Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010

Organoplatinum(II) Complexes with Nucleobase Motifs as Inhibitors of Human Topoisomerase II Catalytic Activity

Ping Wang,[a] Chung-Hang Leung,[a] Dik-Lung Ma,[b] Wei Lu,[a] and Chi-Ming Che*[a]

asia_201000451_sm_misellaneous_information.pdf
Figure S1. UV-vis absorption spectra of 2c (50 μM) in DMSO/TBS (1:19) containing GSH (2 mM) at 0 h and 48 h.
Figure S2. UV-vis absorption and emission (inset) spectra of complexes 1 in H$_2$O at 298 K ($\lambda_{ex} =$ 350 nm, concentration \sim5 \times 10$^{-5}$ mol dm$^{-3}$).
Figure S3. UV-vis absorption and emission (inset) spectra of complexes 1 in CH$_3$CN solvent at 298 K (\(\lambda_{ex} = 350\) nm, concentration \(~5 \times 10^{-5}\) mol dm$^{-3}$).
Figure S4. UV-vis absorption and emission (inset) spectra of 2a in CH₂Cl₂ and CH₃CN solvents at 298 K (λₑₓ = 350 nm, concentration ~5 × 10⁻⁵ mol dm⁻³).
Figure S5. UV-vis absorption and emission (inset) spectra of 2b in CH$_2$Cl$_2$ at 298 K ($\lambda_{ex} = 350$ nm, concentration $\sim 5 \times 10^{-5}$ mol dm$^{-3}$).
Figure S6. UV-vis absorption and emission (inset) spectra of 2c in CH₂Cl₂ solvent at 298 K (λ_{ex} = 350 nm, concentration ~5 × 10⁻⁵ mol dm⁻³).
Figure S7. UV-vis absorption spectra of complexes 2 in H₂O at 298 K (concentration ~5 × 10⁻⁵ mol dm⁻³).
Figure S8. UV-vis absorption spectra of complexes 2b and 2c in CH$_3$CN at 298 K (concentration ~5 × 10$^{-5}$ mol dm$^{-3}$).
Figure S9. UV-vis absorption spectra of complexes 1b-c (40.0 µM) and 2a-b (50.0 µM) in Tris buffer solutions with increasing ratio of [DNA]/[Pt] at 20.0 °C.
Figure S10. Emission spectral traces of 1a-c (50 µM) in Tris buffer solution with increasing ratio of [DNA]/[complex] at 20 °C.
Intensity/a.u.

Wavelength/nm

555nm
Figure S11. Gel electrophoresis of 100-bp DNA ladder on a 1.0 % (w/v) agarose gel showing the mobility of DNA (50 µM bp⁻¹) in the presence of ethidium bromide (EB) or Hoechst 33342, complexes 1 and 2.
Figure S12. Relative specific viscosity of calf thymus DNA in the presence of ethidium bromide, Hoechst 33342, complexes 1 and 2 shown as a function of the binding ratio.
Figure S13. Effect of complexes 1a-c on TopoII-mediated DNA relaxation with (a) increasing amount of TopoII enzyme and (b) increasing amount of DNA (pRYG 1µL = 250 ng). (S, supercoiled DNA; R, relaxed DNA; N, nicked DNA)

<table>
<thead>
<tr>
<th></th>
<th>1a + DNA (s)</th>
<th>1b + DNA (s)</th>
<th>1c + DNA (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a) 6 8 10</td>
<td>6 8 10</td>
<td>6 8 10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table:

- **(unit)**

Diagram:

(Images of gel electrophoresis results showing DNA relaxation under different conditions.)

Legend:

- S (Supercoiled DNA)
- R (Relaxed DNA)
- N (Nicked DNA)
Figure S14. Schematic model of the binding of ATP to the ATPase domain of human TopoII. The TopoII protein is represented in ribbon model and ATP is represented in a ball and stick model.
Figure S15. Effect of complexes 1a-c on TopoI-mediated supercoiled DNA relaxation. (S, supercoiled DNA; R, relaxed DNA; N, nicked DNA)

![Figure S15](image)

Figure S16. Effect of complexes 2a-c on TopoI-mediated supercoiled DNA relaxation. (S, supercoiled DNA; R, relaxed DNA; N, nicked DNA)

![Figure S16](image)