÞ ¼
þ1 i ¼ L

�1 i ¼ R

8<
:

Coordinates of surface points in transition zone

y ¼ Ri � sin ui

x ¼ sgnðiÞ � ðRi
� � cos/i þRi � cos/i � cos ui �Ri

�Þ
z ¼ �Ri

� � sin/i �Ri � sin/i � cos ui
where

Ri ¼ Rp � ðRp �RdiÞ � ð�2x3 þ 3x2Þ; x ¼ /
/�

Coordinates of surface points in curved daughter branch

y ¼ Rdi � sin ui

x ¼ sgnðiÞ � ðRi
� � cos/i þRdi � cos/i � cos ui �Ri

�Þ
z ¼ �Ri

� � sin/i �Rdi � sin/i � cos ui
Coordinates of surface points in straight daughter branch

y ¼ Rdi � sin ui

x ¼ xi þ sngðiÞ � ðRdi � cosbi � cos uiÞ
z ¼ zi �Rdi � sinbi � cos ui
where

xi ¼ sgnðiÞ � ðRi
� � cosbi �Ri

� � li
� � sinbiÞ;

zi ¼ �Ri
� � sinbi � li

� � cosbi

0 � li
� � Ldi;s
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Equations for the Inner Surface of Transition
Zone, Near the Carina

In the above section titled Characterizing Parameters
and Defining the Geometry in the Main Plane, we define
the x and z coordinates of the boundary curve. To define
the inner transition zone, we set the y coordinate, the
distance h in Figures 5 and 6, of the boundary curve
first and then determine the shape at each cross-section
for different /i, i5L, R (Fig. 2). The y coordinates of the
boundary curve are determined by

h ¼ RLð/LÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð/L=aL

�Þ2
q

ð1Þ

where RL(/L) is given by equations (A1) and (A2) in Ap-
pendix A. The cross-sectional plane at a specific /i (Fig.

3) has length scales Ri, the height at the toroid tube
center, Li, the distance between the center of a torus in
the main plane and the boundary curve (Fig. 4), and h,
the y coordinate of the points on the boundary curve
(Fig. 5), where subscript i means L or R. In region (i)
(see Fig. 4), a circular shape continues to a position xi
and equation for a saddle is applied near the carinal
ridge. A fifth-order polynomial matches the y coordinate,
slope, and curvature at x 5 xi and x 5 0.98L (Fig. 5). In
region (ii), the shape becomes more highly curved, so
matching all 6 conditions does not produce a smooth
shape. Thus, we drop the curvature condition at x 5
0.98L and use a fourth-order polynomial instead. The
x, y coordinates in equations (2)–(14) are defined on a
plane that is at an angle /i with respect to the global
x–y plane.

TABLE 3. Summarizing carina equations

Coordinates of surface points when h > RR

i) 0 � /i � ai
� ðabove carinaÞ ii) /i > ai

� ðbelow carinaÞ
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

2 � ðx� ðRi �RdiÞÞ2
q

ð0 � x < x1Þ y ¼ ð1� bÞ � y1 þ b � y2
y¼a5x

5þa4x
4þa3x

3þa2x
2þa1xþa0 ðx1 � x� 0:98 �LiÞ b ¼ ð/i � ai

�Þ=ðai � ai
�Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � ðx� LÞ2 � cos2 /þ hð/Þ2

q
ðx > 0:98 � LiÞ where

where y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rdi

2 � x2
p

ð0 � x < x1Þ
x1 ¼ 0:6 � Lþ 0:2 � L � ðRp � hÞ=Rp y1 ¼ a4x

4 þ a3x
3 þ a2x

2 þ a1xþ a0 ðx1 � x � 0:98 � LiÞ
h ¼ RLð/LÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð/L=aL

�Þ2
q

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � ðx� Li � �xÞ2 � c2 � �x2Þ � cos2 /i

q
ðx > 0:98 � LiÞ

x1 ¼ 0:8 � Li þ 0:15 � Li � b

�x ¼ �Lþ
��xb � xi

���
cos/i

xi
� ¼ sgnðiÞ � ðRi

� � cos/i � Ri
�Þ

y2 ¼ Rdi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=LiÞ2

q

Coordinates of surface points when h < RR

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL

2 � ðx0 � ðRL �RdLÞ � cos/LÞ2
q

ð0 � x0 < xL � cos/LÞ The boundary curve y coordinates are defined by

y ¼ a6x
06 þ a5x

05 þ a4x
04 þ a3x

03 þ a2x
02 þ a1x

0 þ a0

ðxL � cos/L � x0 � LL � cos/L þ ðLR � xRÞ � cos/RÞ

h� ¼ b � h1 þ ð1� bÞ � h2

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL

2 � ðx0 � LL � cos/L � LR � cos/R þ ðRR �RdRÞ � cos/RÞ2
q

ðLL � cos/L þ ðLR � xRÞ � cos/R � x0 � LL � cos/L þ LR � cos/RÞ

h1 ¼ RL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð/L=aL

�Þ2
q

xL ¼ 0:6 � LL þ 0:2 � LL � x; x ¼ ðRp � hÞ=Rp h2 ¼ RL
0 � ðRL

0 �RR
0Þ � ð�2x3 þ 3x2Þ; x ¼ LL

0=ðLL
0 þ LR

0Þ
xR ¼ 0:5 � LR � b; b ¼ ðRL � h1Þ=ðRL �RRÞ b ¼ ðRL � h1Þ=ðRL � RRÞ

RL
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL

2 � ðxL � ðRL � RdLÞÞ2
q

RR
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RR

2 � ððRR �RdRÞ � xRÞ2
q

LL
0 ¼ LL � xL; LR

0 ¼ LR � xR
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i) 0 � /i � a�
i (above carina)

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

2 � ðx� ðRi � RdiÞÞ2
q

ð0 � x < x1Þ ð2Þ

y ¼ a5x
5 þ a4x

4 þ a3x
3 þ a2x

2 þ a1xþ a0

ðx1 � x � 0:98 � LiÞ ð3Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � ðx� LiÞ2 � cos2 /i þ hð/iÞ2

q
ðx > 0:98 � LiÞ ð4Þ

xi ¼ 0:6 � Li þ 0:2 � Li � ðRp � hÞ=Rp ð5Þ

ii) /i > a�
i (below carina)

y ¼ ð1� bÞ � y1 þ b � y2 ð6Þ

b ¼ ð/i � ai
�Þ=ðai � ai

�Þ ð7Þ
where

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rdi

2 � x2
q

ð0 � x < x1Þ ð8Þ

y1 ¼ a4x
4 þ a3x

3 þ a2x
2 þ a1xþ a0 ðx1 � x� 0:98 �LiÞ ð9Þ

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � ðx�Li � �xÞ2 � c2 � �x2Þ � cos2/i

q
ðx> 0:98 �LiÞ

ð10Þ

xi ¼ 0:8 �Li þ 0:15 �Li �b ð11Þ

�x¼�Lþ
��xb � xi

���
cos/i

ð12Þ

xi
� ¼ sgnðiÞ � ðRi

� � cos/i �Ri
�Þ ð13Þ

y2 ¼ Rdi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=LiÞ2

q
ð14Þ

In equation (12), xb is the x coordinate of the point
where the boundary curve and carina circle meet and
xi* is the x coordinates of the daughter toroid center in
the main plane at /i (Fig. 4). Equations (4) and (10)
become the same when h or x is equal to zero, where c is
the line’s slope and in this model c 5 2. In the present
study, it is assumed that cross-sectional shape of the
geometry near the carina, changing from saddle to
circle, starts to be a circle at ai (equations 6, 7, 10, 14),
but the transition zone from saddle shape to circular
shape can be extended to further down the daughter
branches if needed.
The above equations describe the shape of the inner

transition zone when the diameters of the two daughter
branches are similar, but not when the diameter of one
daughter branch is much smaller than the diameter of
the other one. Under these conditions, h can be larger
than RR in proximal regions and so the above method

Fig. 4. Detailed view near the carina.

Fig. 3. Schematic representation of related angles, boundary curve
and dividing point.

Fig. 5. Determination of the shape of inner transition zone in case
both R1 and R2 are larger than h.
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fails for region (i) (Figs. 4, 6). In that case, equations for
the inner transition zone are obtained together, instead
of separately. The proximal region (h>RR) and distal
region (h < RR) are smoothly connected by interpolation.
Unlike symmetric bifurcations, the shape of the carinal
ridge is not circular at small subtended angles (/) when
the bifurcation is very asymmetric. In the Results
section, cross-sectional shape in the transition zone is
compared between symmetric and highly asymmetric
bifurcations.

y¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL

2 � ðx0 � ðRL �RdLÞ � cos/LÞ2
q

ð0� x0 < xL � cos/LÞ
ð15Þ

y¼ a6x
06 þ a5x

05 þ a4x
04 þ a3x

03 þ a2x
02 þ a1x

0 þ a0

ðxL � cos/L � x0 � LL � cos/L þ ðLR � xRÞ � cos/RÞ
ð16Þ

y¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL

2�ðx0�LL �cos/L�LR �cos/RþðRR�RdRÞ�cos/RÞ2
q

ðLL �cos/LþðLR�xRÞ�cos/R�x0 �LL �cos/LþLR �cos/RÞ
ð17Þ

xL¼0:6�LLþ0:2�LL �x; x¼ðRp�hÞ=Rp ð18Þ

xR¼0:5�LR �b ð19Þ

The boundary curve y coordinates are defined by

h� ¼ b � h1 þ ð1� bÞ � h2 ð20Þ

where

h1 ¼ RL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð/L=a

�
LÞ2

q
ð21Þ

h2 ¼ RL
0 � ðRL

0 �RR
0Þ � ð�2x3 þ 3x2Þ; x ¼ LL

0=ðLL
0 þLR

0Þ
ð22Þ

b ¼ ðRL � h1Þ=ðRL �RRÞ ð23Þ

RL
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL

2 � ðxL � ðRL �RdLÞÞ2
q

ð24Þ

RR
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RR

2 � ððRR � RdRÞ � xRÞ2
q

ð25Þ

LL
0 ¼ LL � xL; LR

0 ¼ LR � xR ð26Þ

The x, y coordinates in equations (15)–(26) are defined
on the x0–y plane parallel to the global x–y plane.
Because the cross-sectional plane is at an angle / with
respect to the x0–y plane, the following relations relate
x0 to x:

x0 ¼ x � cos/; dy

dx0
¼ 1

cos/
� dy
dx

;
d2y

dx02
¼ 1

cos2 /
� d

2y

dx2
ð27Þ

Figure 7 shows these relations schematically.

Comparison of Bifurcation Model and

Computed Tomography Image Using

Optimization Method

To validate the bifurcation model, it was compared
with a computed tomography (CT) image of a lung cast
from Sprague Dawley rat. The rat lung cast was imaged
using a commercially available micro CT scanner, Micro-
CAT II (Siemens, Knoxville, TN) in high resolution mode
with a 0.5-mm aluminum filter. To prevent motion arti-
fact, the cast was imaged in a plastic tray. Three hun-
dred sixty projections were acquired during a full rota-
tion around the cast with the following scan parameters:
80 kVp, 500 mA, 1,250 ms per frame and 30 calibration
images (bright- and darkfields). Total scan time for the
two bed position acquisition was 25 min. The image was
reconstructed using the Feldkamp reconstruction algo-
rithm as a 768 3 768 3 800 array with corresponding
voxel size of 0.053 mm 3 0.053 mm 3 0.053 mm. Lung
cast preparation details are presented in Appendix B.
Using the current bifurcation model, a parameter set

that minimizes the distance between the airway CT
image and the bifurcation model is searched for at each

Fig. 6. Determination of the shape of inner transition zone in case
one of R1 and R2 is smaller than h.

Fig. 7. Consideration of the angle between cross-sectional plane
at / and global x–y plane.
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bifurcation. Along normal vectors that originate from
the bifurcation model surface, distances between the
bifurcation model surface and that of the airway image
are calculated. The average value of these distances is a
measure of deviation between image and model. This av-
erage distance decreases and eventually becomes very
small as the shape and location of bifurcation model
approach that of the image.
The simulated annealing method is adopted to find

the best fit. Simulated annealing minimizes an objective
function, which in the current study is defined as the av-
erage distance between the model and image. Objective
function, F, is defined by Equation 28 where the Np, Nt,
NL, and NR are the number of normal vectors that were
originated from parent branch, transition zone, left
daughter and right daughter branches, respectively. DEi

is the error at the ith normal vector and Rp, RL, and RR

are branch radius of parent, left daughter and right
daughter. Relative error instead of absolute error is used
because all errors should be weighted equivalently
whether measured at parent branch or daughter branch;
for example, if an absolute error, DEi, is very small but
is large compared with the corresponding branch radius,
it must be evaluated as large error.

F ¼
PNp

i ðDEi=RpÞ2
Np

þ
PNt

i ðDEi=RpÞ2
Nt

þ
PNl

i ðDEi=RLÞ2
NL

þ
PNR

i ðDEi=RRÞ2
NR

ð28Þ

Details on simulated annealing method are presented
by Corana et al. (1987).

RESULTS

We have developed analytical expressions that
describe single airway bifurcations. These equations
have been incorporated into software that accepts user-
defined parameters for the bifurcation and produces its

shape in VRML format (Virtual Reality Modeling Lan-
guage). VRML that can be viewed on Internet browsers
using a suitable plug-in (http://mae.ucdavis.edu/wexler/
lungs/bifurc.htm) or converted to other formats by read-
ily available software. Such formats can then be used to
produce physical models by rapid prototyping (STL) and
then used in flow studies or they can be used with com-
putational fluid dynamics codes to predict flow patterns.
This mathematical description can generate the three-

dimensional geometry of symmetric and asymmetric air-
ways automatically for various combinations of input
parameters, such as subtended angle, torus radius of
curvature, and carina curvature, provided the input geo-
metric parameters are physically reasonable. Figure 8a
shows a symmetric airway generated with this model,
whereas Figure 8b shows an asymmetric one whose
daughter branches have different diameters, subtended
angles, and radii of curvature.
Figure 9 compares an asymmetric bifurcation created

by the present model to one where the carinal ridge
starts at the parent center line. Figure 10 compares the
transition zone cross-section of symmetric and highly
asymmetric bifurcations generated by our model. For
both bifurcations, the shape at the carinal ridge is circu-
lar or near circular in the lower transition zone (near
carina). However, the shape is far from circular in the
upper transition zone (near parent airway) for the
highly asymmetric bifurcation.
To test the validity of the bifurcation model, we com-

pared it with image data from airways obtained from rat
lung cast. Using optimization methods, we searched for
a best fit of the bifurcation model to real airways and
measured error between them. Average error was calcu-
lated by measuring the distance along 408 normal vec-
tors emanating from the model to the edge of the airway
image; 77 airways whose parent radius is larger than 10
pixels were selected. For small airways it is unclear if
the error is mainly due to deviation between bifurcation
model and the airway data or due to limitations in air-
way data resolution. Figure 11a–c shows relative error

Fig. 9. Comparison between present model and a model with cari-
nal ridge starting at the middle of the parent branch: (a) asymmetric
structure of a model with carinal ridge starting at the middle, and (b)
asymmetric structure of present study (Rp50.8, RdL50.7, RdR50.4,
Lp,s51.5, LdL,s51.2, LdR,s50.9, bL5358, bR5458, RL*56.4, RR*54.8,
rc50.14).

Fig. 8. Three-dimensional representation of a bifurcation model: (a)
symmetric bifurcation where Rp50.8, RdL50.7, RdR50.7, Lp,s51.5,
LdL,s51.2, LdR,s51.2, bL5358, bR5358, RL*56.4, RR*56.4, rc50.14;
and (b) asymmetric bifurcation where Rp50.8, RdR50.7, RdL50.4,
Lp,s51.5, LdR,s51.2, LdL,s50.75, bR5358, bL5458, RR*56.4, RL*54.8,
rc50.07.
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(error divided by airway diameter) versus airway diame-
ter in parent, transition, and daughter region, respec-
tively. Averaged error of 77 bifurcations in each region
was 4.9, 5.9, 5.5%, respectively. Even the largest error
was only slightly larger than 10%. Figure 12 shows over-
all error versus asymmetry of daughters (ratio of major
diameter to minor one). The error was a little smaller
for very symmetric structure but a clear trend was not
observed.

DISCUSSION

The current bifurcation model produces plausible air-
way shapes for both symmetric and asymmetric bifurca-
tions (Figure 8). Figure 9a shows the distortion in an
asymmetric bifurcation when the carinal ridge is forced
to start at the parent center line, whereas Figure 9b
demonstrates improvement in airway outline when the
carinal ridge shifts toward the minor daughter. Details
of the mathematical formulation that describes this cari-
nal shift are presented in Appendix A, so that these
modifications can easily be introduced into other models.
Figure 10 shows that the shape of the carinal ridge

would not be circular near the parent airway for highly
asymmetric bifurcation. The diameters of the two daugh-
ter airways are so different that their connection is not
well represented by a circular shape especially when

two circular tubes are close together, such as in the
upper transition zone. This example demonstrates that
rounding circles might not suitably define some parts of
the carinal ridge when the bifurcation is highly asym-
metric.
Figure 11 shows that the current model can reproduce

the real airway structure with various shapes. It is rea-
sonable to assume that approximately a half pixel would
be the best accuracy that the computer algorithm can
achieve, so airways with radius 10 times the pixel size
will cause unavoidable relative error of 2.5%. Consider-
ing this, the accuracy of bifurcation model seems fine.
Error in transition zone was a little larger than in par-
ent and daughter branches, probably because the shape
of the transition zone of real airway may be more irregu-
lar than that of our model. Although much research
offers quantitative anatomical data for the two-dimen-
sional airway outline, there is still lack of data for
detailed airway scales, especially in the transition zone.
Therefore, the most appropriate bifurcation shape model
is unclear. Because of these limitations, we used images
of airways or personal discussion with anatomists to
describe the detailed airway shape. Effect of the number
of normal vectors on error was not appreciable, for
example, averaged error in each region (parent, transi-
tion, daughter) was 4.8, 5.8, 5.2% when number of nor-
mal vectors was increased to 800.

Fig. 10. Cross-sections at the transition zone of symmetric and highly asymmetric bifurcations where
scales are same as those in Figure 8. Cross-sections at two subtended angles (/) were shown, / equal
to (a) 11.738, (b) 23.458 for symmetric bifurcation and / (major daughter) equal to (a) 8.088, (b) 16.158 for
asymmetric bifurcation.
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Lung bifurcations have a wide range of asymme-
tries. A typical parameter for measuring asymmetry
of bifurcation is the ratio of major daughter diameter
to minor one. Error was almost independent of bifur-
cation asymmetry (Figure 12), indicating that the
model fairly represents the full range from symmetric
to highly asymmetric.

In this study, we have used equations for only three
shapes (circle, saddle, and polynomial) to describe the
whole structure of a single airway bifurcation. It gen-
erally and explicitly describes airway structure, and
we demonstrated the accuracy of bifurcation model by
comparing it with CT image of rat airways. The
method for comparing bifurcation model and CT
image suggested in this study can as well be used to
extract geometric information of airway architecture.

Although our mathematical descriptions are not
simple compared with previous models and have
adjusting parameters, they accurately represent a
highly asymmetric airway. Other approaches may
build on those presented here to generate a descrip-
tion that is simpler yet also represents the full range
of bifurcations from symmetric to highly asymmetric.
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APPENDIX A: BIFURCATION GEOMETRY IN
MAIN PLANE

Although the radii of the two toroids are constant in
Fig. 2, in the model, the toriod radii change at each
cross-section. As in the model of Heistracher and Hoff-
mann,6 the change of radius from Rp to Rd is given by

Ri ¼ Rp � ðRp � RdiÞ � rðxiÞ ðA1Þ

rðxiÞ ¼ �2xi
3 þ 3xi

2; xi ¼ /i=/i
� ðA2Þ

We assume that the radius becomes constant after the
two toroids divide. The angle at this dividing point, /*
(Fig. 3), is dependent on the above 11 parameters
according to

/i
� ¼ cos�1

sgnðiÞ �
h
ðRL

� þ RdLÞ2 � ðRR
� þ RdRÞ2

i
þ ðRL

� þ RR
� þ sL þ sRÞ

2 � ðRL
� þ RR

� þ sL þ sRÞ � ðRi
� þ RdiÞ

2
4

3
5 ðA3Þ

where

sgnðiÞ ¼ þ1 i ¼ L
�1 i ¼ R

�
ðA4Þ

These relations come from the fact that the dividing
point coordinates are

z ¼ �ðRL
� þ RdLÞ � sin/L

� ¼ �ðRR
� þ RdRÞ � sin/R

� ðA5Þ

x ¼ ðRL
� þ RdLÞ � cos/L

� � ðRL
� þ sLÞ

¼ RR
� þ sR � ðRR

� þ RdRÞ � cos/R
� ðA6Þ

To define a blunt carina in the main plane, a circle is
found tangent with two daughter branches. For a carina
radius of rc, the coordinates of the center of the circle
are given by

xc ¼ xL þ rc � cosaL ¼ xR � rc � cosaR ðA7Þ

zc ¼ zL � rc � sinaL ¼ zR � rc � sinaR ðA8Þ

where the left (xL, zL) and right (xR, zR) contact points
are defined by

xi ¼ sgnðiÞ �
j
ðRi

� þ RdiÞ � cosai � ðRi
� þ siÞ

k
;

zi ¼ �ðRi
� þ RdiÞ � sinai ðA9Þ

and the equations for the contact angles, ai (see Fig. 3),
are derived from equations (A7)–(A9) to give

cosai ¼ RL
� þ RR

� þ sL þ sR
2ðAi þ rcÞ

þ
sgnðiÞ �

h
ðAL þ rcÞ2 � ðAR þ rcÞ2

i
2ðAi þ rcÞ � ðRL

� þ RR
� þ sL þ sRÞ ðA10Þ

where, Ai 5 Ri* 1 Rdi. Now, (xc, zc) can be evaluated by
inserting equation (A10) into equations (A7), (A8) deter-
mining the blunt carina in the main plane.
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As mentioned above, the carinal ridge is a curved hol-
low region in the transition zone. Terming the local min-
imum points in this hollow region as the boundary curve
(Fig. 3), points on the curve are points where the follow-
ing two lines intersect each other in case x coordinate of
the points on the boundary curve has positive sign.

z ¼ � tan/L � ðxþ RL
� þ sLÞ ðA11Þ

z ¼ tan/R � ðx� RR
� � sRÞ ðA12Þ

Therefore, the x, z coordinates of the boundary curve
are expressed by

x ¼ d � cos/L � ðRL
� þ sLÞ ðA13Þ

z ¼ �d � sin/L ðA14Þ

where d in equations (A13) and (A14) is the distance
between pivot point of left daughter toroid and points on
boundary curve and is equal to (R�

L 1 sL 1 R�
R 1 sR)/

(cos/L 1 cos/R � sin /L/sin /R) (Fig. 3). Here, the x, z
coordinates of the dividing curve can be defined if we
determine the relationship between /L and /R that sat-
isfies /L//�

L 5 /R//�
R near carina and [R�

L 1 sL 1 (2sL 1
sR)/2] � tan /L 5 [R�

R 1 sR 2 (2sL 1 sR)/2] � tan /R near
the straight parent airway (equation A15).

/R ¼ x � /L � /
�
R

/�
L

þ ð1� xÞ

3 tan�1 R�
L þ sL þ ð�sL þ sRÞ=2

R�
R þ sR � ð�sL þ sRÞ=2 � tan/L

� �
ðA15Þ

where

x ¼ �2 � /L

a�
L

� �3

þ3 � /L

a�
L

� �2

ðA16Þ

where ai* are the angles at the point where boundary
curve meets carina circle (Fig. 3). At /i 5 0, x, z coordi-
nates of the dividing curve are (2sL1sR)/2 and 0, respec-
tively. With these equations, we can obtain a boundary

curve that starts at a shifted position according to the
difference of radii of the two daughter branches. Equa-
tions (A1)–(A16) determine the single airway geometry
in the main plane.

APPENDIX B: PREPARATION
OF AIRWAY CAST

Specific pathogen-free male Sprague-Dawley rats were
obtained from Harlan (San Diego, CA). Animals were
shipped in filtered containers and housed in laminar
flow hoods in American Association for the Accreditation
of Laboratory Animal Care (AAALAC) approved animal
facilities with free access to food and water. Rats were
kept in the University of California, Davis, animal facili-
ties for at least 1 week before use.
Animals were weighed, then anesthetized with an

overdose of 12% pentobarbital and killed by exsanguina-
tion of the vena cava. The trachea was exposed and can-
nulated at the crico-tracheal junction. The diaphragm
was punctured, collapsing the lungs, and the lungs were
infused with fixative (1% glutaraldehyde/1% paraformal-
dehyde in cacodylate buffer, pH 7.4, 330 mOsm) at 30
cm of water pressure for at least 1 hr inside the chest
cavity. The trachea was ligated, and the lungs, with the
cannula still attached, were removed from the cavity
and stored in the same fixative at 48C. The casting pro-
cess began by removing the lungs from the fixative and
washing them in phosphate buffered saline (PBS).
Lungs, attached by the cannula, were put inside a nega-
tive pressure chamber. The negative pressure chamber
was depressurized to 2100 mmHg. The silicone solution
was made using 100% silicone rubber RTV Sealant (734
Flowable Sealant) and dimethylpolysiloxane 200 Fluid,
20cs viscosity, both purchased from Dow Corning (Mid-
land, MI). The silicone mixture was added through the
cannula and administered into the airways by means of
vacuum pressure for 2 to 10 min, depending on the size
of the lung and the viscosity of the mixture. The lungs
were removed from the negative pressure chamber and
exposed to air to dry the silicone. At 24 hr later, the
lungs were placed in bleach (6% sodium hypochloride;
Clorox, Oakland, CA) to dissolve the lung tissue. Bleach
dissolved all tissue but did not affect the silicone cast of
the airway tree.
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