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[1] Uncertainties associated with meteorological inputs which are propagated through
atmospheric chemical transport models may constrain their ability to replicate the effects of
wildland fires on air quality. Here, we investigate the sensitivity of predicted fine particulate
matter (PM2.5) levels to uncertain wind fields by simulating the air quality impacts of two
fires on an urban area with the Community Multiscale Air Quality modeling system
(CMAQ). Brute-force sensitivity analyses show that modeled concentrations at receptors
downwind from the fires are highly sensitive to variations in wind speed and direction.
Additionally, uncertainty in wind fields produced with the Weather Research and
Forecasting model was assessed by evaluating meteorological predictions against surface
and upper air observations. Significant differences between predicted and observed wind
fields were identified. Simulated PM2.5 concentrations at urban sites displayed large
sensitivities to wind perturbations within the error range of meteorological inputs. The
analyses demonstrate that normalized errors in CMAQ predictions attempting to model the
regional impacts of fires on PM2.5 levels could be as high as 100% due to inaccuracies in
wind data. Meteorological drivers may largely account for the considerable discrepancies
between monitoring site observations and predicted concentrations. The results of this study
demonstrate that limitations in fire-related air quality simulations cannot be overcome by
solely improving emission rates.
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1. Introduction

[2] Wildland fires may greatly impact air quality and pose
a significant threat to public health [Delfino et al., 2009]. The
adverse effects of smoke from wildfires and prescribed burns
on air pollution levels and visibility have been investigated in
numerous studies [Fox and Riebau, 2009; Johnston et al.,
2012; Kochi et al., 2010]. Air quality models can serve as
tools to quantify exposure to fire-related pollution and
provide important information to fire and land managers.
However, the limitations inherent to numerical models when
used to replicate the air quality impacts of fires must be iden-
tified and well understood to adequately interpret results and
further improve the models’ predictive skills.
[3] Multiscale atmospheric chemical transport models

provide an appealing framework to simulate the effects of wild-
land fires on air quality: complex chemical and physical pro-
cesses are represented; local and regional scales can be jointly

treated; and detailed emissions and meteorological fields can
be used to drive air quality modeling. Multiple attempts to rep-
licate the impacts of fires on air quality with Eulerian models
have been reported [Goodrick et al., 2012]. Commonly, model
performance in these simulations, assessed by comparing fore-
casted and observed pollutant concentrations, has been unsatis-
factory and a need to improve predictions has been recognized.
[4] Air quality models require two fundamental inputs:

meteorological fields and emission rates. The importance of
meteorological input fields in air quality simulations has long
been acknowledged [Seaman, 2000]. However, prior studies
seeking to simulate the impacts of wildland fires with
Eulerian air quality models have generally focused on
better characterizing fire-related emissions as a strategy to
strengthen model performance [Konovalov et al., 2011; Tian
et al., 2009; Yang et al., 2011]. In contrast, little attention has
been given to the implications uncertain meteorological inputs
may have on model predictions. Still, weather conditions
determine the principal physical driving forces in the atmo-
sphere, making gridded representations of meteorology the
foundation of all three-dimensional air quality simulations.
While enhanced fire emissions estimates can improve the accu-
racy of air quality simulations, errors associated with weather
data continue to affect model results. Therefore, determining
the degree to which uncertainties in meteorological inputs
might hinder fire-related simulations is an important step
towards successfully modeling the impacts of wildland fires
on pollutant levels with atmospheric chemical transport models.

Additional supporting information may be found in the online version of
this article.

1School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, Georgia, USA.

Corresponding author: F. Garcia-Menendez, School of Civil and
Environmental Engineering, Georgia Institute of Technology, 311 Ferst
Drive, Atlanta, GA 30332, USA. (fernandog@gatech.edu)

©2013. American Geophysical Union. All Rights Reserved.
2169-897X/13/10.1002/jgrd.50524

6493

JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 6493–6504, doi:10.1002/jgrd.50524, 2013



[5] Sensitivity analyses are an important diagnostic tool to
evaluate the influence individual inputs may have on specific
model outputs. Here, we use a regional-scale chemical trans-
port model to simulate smoke transport from wildland fires in
an urban smoke episode which severely deteriorated air qual-
ity throughout the Atlanta metropolitan area in 2007. The
simulation results show a significant response in predicted
PM2.5 concentrations to small variations in the spatial alloca-
tion of fire emissions, suggesting a potentially strong influ-
ence from wind inputs. In fact, errors in model-predicted
PM2.5 concentrations could be dominated by the uncertainty
in wind fields rather than emission estimates [Yang et al.,
2011]. In this paper, the Atlanta 2007 simulation is used as
a base case episode to investigate the sensitivities of model
predictions to the meteorological fields used to drive air
quality simulations.
[6] A series of sensitivity analyses were applied to explore

the responsiveness of PM2.5 concentrations predicted by the
air quality model to uncertainties in three-dimensional wind
fields. We focus on primary fine carbonaceous particle emis-
sions from fires, the main component of fire-related smoke,
and wind, the meteorological variable most clearly associ-
ated with fire-attributable impacts on PM2.5 concentrations.
The results of this work indicate the extent to which simula-
tions may be constrained by inaccuracies in meteorological
data produced by numerical weather prediction models.
Additionally, the analysis described in this study investigates
whether the errors in predicted concentrations can be abated
by exclusively focusing on better estimation of fire-related
emissions. The air quality modeling framework used is

described in section 2. Section 3 presents the methodology
applied to carry out the sensitivity analyses and evaluate the
wind field inputs. The results of the sensitivity analyses and
wind field uncertainty assessment are included in section 4.
Finally, our conclusions are presented in section 5.

2. Numerical Modeling Framework

2.1. Meteorology

[7] Meteorological data are used to capture atmospheric
conditions throughout modeling domains and play a vital
role in determining pollutant concentrations predicted by air
quality models. Although air quality simulations, particularly
those performed with plume or puff models, can rely on
observed or simplified weather data, comprehensive
Eulerian models require detailed three-dimensional meteoro-
logical fields. Meteorological fields used by atmospheric
chemical transport models are typically prepared with meso-
scale numerical weather prediction systems such as the fifth-
generation Pennsylvania State University/National Center
for Atmospheric Research Mesoscale Model (MM5; [Grell
et al., 1994]) and the Weather Research and Forecasting
model (WRF; [Skamarock et al., 2008]). For retrospective
air quality simulations, reanalysis fields and data assimilation
of observed meteorology can be applied.
[8] Most reported simulations attempting to replicate the

impacts of wildland fires on air quality with Eulerian models
have relied on meteorological fields produced with MM5
[e.g., J Chen et al., 2008; Junquera et al., 2005; Strand
et al., 2012]. The choice is consistent with the initial
application of current models, originally designed to use
MM5-derived meteorological inputs. More recently, air qual-
ity modeling has incorporated meteorological fields gener-
ated with WRF [Appel et al., 2010]. Studies comparing
MM5 and WRF performance and assessing the sensitivity
of air quality predictions to weather model selection indicate
that, although differences exist in model results, meteorolog-
ical and air quality fields based on either are of comparable
qualities [Appel et al., 2010; Gilliam and Pleim, 2010].
[9] For this study, meteorological fields produced with

WRF (version 2.1.2) were used to drive all air quality model-
ing. Meteorology was simulated on three nested domains
with 36, 12, and 4 km horizontal grid spacing and 34 vertical
layers extending up to 50 hPa. The simulations used the
Yonsei University planetary boundary layer (PBL) scheme
[Hong et al., 2006], Noah land surface model [Ek et al.,
2003], Dudhia shortwave radiation scheme [Dudhia, 1989],
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Figure 1. Observed 1 h average and CMAQ-predicted
15min PM2.5 concentrations at the Confederate Ave. moni-
toring site on 28 February 2007 (LT).

Figure 2. Representation of perturbations applied to (a) wind direction and (b) wind speed in brute-force
sensitivity analyses.
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Rapid Radiative Transfer Model longwave radiation scheme
[Mlawer et al., 1997], Kain-Fritsch cumulus parameteriza-
tion scheme [Kain, 2004], and the Lin et al. microphysics
scheme [S H Chen and Sun, 2002; Lin et al., 1983;
Rutledge and Hobbs, 1984]. The options selected correspond
to the configuration of an operational air quality forecasting
system in Atlanta which has been used by forecasters in the
state of Georgia (USA) since 2006 [Hu et al., 2010].
Simulations were initialized, constrained at the boundaries,
and nudged at 6 h intervals using reanalysis fields from the
North American Mesoscale model (nomads.ncdc.noaa.gov).

2.2. Air Quality

[10] The Community Multiscale Air Quality Modeling sys-
tem (CMAQ version 4.5, http://www.cmaq-model.org/) was
used to numerically simulate the transport and transformation
of pollutant emissions. Emission inputs from nonfire sources
were processed with the Sparse Matrix Operator Kernel
Emission processor (SMOKE version 2.1, http://www.smoke-
model.org/index.cfm). Emission rates for wildland fires
featured in the simulated urban smoke episode were prepared
through the Fire Emissions Production Simulator (FEPS
version 1.1.0, http://www.fs.fed.us/pnw/fera/feps/). FEPS pro-
vides hourly emissions and heat release rates for prescribed
burns or wildfires. Plume rise estimates from the Daysmoke
model [Achtemeier et al., 2011] were used to vertically distrib-
ute fire emissions. Analogous to the WRF simulations, CMAQ
air quality modeling was performed using three levels of nested
grids at 36, 12, and 4 km horizontal grid resolutions. Sensitivity
analyses relied on simulations carried out with 4 km resolution.

3. Methodology

3.1. Base Case Simulation

[11] The sensitivity analyses performed were based on a
CMAQ simulation of a fire-related smoke episode which
occurred on 28 February 2007. The base case air quality sim-
ulation intends to replicate the impact of two prescribed
burns on PM2.5 concentrations throughout the Atlanta metro-
politan area. The fires occurred at the Oconee National Forest
and Piedmont National Wildlife Refuge (henceforth referred
to as Oconee and Piedmont), approximately 80 km southeast
of Atlanta (see supporting information, Figure S1). Transport

of fire-related emissions by southeasterly winds throughout
the day is believed to have led to large increases in pollutant
concentrations recorded at urban monitoring sites.
[12] Measured PM2.5 concentrations from the Georgia

Department of Natural Resources’ Ambient Monitoring
Program and the Southeastern Aerosol Research and
Characterization (SEARCH) Network were used to assess
model performance. Air quality records from three Atlanta
sites (Confederate Ave., Jefferson St., and South DeKalb)
and one additional site (McDonough), located approximately
midway between Atlanta and the Oconee and Piedmont fires,
were considered. Figure 1 shows observed and CMAQ-pre-
dicted PM2.5 concentrations at the Confederate Ave. station.
Simulated PM2.5 concentrations were much lower than
observed peaks at monitoring sites. It should be noted that a
simulation without the fires predicts about 20 mgm�3 of
PM2.5 at the Atlanta sites considered, leaving only about
30 mgm�3 associated with the burns. Consistent with previ-
ously reported efforts to replicate the air pollution impacts
of wildland fires with Eulerian chemical transport models,
the base case CMAQ simulation significantly underpredicts
the impacts of prescribed burns on PM2.5 concentrations
observed at urban monitoring stations [Liu et al., 2009;
Strand et al., 2012; Yang et al., 2011]. For predicted PM2.5

levels to match maximum observed concentrations through-
out Atlanta, fire emissions would have to be increased by
more than 400%. Uncertainties in fire-related emission rates
may play a significant role in the underestimation of PM2.5

concentrations. However, an increment of this magnitude
does not seem realistic. In addition, significant sensitivities
of CMAQ predictions to the spatiotemporal allocation of
fire-related emissions on gridded domains were observed.
These are suggestive of potentially important sensitivities to
meteorological inputs and in particular to wind fields.

3.2. Brute-Force Sensitivity Analyses

[13] A brute-force method was applied to carry out sensi-
tivity analyses. The method relies on successively simulating
the same system of interest while varying a specific model in-
put and holding others constant to observe the response of
model outputs [Hwang et al., 1997]. In air quality modeling,
brute-force sensitivity analyses have been frequently used to
quantify the responsiveness of simulated concentrations to
changes in emissions. The response of modeled PM2.5
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Figure 3. CMAQ-predicted PM2.5 concentrations at the
Jefferson St. monitoring site using wind direction perturba-
tions on 28 February 2007 (LT). Base case simulation results
are also included.
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Figure 4. Change in CMAQ-predicted PM2.5 concentra-
tions on 28 February 2007 (LT) relative to base case simula-
tion at the Confederate Ave., Jefferson St., South DeKalb,
and McDonough monitoring sites after applying a �5�
perturbation to wind direction.
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concentrations to changes in primary emissions should be
nearly linear [Koo et al., 2009]. Here, the brute-force method
is used to assess the sensitivity of simulated PM2.5 concentra-
tions to perturbations in wind inputs, namely wind speed
and direction. In this case, the response of concentrations to
changes in winds is not expected to be linear as there are
complex nonlinear relationships between the winds and con-
centrations at downwind receptors. Nevertheless, sensitivity
analyses were performed to observe the degree to which simu-
lations are affected by variations, or uncertainty, in wind fields.
[14] A series of simulations under perturbed wind fields

were carried out to examine the responsiveness of CMAQ-
predicted PM2.5 concentrations at specific downwind
receptors. Wind fields were modified within the Meteorology-
Chemistry Interface Processor (MCIP, version 3.4.1, [Otte
and Pleim, 2010]) used to convert WRF output fields into
CMAQ-compatible inputs. The magnitude and direction of
wind vectors read in from WRF-generated fields were
perturbed to varying extents to produce modified CMAQ in-
puts, as illustrated in Figure 2. In this manner, perturbations
are reflected in all wind-associated variables included in the
meteorological input data used to drive the air quality model.
It is also important to note that in CMAQ 4.5, mass conserva-
tion is ensured by adjusting vertical winds [Hu et al., 2006].
Perturbations to wind direction and wind speed are accompa-
nied by changes to the vertical winds as mass conservation is
obeyed within the model. In general, we find that perturbing
horizontal wind speeds leads to proportional changes in the
vertical speeds, while the effect of altering wind direction on
the vertical wind field is nonlinear and spatially complex.

3.3. Meteorological Uncertainty

[15] Meteorological model performance was evaluated to
assess the level of uncertainty in weather fields used to drive
air quality simulations. Hourly surface observations from
the Research Data Archive of the National Center for
Atmospheric Research (http://rda.ucar.edu/datasets/ds472.0/)
were used to compute model performance metrics by compar-
ing surface-layer observations and predictions. Bias and error
in WRF-derived ground-level predictions were estimated for
wind direction, wind speed, temperature, and humidity.
Additionally, upper air model predictions were evaluated
against atmospheric soundings launched from Peachtree City,
GA, approximately 45 km southwest of Atlanta and 80 km
northwest from the Oconee and Piedmont fires. Sounding
observations were available every 12h at 0000 and 1200 UT.

4. Results

4.1. Sensitivity Analyses

4.1.1. Wind Direction
[16] To examine the sensitivity of CMAQ-predicted PM2.5

concentrations to wind direction, the Atlanta 2007 smoke
episode was modeled under a series of perturbed wind fields.
Modified fields were produced by uniformly perturbing wind
direction by� 5�,� 15�, and� 30� across the entire domain.
The changes were applied at each grid point by rotating all
wind vectors from WRF by the same angle during MCIP
processing, as described in section 3.2. A sample of base case
and perturbed wind fields is included in Figure S2 in the
supporting information. At selected downwind monitoring
sites, predicted PM2.5 concentrations for each perturbed wind
field and the base case were compared to observe the respon-
siveness to variations in wind direction. Figure 3 shows PM2.5

concentrations simulated by CMAQ at the Jefferson St.
monitoring site with both perturbed and unperturbed fields.
The sensitivity of predicted PM2.5 concentrations to wind
direction is extremely high at Jefferson St., as well as at all
other sites considered. The results indicate that small varia-
tions in wind direction can lead to large changes in predicted
pollutant concentrations at specific receptors downwind. At
Jefferson St., for instance, a �5� rotation to wind vectors
increases the maximum predicted PM2.5 concentration by
more than 13mgm�3, a 26% increase. At different urban
locations, sensitivities to wind direction are likewise large
and nonlinear. Peak PM2.5 concentrations predicted at sites

Figure 5. CMAQ-predicted PM2.5 concentrations (mgm-3) over northern Georgia at 1900 LT on
28 February 2007 using �5� and +5� perturbations to wind direction. Black shaded circles indicate
monitoring station locations. The Oconee and Piedmont fire sites are denoted by white shaded markers.

0

20

40

60

80

100

120

P
M

2.
5 

(µ
g

 m
-3

)

+30%

+20%

+10%

Base case

-10%

-20%

-30%

Figure 6. CMAQ-predicted PM2.5 concentrations on
28 February 2007 (LT) at the South DeKalb monitoring site
with wind speed perturbations. Base case simulation results
are also included.
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within Atlanta increased by as much as 8 to 30% with
perturbed wind fields, although remaining well below
observed levels. However, the effect of the wind direction var-
iations at each receptor may vary significantly. Figure 4 shows
the change in predicted PM2.5 concentrations relative to the
base case simulation at different monitoring sites after apply-
ing a �5� perturbation to wind direction. Although the
responses are quite similar at the Confederate Ave. and
Jefferson St. sites 8 km apart, appreciable differences exist be-
tween the sensitivities at these locations and South DeKalb,
7 km from Confederate Ave., where the maximum change in
predicted PM2.5 concentration is significantly lower. At
McDonough, approximately 40 km closer to the fires, the re-
sponse is larger and, compared to the Atlanta sites, appears
to reflect a 2 h advance consistent with expected differences
in transport time.

[17] The influence of wind direction on air quality model-
ing results can be observed in Figure 5 which compares
ground-level PM2.5 concentration predictions after
perturbing wind direction by �5� and +5�. The figure shows
how a 10� difference in wind direction can completely
change a smoke plume’s predicted impact at downwind
receptors. Within this 10� wind direction variation range,
predicted PM2.5 concentrations at Atlanta may vary by more
than 30 mgm�3. It is important to note that although errors in
wind direction may partially explain the discrepancy between
modeled and observed concentrations, simply inducing a
directional adjustment on wind fields should not be consid-
ered a robust strategy to strengthen model performance.
While it was possible to reduce the gap between observed
and predicted peak PM2.5 concentrations in Atlanta by mod-
ifying wind direction in meteorological inputs, perturbed
wind fields decreased the root mean squared error (RMSE),
estimated from the differences between modeled and
observed values, only at Jefferson St. and McDonough. Still,
the sensitivity analysis demonstrates that wind direction in
meteorological inputs is a key element of air quality simula-
tions attempting to replicate the impacts of fires and accurate
wind directions are essential to produce realistic predictions.
4.1.2. Wind Speed
[18] The methodology previously described in section 3.2

was also used to explore the sensitivity of CMAQ-predicted
PM2.5 concentrations to wind speed. Similar to the perturba-
tions on wind direction, modified wind fields were produced
by uniformly changing wind speeds by� 10%, � 20%, and
� 30% across meteorological inputs. Figure S3 in the sup-
porting information compares base case and perturbed wind
fields. Large differences exist between predicted concentra-
tions at downwind receptors under different modified fields.
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Figure 7. Maximum CMAQ-predicted PM2.5 concentra-
tions at the Confederate Ave., Jefferson St., South DeKalb,
and McDonough monitoring sites with wind speed perturba-
tions ranging from �50% to +50%.
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perturbations to wind speed. Ground-level PM2.5 concentrations (mgm-3) are also shown. Air quality
monitoring sites are indicated by black markers.
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In Figure 6, simulated PM2.5 concentrations at the South
DeKalb monitoring site are shown for each perturbation. A
strong response to variations in wind speed is evident: at
South DeKalb, a 30% decrease in wind speed elevated the
peak PM2.5 concentration by more than 40mgm�3, an
increase of nearly 75% with respect to the base case simula-
tion. The responses are similar at all receptors considered;
PM2.5 concentrations significantly increased and experienced
a growing delay with decreasing wind speeds. Unlike the
response to wind direction, response to wind speed can be
relatively linear. Figure 7 shows maximum PM2.5 concentra-
tions predicted by CMAQ at different downwind receptors as
wind speed is perturbed from �50% to +50%. Response to
wind speed is highly linear for negative perturbations but flat-
tens out as magnitude is increased beyond a +10% perturbation.
[19] Several factors contribute to the large differences in

PM2.5 concentration predictions obtained by applying different
perturbations. Most importantly, changes to wind speed bring
about significant differences in the dispersion of fire-related
emissions. While larger wind speeds intensify advective
dispersion, decreasing wind speed allows PM 2.5 emissions
to accumulate within a smaller volume and reach higher con-
centrations. The effect wind speeds can have on smoke plume
dispersion in Eulerian models is depicted in Figure 8. Here,
smoke plumes are shown as three-dimensional isosurfaces
bounded by PM2.5 concentration equal to 35mgm�3. As wind
speed increases, dispersion of smoke occurs at a higher rate.
The effect becomes more evident as winds strengthen with
increasing altitude. Variations in wind speed also result in
changes to the vertical winds within CMAQ. Generally, the
perturbations to horizontal wind speeds yield a proportional
increase or decrease in the vertical winds. This may further af-
fect dispersion, enhancing it when wind speed is intensified
and suppressing it when wind speed is reduced. In addition,
wind speed perturbations may alter the trajectory traveled by
the smoke plume and change the likelihood that it will directly
impact a specific downwind receptor. Another factor leading
to differences in predicted concentrations is the PBL height
at the time of smoke arrival to the receptor. Finally, it is appar-
ent that wind speed perturbations may also influence the
dispersion of emissions from nonfire sources, including urban
emissions. Therefore, the changes to PM2.5 concentrations
predicted under modified wind fields are due to the combined

response of both fire-related impacts and the impacts from all
other sources included in the simulation.
[20] Although errors related to wind speed cannot fully

explain the difference between modeled and observed
PM2.5 concentrations, the sensitivity analyses suggest that
uncertain wind speed estimates may play an important role
in the underpredictions commonly associated with simula-
tions attempting to replicate the air quality impacts of fires.
In the smoke episode simulated for this study, reduced wind
speeds led to higher peak PM2.5 concentrations and
prolonged air quality impacts, consistent with observations
at downwind receptors. At the Atlanta locations considered,
a 30% decrease in wind speed significantly improved model
performance, reducing RMSE, estimated from the differ-
ences between modeled and observed PM2.5 concentrations,
at Confederate Ave., Jefferson St., and South DeKalb by
37%, 12%, and 36%, respectively. No gains in model
performance were achieved at McDonough, GA, indicating
that the prediction error at this location closer to the fires is
more likely related to wind direction or the spatiotemporal
allocation of fire emissions.
4.1.3. Relation to Grid Resolution
[21] The importance of grid resolution in simulations

attempting to replicate the air quality impacts of fires with
chemical transport models was closely investigated using the
base case considered for this study in Garcia-Menendez
et al. [2010]. The analyses described therein showed that
CMAQ-predicted PM2.5 levels at sites downwind of fires are
significantly affected by horizontal grid resolution of the
model domain. In assessing the responsiveness of modeled
concentrations to wind field inputs, it is important to consider
the influence of model resolution on sensitivity estimates.
Increased grid resolution can reduce numerical diffusion and
produce better defined atmospheric plumes. Additionally,
simulations carried out with coarser resolution become less
sensitive to the spatial allocation of fire emissions on a gridded
domain. This is especially true if emissions are allocated into a
single coarse cell and concentration gradients are spatially
smoothed immediately upon injection. Under these condi-
tions, the sensitivities of air quality model predictions to
uncertain wind fields may be greatly enhanced.
[22] To explore the relationship between grid resolution and

the sensitivities of CMAQ-predicted PM2.5 concentrations,
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the Atlanta 2007 smoke episode was modeled under coarser
12 km horizontal grid resolution. Sensitivities to wind direction
and speed were then evaluated by repeating the simulations
under modified wind fields using the same perturbations de-
scribed in sections 4.1.1 and 4.1.2. The analyses showed that
simulated PM2.5 levels at the downwind receptors considered
were significantly less sensitive to wind field perturbations un-
der coarser grid resolution. Figure 9 compares the standard
deviation of predicted PM2.5 concentrations at Confederate
Ave. for all simulations carried out under perturbed wind fields
using 12 km horizontal grid resolution to that of simulations
using 4 km resolution, after fire-related emissions have begun.
The values reflect the spread of CMAQ predictions within the
perturbation range applied to wind direction (�5�, �15�,
�30�, and base case) and wind speed (�10%, �20%, and
�30%, and base case). At Confederate Ave., the average stan-
dard deviation for PM2.5 concentrations within both the wind
direction and wind speed simulation sets decreases by approx-
imately 35%when horizontal grid resolution is coarsened from
4 to 12 km.Maximum hourly standard deviations fall by nearly
50% when grid spacing is increased. The impact of coarser
resolution is similar at other sites within the city of Atlanta
(not shown); average standard deviation decreases by 25%
and 38% at Jefferson St. and South DeKalb, respectively, while
peak values drop by more than 40% at both locations. The
effect is stronger at McDonough where reductions greater than
50% and 70% to average and maximum standard deviations,
respectively, are observed after coarsening resolution. At this
site, the enhanced impact of grid resolution is brought about
by decreased diffusion at shorter range and how denser smoke
plumes react to changes in winds.
[23] The differences between the sensitivities of PM2.5

concentrations to wind fields using 4 and 12 km horizontal
grid spacing demonstrate a strong connection between the
potential impact of meteorological uncertainty and model
resolution. As fire-related air quality simulations undertaken
with Eulerian models move towards even finer levels of
resolution, the sensitivity of predicted pollutant concentra-
tions to wind fields can be expected to increase. Under such
conditions, errors associated with meteorological inputs
may strongly propagate to air quality predictions and offset
some of the gains achieved from increased grid resolution.

4.1.4. Relation to PBL Height
[24] Winds are a major meteorological driver associated

with fire-related air quality impacts and the focus of this study.
However, PBL height is a fundamental parameter that shapes
the turbulent atmospheric volume inwhich pollutants are read-
ily dispersed. Previous analyses have identified the vertical
allocation of fire-related emissions as a key element of smoke
forecasting [Stein et al., 2009]. In CMAQ 4.5, the similarity
theory option was used to parameterize eddy diffusivity
according to the PBL data produced by meteorological
models. PBL heights influence the wind flow used to transport
fire-related emissions and may significantly affect the predic-
tions of air quality models. However, large discrepancies
between PBL heights estimated by different meteorological
models and observational data have been reported [Vautard
et al., 2012]. Uncertainty in PBL height fields may propagate
in model results and influence their sensitivity to winds.
[25] To explore the sensitivity of CMAQ-predicted PM2.5

concentrations at downwind receptors to PBL height, the
Atlanta 2007 smoke episode was simulated with modified
meteorological inputs. Similar to the sensitivity analyses
centered on wind fields, PBL heights produced byWRFwere
perturbed by �10%, �20%, and �30% to evaluate the
responsiveness of predicted PM2.5 concentrations to these
variations. Significant sensitivities to PBL heights were
evident at all downwind receptors considered. Figure 10
shows modeled PM2.5 concentrations at Jefferson St. for each
simulation carried out under perturbed PBL heights. Initially,
and for much of the simulation, PM2.5 concentrations at all
sites are inversely related to PBL height. However, the corre-
lation is not permanently negative and reflects the continual
interaction between PBL height, plume rise, and emissions
transport.While lowering the PBL height constrains pollutants
within to a smaller volume, therefore increasing ground-level
concentrations, it may also allow a greater fraction of the fire
emissions to reach the free troposphere and be transported
above the PBL, reducing their impact on surface air quality.
In Figure 11, the standard deviation of predicted PM2.5

concentrations at Confederate Ave. is shown for all simula-
tions carried out with different PBL height fields. Also
included are the base case PBL height predicted by WRF at
the site and the fire-related contribution to PM2.5 concentration
estimated by comparing the results of simulations with and
without fire emissions. Figure 11 shows how the sensitivity
of PM2.5 concentrations to PBL height, reflected in the
standard deviation, evolves throughout the episode. At
Confederate Ave., the strongest sensitivity to PBL height
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Figure 11. Standard deviation (s) of CMAQ-predicted
PM2.5 concentrations on 28 February 2007 (LT) for all
simulations carried out under different PBL heights
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PBL height prediction at Confederate Ave. (right vertical
axis). The estimated fire-related contribution to PM2.5

concentration (ΔPM2.5) is also included.

Table 1. Daily Performance Benchmarks for Air Quality Modeling
Applications Suggested by Emery et al. [2001] and Episode-Mean
Performance Metrics for the Base Case Meteorological Modeling

Recommended Base Case
Benchmark Simulation

Temperature Bias (K) �0.5 �0.6
Temperature Error (K) 2.0 1.5
Mixing Ratio Bias (g/kg) �1.0 1.0
Mixing Ratio Error (g/kg) 2.0 1.0
Wind Direction Bias (�) �10 8.5
Wind Direction Error (�) 30 9.6
Wind Speed Bias (m s�1) �0.5 1.3
Wind Speed RMSE (m s�1) 2 2.1
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occurs at the confluence of elevated PBL height and large fire-
attributable PM2.5 impacts. Similarly, at all receptors consid-
ered (not shown), the variation among model predictions
is greatest when fire-related emissions contribute signifi-
cantly to PM2.5 concentrations and their injection into the
atmospheric boundary layer is most susceptible to changes
in PBL height.

4.2. Wind Field and Meteorological Uncertainty

4.2.1. Ground-Level Observations andModel Comparison
[26] Wind fields generated byWRF were evaluated against

surface-layer hourly observations from weather stations
located within the base case modeling domain. Observations
and predictions from 33 stations were spatially and temporally
paired to calculate episode-mean performance metrics for key
meteorological variables. Table 1 includes estimated statistical
metrics as well as suggested performance benchmarks for
meteorological models in air quality modeling applications
[Emery et al., 2001]. For this simulation, the metrics generally
reflect adequate performance by WRF. Additionally, the
statistics are comparable to those reported by annual

evaluations of meteorological model performance in air qual-
ity modeling applications [Gilliam and Pleim, 2010; Gilliam
et al., 2006; Hu et al., 2010]. However, the evaluation does
expose a significant positive bias in ground-level wind speed
predictions that is outside the recommended range.
[27] To focus on the meteorology driving fire emissions

transport, observations and predictions were compared
spatially and temporally within a 150 km � 150 km window
centered over plume trajectories for the Atlanta 2007 smoke
episode. The window includes hourly weather observations
from a subset of 12 weather stations. Figure 12 compares
mean predicted and observed temperature, humidity, wind
direction, and wind speed within the evaluation window from
the initial release of fire-related emissions until the end of the
simulation. During fire emissions transport, the mean bias
and error in temperature predictions compared to observation
were �1.5K and 1.6K, respectively. Simulated humidity
displayed a consistent positive bias equal to 1.3 g kg�1. The
uncertainties associated with predicted wind fields are of
greater significance to simulations attempting to replicate the
impacts of fires on downwind PM2.5 concentrations. The mean

275

280

285

290

295

300

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

Temperature Observed Predicted

0

2

4

6

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

Humidity

0

60

120

180

240

300

360

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

Wind Direction

0

1

2

3

4

5

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

Windspeed

Figure 12. Mean observed and WRF-predicted ground-level temperature, humidity, wind direction, and
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bias and error in wind direction predictions with respect
to observations were +5.8� and 6.9�, respectively.
Nevertheless, the maximum hourly wind direction error is
nearly 15�. During the episode, the mean bias and error
in simulated wind speeds were +1.1m s�1 and 1.2m s�1,
respectively. Wind speed predictions closely agree with
observations during the first half of the episode and
exhibit a positive bias of approximately 2m s�1 thereafter.
Similarly, discrepancies between surface-layer observations
and WRF-predicted wind speed and direction have been
reported by other studies [Borge et al., 2008; de Foy
et al., 2009]. The uncertainties in WRF-generated surface-
layer winds, especially wind speeds, are relevant to air
quality modeling involving smoke plume transport given
the large sensitivities to variations in winds described in
sections 4.1.1 and 4.1.2. However, fire-related emissions are
largely transported above the surface-layer and a stronger
response to wind flow at higher altitude should be expected.
4.2.2. Atmospheric Soundings and Model Comparison
[28] Atmospheric soundings provide an opportunity to

evaluate upper air meteorological predictions. Within the
simulation domain used for this study, sounding balloons
were launched every 12 h from Peachtree City, GA, approx-
imately 45 km southeast of Atlanta. Sounding data were
paired spatially and temporally with WRF predictions to
assess uncertainty in the meteorological fields used to drive
the simulations. Figure 13 compares wind speed and wind
direction data from the rawinsonde launched at 1900 LT on
28 February 2007 with WRF-predicted wind fields. This
sounding provides the closest available record of upper air
measurements, spatially and temporally, to the peak PM2.5

concentrations observed in Atlanta during the 2007 smoke
episode. Across the full vertical modeling domain, WRF-
predicted wind fields display good agreement with the
sounding observations. Overall, wind speed predictions
compared to observations show a +0.5m s�1 mean bias, a
7.4% mean normalized bias, and a mean normalized error

equal to 14.1%. Model performance is similarly strong for
wind direction. When compared to sounding data across the
vertical plane, WRF wind direction predictions show a mean
bias of +1.82� and a mean error equal to 5.4�.
[29] However, fire emissions transport only occurs within a

fraction of the modeling domain. In our base case simulation,
fire-related emissions are injected into the modeling domain
up to 1300m above ground level, and pollutant concentrations
at downwind receptors are most sensitive to emissions released
and transported within the PBL. Likewise, other studies suggest
that low and middle PBLwinds dominate the local and regional
transport of fire-related emissions [Stohl, 1998]. Figure 14
focuses on the lower domain and again compares WRF-pre-
dicted winds to sounding observations. It becomes clear that
at lower altitudes, where wind flow drives the transport of
fire-related emissions, themodel significantly overpredicts wind
velocity. A bias in wind direction persists in the lower layers as
well. Within the lowest 1500m of the modeling domain, WRF
forecasts overestimate wind speed by 40.2% with respect to
sounding observations and display a 6.8� directional bias.
[30] The discrepancies between sounding data and WRF-

generated wind fields demonstrate that significant uncertainties
exist in the meteorological inputs used to drive air quality
modeling. During the full 36 h CMAQ base case simulation,
modeled wind speed and direction can differ significantly with
concurrent upper air soundings within the lower levels of the
modeling domain. Wind speeds near the surface are consis-
tently overestimated byWRF. Discrepancies between predicted
and observed wind directions are mostly lower than 10� and do
not reflect a clear model bias for this episode. Similarly, other
comparisons of WRF-predicted boundary layer winds speed
and direction to wind profiler and aircraft observations have
identified significant discrepancies [Gilliam and Pleim, 2010].
Furthermore, systematic positive biases for boundary-layer
wind speed were also revealed in a collective evaluation of
mesoscale meteorological models within the framework of the
Air Quality Model Evaluation Initiative [Vautard et al., 2012].
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4.3. Wind-Associated Error in PM2.5 Predictions

[31] Meteorological fields are a key driver in air quality
modeling. Errors associated with meteorological inputs prop-
agate through air quality models and affect the accuracy of
pollutant concentration predictions. Therefore, it is essential
to evaluate the extent to which the performance of air quality
models may be limited by uncertain meteorological input
data. The process entails (1) determining the output variables
most relevant to the modeling application, (2) identifying the
input variables that significantly influence the values of the
outputs of interest, (3) assessing the range of uncertainty in
these model inputs, and (4) quantifying the sensitivity of
output variables to input variable perturbations within their
uncertainty range. In simulations attempting to replicate the
impacts of wildland fires on air quality, ground-level pollut-
ant concentrations at downwind locations are the output
variables of greatest interest. Furthermore, in this study, we
focus on PM2.5, the atmospheric pollutant most commonly
associated with fire-related air quality impacts. Typically, a
few input variables control the value of specificmodel outputs.
For air quality simulations involving wildland fires, wind
inputs are clearly among the variables dominating predicted
PM2.5 concentration. Here, uncertainties in wind inputs were
explored by comparing meteorological predictions and obser-
vations. Finally, brute-force sensitivity analyses were used to
determine the potential response of modeled PM2.5 concentra-
tions to errors in wind field inputs.
[32] The sensitivity analyses described in section 4.1 show

that CMAQ-predicted PM2.5 concentrations could respond
strongly to wind field variations well within their uncertainty
bounds. Previous studies have compared pollutant trajecto-
ries projected from wind profiler observations and model
predictions and have revealed that large deviations
(100–200 km) may develop over a 24 h period within the
lower 1000m of the atmosphere [Gilliam et al., 2006;
Godowitch et al., 2011]. These transport errors, largely
attributed to wind speed differences, could significantly
influence air quality predictions. In this study’s base case sim-
ulation, we revealed a positive bias in wind speed predictions
with respect to both ground-level and upper air observations.
The comparisons to weather data also revealed errors in wind
direction predictions, generally smaller than 10�. The uncer-
tainties in weather forecasts should not come as a surprise.
However, it is clear that even small errors in wind flow can
lead to large variations in PM2.5 concentration predictions.
Across the lowest 1500m of the modeling domain, wind
speed in meteorological inputs would need an average

reduction of 27% to match observed values from the available
atmospheric sounding. Likewise, an average adjustment of
�6.8� to wind direction is needed to equate predicted and
observed values across the same vertical range.
[33] Figure 15 compares base case PM2.5 concentration

predictions at Atlanta to results from simulations in which
wind speed was systematically reduced by 27% and wind
direction was uniformly modified by �6.8�. The differences
among predictions exemplify how errors associated with
wind fields in meteorological inputs propagate into the
output fields thereby limiting model performance. The reduc-
tion in wind speed increased the maximum predicted PM2.5

concentrations within Atlanta by 47–52 mgm�3 (82–103%)
and delayed peak concentrations by approximately 1 h.
Modifying wind direction resulted in earlier peak PM2.5

concentrations and an 8–24mgm�3 (15–47%) increase to
maximum predicted pollution levels. Additionally, Figure 15
shows the combined effect of simultaneously modifying wind
speed and wind direction in meteorological input fields. The
impacts of different perturbations on simulated concentrations
are not additive, but rather each wind field produces a unique
solution. Under specific conditions, the influence of errors
associated with either wind speed or wind direction can
dominate concentration estimates. Nevertheless, the analyses
show that CMAQ-predicted PM2.5 concentrations in simula-
tions attempting to replicate the air quality impacts of fires
may carry normalized errors as high as 100% due to uncertain
wind inputs.

5. Conclusions

[34] The results of this study show that air quality estimates
from chemical transport models attempting to replicate the
impacts of wildland fires are extremely sensitive to meteoro-
logical fields. For such an application, model performance
largely depends on the accuracy of wind inputs. More impor-
tantly, simulated pollutant concentrations displayed large sen-
sitivities to variations in wind fields well within the uncertainty
range of numerical weather prediction. Errors associated with
wind data may largely account for considerable discrepancies
frequently observed between monitored air quality levels and
predicted PM2.5 concentrations. Overestimated wind speeds
in the lower atmosphere may be especially significant.
[35] However, shortcomings in model performance can

only be partially explained by meteorology. Additional
parameters and inputs have been identified as sources of
error. Fire-related emissions remain uncertain, especially for
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precursors of secondary organic aerosol. The spatiotemporal
allocation of fire emissions on gridded domains may also
impact model predictions. The significance of grid resolution
in air quality simulations involving wildland fires was
ascertained in Garcia-Menendez et al. [2010]. However, in
the episodemodeled for this study, the influence of uncertainty
in wind inputs on concentration predictions substantially
outweighed the effect all other sources of error identified,
including uncertain emission rates. This suggests that fire-
related simulations with chemical transport models are limited
by the performance of existing numerical weather prediction
systems. Additionally, as air quality modeling moves towards
finer grid resolution, errors associated with meteorological in-
puts can be expected to constrain model accuracy even further.
[36] The response of PM2.5 concentration predictions to

wind flow perturbations signals a need to include meteoro-
logical inputs in any strategy designed to improve fire-related
air quality simulations. Furthermore, it is important to recog-
nize the limitations inherent to weather forecasts in the
context of air quality modeling. Uncertain wind fields are
an intrinsic component of numerical weather prediction and
mitigating errors in short-term and small-scale wind forecasts
produced by existing models is a challenging task. Concerns
about the ability of meteorological models to capture intra-
day wind variations have been previously raised [Hogrefe
et al., 2001]. Additionally, substantial variability exists in
meteorological predictions from different models and differ-
ent configurations of the same model [Vautard et al., 2012].
In light of this, air quality forecasts predicting the impact of
fires on air quality produced by atmospheric chemistry and
transport models must be considered substantially uncertain.
These uncertainties must be considered when air quality
modeling is used to steer fire management decision making.
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