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Abstract:

Shifts in the frequency of atmospheric circulation patterns throughout the year can characterize seasonality and provide
a means to evaluate the ability of atmosphere-ocean general circulation models (AOGCMs) to reproduce key dynamical
structures influencing regional climate. However, the identified characteristics of these patterns can depend on the clustering
method used, the physical properties of the model generating the circulation fields, and even their spatial scale. Using two
statistical clustering methods, a mixture model and a hierarchical method, we show that these factors can result in distinctly
different atmospheric patterns characterizing seasonal circulation over eastern North America based on NCEP and ERA-40
geopotential height and sea level pressure (SLP) fields. Consistency is improved through constraining the number of clusters
at each level to 4 or 5, and using the mixture model method. In general, this method tends to produce more consistent
results across the various datasets and is more sensitive to day-to-day variations in pattern frequencies than the traditional
hierarchical method. Applying the mixture method to PCM and CCSM3 simulations reveals some clear differences relative
to reanalysis-based patterns. In particular, the AOGCMs do not reproduce the observed duration and/or location of summer,
with seasonal shifts (PCM) and summer extensions (CCSM) that are strongest at lower levels. However, taking into account
the uncertainty introduced by the different factors, these AOGCMs do successfully capture many of the observed large-
scale drivers of seasonality. These results lend support to circulation-based downscaling, but also highlight some systematic
model biases, and hence the ongoing potential for improvements in model parameterization and dynamics. Copyright 
2006 Royal Meteorological Society
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INTRODUCTION

Large-scale atmospheric circulation patterns correspond
to shapes or structures that tend to repeat over time. These
patterns are the primary drivers of day-to-day and inter-
annual variations in surface climate, bringing with them
local to regional-scale changes in temperature, humid-
ity, precipitation, and other features of surface weather
that are characteristic of that given pattern (Salinger and
Mullan, 1999; Aizen et al., 2001; Slonosky et al., 2001;
Burnett et al., 2004; etc.). Seasonal circulation patterns
are also one of the primary intermediaries connecting
solar forcing with surface-level climate to produce the
familiar characteristics of the four seasons over higher lat-
itudes such as the North American continent. For exam-
ple, the polar front jet stream is a pattern of high-altitude
winds that separates colder, drier air to the north from
warmer, moister air to the south. It grows stronger and
moves southward during Northern Hemisphere winter,
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then weakens and shifts northward during summer. The
position and intensity of the jet affects the dominant
circulation patterns and the associated seasonality over
North America.

Over larger spatial scales (continental to hemispheric),
atmospheric circulation is viewed as one of the more
robust outputs from atmosphere-ocean general circula-
tion models (AOGCMs), after mean temperature (Covey
et al., 2003). For this reason, atmospheric circulation pat-
terns are often used in downscaling approaches such
as ‘weather typing’ which derive projected changes
in surface climate from AOGCM-simulated changes in
upper-air characteristics. To what degree, however, are
AOGCM-based patterns consistent with reanalysis-based
circulation patterns? Defining these structures, under-
standing their connection to surface climate, and assess-
ing the ability of AOGCMs to reproduce them are essen-
tial steps to effectively applying statistical relationships
to AOGCM output to resolve future change at the local
to regional scale.

Large-scale patterns in atmospheric circulation can be
identified subjectively or objectively, through clustering
and other pattern recognition methods. The most famous
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example of the subjective approach is the well-known
Lamb Weather Types for the British Isles identified by
Lamb (1972). Approaches such as this imply prior knowl-
edge regarding the location and extent of the patterns.
In contrast, an objective approach determines patterns
from gridded data using clustering methodologies. Some
recent examples include the hierarchical descending clus-
tering method used to identify three weather states in the
Columbia River Basin for the winter season (Zorita et al.,
1993); a hierarchical agglomerative clustering method
used to derive a climatology of severe storms in Vir-
ginia (Davis et al., 1993) or to define climate regions
in the northern plains (Bunkers et al., 1996); a “K-
means” clustering procedure used to define circulation
types over Europe (Huth, 2001); a mixture of copula
functions applied to determine air mass types from ver-
tical atmospheric profiles (Vrac et al., 2005); and finally,
a fuzzy rule approach to modelling monthly patterns of
precipitation in Hungary (Pongracz et al., 2001).

Objective clustering approaches are based on a num-
ber of assumptions, the usefulness and validity of which
we examine here. First, in most of these applications,
patterns are defined from ‘consistent’ data separated into
seasons, or at least into separate winters and summers. In
this way, the resulting clusters (and the studies following
the clustering steps) are not influenced by data that could
falsify season-specific modelling. On the other hand, if
the first step is to remove the seasonality of the data,
it is then impossible to describe this seasonality and to
assess the degree to which independent datasets are able
to produce a consistent seasonality in circulation patterns.
For this reason, here we use daily datasets covering the
entire year. We first investigate whether it is possible to
produce a comprehensive overview of annual climatolog-
ical atmospheric structures that characterize the dominant
seasons (winter and summer) and describe the transi-
tions between those seasons (spring and fall) – first from
reanalysis fields, as produced by the National Centers
for Environmental Prediction (NCEP) and the European
Centre for Medium-Range Weather Forecasts (ECMWF
ERA-40), and then from historical total (natural + anthro-
pogenic) forcing simulations from two of the National
Center for Atmospheric Research (NCAR) AOGCMs, the
Community Climate System Model version 3 (CCSM3)
and the Parallel Climate Model (PCM) version 1.

We next explore the question of how to define a ‘good’
way to identify these structures. Using a traditional
hierarchical agglomerative clustering method (HAC) and
a more sophisticated mixture model approach using the
expectation maximization (EM) technique, we evaluate
the degree to which the structures we find are dependent
on the clustering algorithm used. We then assess the
implications of statistical clustering and model resolution
for the validity and the meaning of these patterns.

Building on our comparison of clustering methods,
we examine three secondary uncertainties that affect the
patterns identified. The first is the sensitivity of the clus-
ters and their frequencies to model resolution, using two

ERA-40 datasets at 1.125° and 2.5° resolution. The sec-
ond is the degree to which dominant seasonal circulation
patterns vary at four different levels in the atmosphere
(500, 700, and 850 mb, and SLP). Seasonality that is
more evident at some levels than others has implications
for relating surface characteristics for a given season to
upper-air forcing. Third, we ask to what degree model
parameterization affects the characteristics and seasonal
frequency of the patterns identified. Through compar-
ing principal component patterns, densities, and loading
values as well as seasonal frequencies of the patterns
derived from NCEP and ERA-40, we examine the uncer-
tainty in these observationally constrained patterns and
their seasonality to quantify the magnitude of “quasi-
observational error”. This is consistent with Jung (2005),
who demonstrated that reanalysis output fields still con-
tain systematic errors because of the modelling tech-
niques involved.

Finally, building on the previous analysis which con-
strained the magnitude of uncertainty based on reanalysis
output fields, we examine the patterns and seasonal fre-
quencies resulting from the two AOGCMs to see whether
they are successful at reproducing reanalysis-based cli-
matological atmospheric circulation patterns. Although
several studies have assessed the ability of AOGCMs to
reproduce the seasonal temperature cycle (Covey et al.,
2000) and surface climate characteristics (Kunkel and
Liang, 2005), this analysis provides a more fundamental
check of model ability to simulate the patterns driving
surface change.

DATA, MODELS, AND METHODS

In this study, we examine the dominant atmospheric
circulation patterns over North America based on two
reanalysis datasets and historical simulations from two
AOGCMs, combined with two well-known cluster-
ing algorithms. The reanalysis data used here are the
NCAR/NCEP reanalysis at 2.5° × 2.5° spatial resolution
(Kalnay et al., 1996), and the ECMWF/ERA-40 data,
for which we have datasets at spatial resolutions of
1.125° × 1.125° and 2.5° × 2.5°, respectively (Källberg
et al., 2004). We also identify atmospheric circulation
patterns as simulated by historical total-forcing runs from
the NCAR/DOE PCM (Washington et al., 2000) and
the NCAR CCSM3 (Hurrell et al., 1998; Collins et al.,
2006; Hurrell et al., 2006). PCM and CCSM have spec-
tral triangular horizontal resolutions of T42 and T85,
which are approximately equivalent to a global average
resolution of 2.8° × 2.8° and 1.4° × 1.4°, respectively.
For this study, we focus on the region bounded by
[26 °N, 65 °N] × [110 °W, 67 °W], which covers the east-
ern half of North America from about the Rockies to the
East Coast and from about the Mexican border to the
middle of Canada. Our analysis is based on daily data
for a 20-year time period from the recent past, ranging
from 1 January 1980 through 31 December 1999.

Daily fields of geopotential heights (Zg) are among the
variables most used in the literature to define atmospheric
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patterns. Here, we cluster daily fields of Zg at multiple
pressure levels (850, 700, and 500 mb) and daily SLP
fields separately to determine the atmospheric structures
dominant in each. Weather states can then be compared
between pressure levels, between individual datasets of
the same type, and between reanalysis data and simulated
model output.

To define the atmospheric patterns, we first employ
a mixture of statistical distributions (Pearson, 1894).
Although generally considered as a very effective cluster-
ing method, the mixture approach has rarely been applied
to atmospheric studies. In this approach, we estimate g,
the probability density function (pdf) of one of the vari-
ables (e.g. Zg850), as a weighted sum or mixture of K

parametric pdfs gi (i = 1, . . . , K) with parameters αi . As
described in Appendix A, an Estimation-Maximization
(EM) type algorithm (Dempster et al., 1977; for review,
see McLachlan and Peel, 2000) is used to estimate the
parameters of the mixture model; hence, we refer to this
method as the EM approach.

The mixture model using the EM algorithm is used
to cluster the 4 data sets (NCEP, ERA40, PCM, CCSM)
on each variable (Zg850, Zg700, Zg500, and SLP) sepa-
rately. Because the region over North America described
above corresponds to a large number of grid cells (from
240 up to 1368, depending on the spatial resolution of
each data set), which would require estimation of an
unwieldy number of dimensions for each pdf, an unro-
tated principal components analysis (PCA) is first applied
to each variable and data set to reduce the dimension of
the problem while keeping the main part of the variance
of the data.

The data were first standardized such that the mean
for each statistical variable was set to 0 and its variance
to 1. In this way, we avoid the chance that any of the
statistical variables might artificially assume a greater
variance than the others. For each principal component,
the spatial map of the PCA loading values has been
checked to ensure that they produced plausible structures,
with plots available online for the interested reader (see
website – Vrac and VanDorn, 2006).

For each applied PCA, we retain the first C compo-
nents, where C is chosen such that these components
contain at least 99 percent of the cumulative variance
but the first C − 1 components do not. Next, we run
the EM algorithm and select the number of clusters K

using the Bayesian Information Criterion (BIC). In gen-
eral, for the four variables Zg500, Zg700, Zg850, and
SLP, C corresponds respectively to the first 22, 17, 15
and 31 components for the reanalysis data sets (NCEP
and ERA-40); slightly fewer components are required for
the modelled data sets (CCSM and PCM).

In addition to the EM clustering method based on
mixture models, we also apply an alternative clustering
method to each data set, the more commonly-used
Hierarchical agglomerative clustering (HAC) method.
The HAC approach does not assume any (explicit)
distribution for the variables. Starting with the items to
be clustered (i.e. daily fields) as groups with only one

element (singletons), at each step the HAC regroups two
groups according to a given criterion, until only one
group remains, comprising all the items. The criterion
that we employ here to bring two groups together is the
Ward criterion (Ward, 1963) that maximizes the interclass
variance (i.e. minimizing the intraclass variance) at each
step. For the HAC method, other criteria could have
been used instead of Ward’s. However, we justify its
exclusive use here for several reasons. First, this criterion
procedure is one of the most (if not the most) commonly-
employed criterion in HAC methods. Moreover, it is a
statistically-based criterion. This is not clearly the case
for the other criteria classically used in HAC, such as
minimum, complete or average linkage. Finally, because
we also want to look at how a number of other factors
affect the analysis, we do not want to use too many
clustering methods here, and comparison of the model-
based approach with the Ward’s criterion procedure
is sufficient to illustrate differences between seasonal
patterns provided by EM or HAC methods.

The patterns obtained from this alternative approach
provide valuable information regarding the sensitivity of
the clustering results to the method used. As for the EM
approach, we apply the HAC method with Ward criterion
to the same C principal components (PC). For HAC, the
optimal number of clusters can be estimated through a
visual ‘elbow’ criterion rather than a BIC criterion as for
the EM algorithm. For instance, plotting the evolution
of the intraclass variance according to the number of
patterns produces an ‘elbow’ that arises when the next
merging step (i.e. the next lower number of patterns)
would result in a sharp rise of the intraclass variance.
That is, for a higher number of clusters, the criterion does
not change substantially between clusters and the larger
number of individual clusters will not contain as much
independent information as would a smaller number of
clusters.

IDENTIFYING THE DOMINANT SEASONAL
ATMOSPHERIC PATTERNS

Independent clustering for each data set and vertical
level using the EM algorithm with the BIC, or the
HAC with the elbow criterion, results in an optimal
number of clusters for each individual reanalysis/vertical
level/clustering algorithm combination that ranges from
2 to 5. Table I lists the optimal number of clusters
determined by the EM algorithm according to BIC and
by the HAC algorithm using the elbow criterion, for
each reanalysis data set and each available level (Zg500,
Zg700, Zg850, and SLP).

Although the number of clusters differs from one data
set to another, the relative number of clusters for each
level is consistent for a given clustering method. Specif-
ically, in Table I we see that the BIC criterion seems
to prefer relatively fewer patterns for the lower levels
(SLP and Zg850) and more patterns for the higher levels
(Zg700 and Zg500). At lower levels in the atmosphere,
dynamics are more strongly affected by turbulence at
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Table I. Optimal number of clusters from the EM algorithm
as determined by the BIC and from the HAC determined by
the visual elbow criterion, for each reanalysis data set and each
available variable, where ‘ – ’ corresponds to a level at which

the data was unavailable.

Method Data set SLP Zg850 Zg700 Zg500

NCEP 2.5 3 5 5 5
EM (BIC) ERA40 1.125 4 4 5 4

ERA40 2.5 – 4 5 5
NCEP 2.5 5 3 3 2–3

HAC (elbow) ERA40 1.125 4 4 3–4 3–4
ERA40 2.5 – 4 2 2–4

the planetary boundary layer and topographic features.
Hence, variability at SLP and 850 mb is much stronger
than at higher levels, which tend to be dominated by
more steady zonal flows. This is illustrated in Figure 1
by the first (mainly winter) and last (mainly summer)

patterns from the 4 SLP patterns and the 5 Zg500 pat-
terns as determined by the EM method. Figure 1 (a) and
(b) present these patterns for NCEP and (c) and (d) for
ERA-40.

At first glance, the smaller number of patterns for lower
levels found by the EM approach seems counter-intuitive.
If variability is larger, should there not be more patterns?
For these lower levels, if we want to capture all of the
variability by means of our clusters, we would require
a very large number of patterns, which in turn implies
a large number of parameters in the mixture model.
However, the BIC is actively trying to prevent the use of
too many parameters. Hence, the large number of clusters
that would be needed to capture the whole variability at
lower levels is not reached. Instead, the BIC gives us
a relatively small number of patterns that explains only
the main features of SLP, regrouping several common
characteristics into more general patterns. This also
explains why the SLP patterns tend to vary much more
from one data source to another as compared with
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Figure 1. First (winter) and last (summer) patterns for NCEP SLP (a), NCEP Zg500 (b), ERA40 1.125° SLP (c) and ERA40 1.125° Zg500
(d) from EM.
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Figure 1. (Continued).

the upper-air patterns. Rather than representing a single
consistent pattern, because of its high variability the SLP
patterns are actually conglomerates of several different
patterns. For a given dataset, the smaller-scale temporal
patterns are likely combined in different, inconsistent
ways to produce 3 to 5 primary clusters for one dataset
that do not appear to bear much (if any) resemblance to
those found for another dataset (Figure 1, compare the
differences between a and c with the similarities between
b and d).

In Table I, we can also see that the HAC method (with
the elbow criterion) gives us a smaller “optimal” number
of patterns than the EM approach constrained using the
BIC. It does not display as clear a difference between
higher- and lower-level numbers of clusters. As our goal
is to characterize each primary season as well as the
transitional seasons by at least one pattern, it is clear that
2 or 3 clusters are too few. In contrast, higher numbers
of clusters tend to result in several clusters that do not
contain relevant information. Multiple iterations with free
and constrained values of K reveal that introduction of

more clusters produces clusters that either represent mean
zonal east–west flow (as seen from plotting the clusters
themselves), which do not exhibit a strong seasonality but
remain fairly constant from month-to-month, or mimic
previously-identified clusters and their seasonality for that
same dataset/level combination (as revealed by monthly
histograms).

To facilitate comparison between data sets and models,
it is necessary to constrain the number of clusters
identified at each level to a reasonable number that
can be well-represented across all data sets. Ideally,
these clusters should contain an optimal amount of
information that captures the seasonality of circulation
patterns over North America while remaining relatively
independent. For this reason, through iteration on the
reanalysis data sets and examination of the resulting
cluster patterns and monthly histograms of the frequency
of each pattern for each level, we have determined
optimal numbers of clusters for each vertical level to be
5/5/5/4 for Zg500/Zg700/Zg850/SLP. We also verified
that increasing the number of clusters at each level by
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just one, to 6/6/6/5, did not contribute any additional
information previously lacking to characterize seasonality
over the region and period of interest (1980–1999).

For the remainder of this analysis, therefore, all com-
parisons of structures are based on this consistent number
of patterns. Furthermore, we assume that we must retrieve
equivalent structures and information from AOGCM sim-
ulations with the same number of patterns. If we detect
more, fewer, or different patterns in the AOGCM data
using the aforementioned optimization criterion, we can
conclude that they are ‘false’ or arise from characteristics

of the model that are not verified by the observationally-
constrained reanalysis fields.

When the number of clusters is constrained, compari-
son between NCEP data (at 2.5°) and ERA-40 (at 1.125°)
shows greatly improved consistency across all levels and
patterns. This is illustrated in Figure 2, which shows
the five patterns of the 700-mb level for NCEP and
ERA-40 1.125°. Transitional patterns (spring, fall) tend
to be clearer at higher levels, while winter is clearer at
lower levels and the single summer pattern is dominant
throughout all levels for July and August. Although there
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Figure 2. Five primary seasonal patterns identified using the EM algorithm for NCEP Zg700 (a) and ERA40 1.125° Zg700 fields. Coloured
contours represent anomalies and black lines the mean geopotential heights for that pattern.
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are certainly differences between the NCEP and ERA-40
patterns, the general appearance of each is quite sim-
ilar. This is true for both the anomalies (coloured con-
tours) and the average geopotential height for each pattern
(black lines).

In summary, we see that objective clustering approa-
ches tend to result in different numbers of optimal clus-
ters when applied to different sets of reanalysis out-
put. These clusters are difficult to compare; however,
when the number of clusters is constrained, the result-
ing clusters show similar patterns and seasonal frequen-
cies.

SENSITIVITY OF PATTERNS TO CLUSTERING
METHOD

Because of the nature of these two different clustering
methods, EM and HAC, a priori we would expect some
differences in the clusters identified depending on the
method used. For example, the HAC method attempts
to define patterns that are centred around their means.
So, each day is assigned to the pattern for which the
distance between the vector of variables for that day
and the vector of means for the pattern is minimized.
In other words, HAC will tend to provide us with strong
average information and a sharp distinction between the
patterns as they will have significantly different mean
values. In contrast, the EM method takes the variance
of the data into account to define patterns according
to Equation. (2). That means that a day can belong to
more than one pattern at the same time, with different
probabilities. This induces a ‘fuzzier’ distinction between
patterns.

As a consequence of the distinctions between these
methods, although the HAC method gives us easier
patterns to understand, the EM model-based approach
allows us to characterize transitions between patterns in
a more realistic and probabilistic way. Hence, in the
structures resulting from these two methods, we would
expect to see a strong temporal signal – i.e. clear fre-
quent patterns for each of the primary seasons (winter
and summer) – with HAC, and more variability – i.e.
more patterns present with low frequencies – for EM,
at least for transition seasons (spring and fall) where
the signal is weaker and the variance more impor-
tant.

The sensitivity of the resulting patterns to the clustering
method used is illustrated in Figure 3, which presents
the monthly histograms of the five structures for ERA40
1.125° resolution, with empty bars for the EM method
and shaded bars for HAC. The number associated with
each pattern does not represent any order per se, but
they have been ordered this way to make the temporal
shifts between the patterns obvious, from the main winter
patterns (on the left) to the main summer patterns (on
the right), with the transition patterns in the middle.
The number of structures present in each month is
higher for EM as compared with HAC. For that reason,
most EM patterns display smaller frequencies than HAC,

except for pattern 4. As expected, HAC shows stronger
frequencies for the predominantly winter and summer
patterns (1 and 5), while EM produces a more distinct,
gradual, and consistent transition from 2 through 4 in
the spring and back again in the fall. This characteristic
can generally be seen in most data sets and for all
levels, with only a few exceptions. First, for ERA-40
1.125°, EM seems to catch a stronger winter signal and
a weaker summer signal than HAC does for Zg500
(see website – Vrac and VanDorn, 2006 – for additional
figures). For Zg850, it is the opposite, while for SLP,
EM identifies both winter and summer patterns that are
stronger than HAC, with stronger fall and slightly weaker
spring from EM than from HAC (see website Vrac and
VanDorn, 2006).

For clusters based on NCEP reanalysis (histograms
equivalent to those given in Figure 3 for ERA-40 are
shown in Figure 4 for NCEP), the variability inside
each month is still larger for EM than for HAC, but
the temporal evolution of the monthly histograms is
different than that of the ERA-40 clusters (compare
Figure 4 with Figure 3). This is true for both EM
(empty bars) and HAC (shaded bars). In addition, here
the EM algorithm shows both stronger winter/summer
frequencies at 700mb as well as the more consistent,
gradual transitions as compared to HAC. For NCEP
Zg500, EM displays a strong summer signal but a slightly
weaker winter as compared with HAC. Similar features
are present for Zg850 (see website Vrac and VanDorn,
2006, for additional figures). For SLP, EM captures
stronger signals for all four seasons as compared to HAC,
even if April and May are slightly weaker for EM (see
website Vrac and VanDorn, 2006).

In general, winter and summer patterns and sea-
sonal shifts are well-resolved by both the EM and
HAC approaches. However, it appears that the EM
method exhibits several improvements over the hierar-
chical method that is commonly used in many atmo-
spheric applications (Davis et al., 1993; Zorita et al.,
1993; Bunkers et al., 1996; Fovell, 1997; Unal et al.,
2003; etc.), of which we use HAC as an example. First,
more patterns must be prescribed for HAC than would be
found using a subjective elbow criterion to capture the
full range of seasonal patterns. Furthermore, it appears
that although EM may produce slightly lower frequen-
cies for each pattern as it distributes the variability across
more patterns in any given month, EM also appears to
model the transition between the seasons more smoothly
than HAC. In addition, the EM method still captures
the distinct dominant seasonal patterns for winter and
summer, and its lesser sensitivity to strong mean sig-
nals means that it produces more ‘realistic’ frequencies
of patterns. These advantages, combined with the lower
sensitivity of the EM method to spatial resolution (see
Appendix B) appears sufficient to substantiate its use as
the primary clustering method for the AOGCM analysis
that follows.
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Figure 3. Monthly histograms of the 5 ERA40 Zg700 patterns from EM (empty bars) and from HAC (shaded bars).

ADDITIONAL UNCERTAINTIES DUE TO SPATIAL
RESOLUTION AND MODEL FORMULATION

Additional factors may be responsible for the differences
in patterns and monthly frequencies observed between the
ERA-40 and NCEP data, even when the same clustering
method is used. For that reason, we next examine
whether part of this discrepancy between the ERA-40
and NCEP patterns (for a given set of patterns based
on either EM or HAC) could arise from their different
spatial resolution, which is 1.125° for ERA40 and 2.5°

for NCEP, or from the way in which the individual
reanalysis models assimilate and simulate atmospheric
fields.

We first derive new patterns based on ERA-40 data
re-gridded to 2.5° spatial resolution, identical to that
of NCEP. Comparing the ERA-40 patterns based on
the higher and lower resolution data with the NCEP
patterns (see Appendix B for details and figures), we
see that data resolution does appear to play some role in
differentiating between NCEP and ERA-40, particularly
at higher levels (using EM) and for the transition and
winter seasons (HAC). In general, HAC appears more
sensitive to resolution issues than the EM method,
particularly for the lower-elevation levels that display
stronger correlations with surface climate (at least for
humidity variables, Huth, 2005; and temperature, Xoplaki
et al., 2003).
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Figure 4. The same as Figure 3, but for NCEP dataset.

Technically, NCEP and ERA-40 reanalysis fields rep-
resent the closest estimate we have to the “true” state
of the atmosphere on a given day. However, the truth
is that these fields are model output, albeit forced by
regular surface and upper-air observations. Jung (2005)
and others have shown that model formulation is capable
of introducing systematic errors into the output. Hence,
we next examine the degree to which the differences
we have already seen in seasonal patterns and their
relative frequencies may be a function of the differ-
ences between the NCEP and ERA-40 modelling frame-
works.

The analyses of the PCs of the reanalysis data (see
Appendix C for details and figures) shows that the
variances of the PCs are similar for NCEP and ERA-
40 2.5°. However, comparison of the PCs and statistical
distributions reveal some significant differences between
the PCs simulated by each model. Clear shifts in the mean
densities of the PCs generated by each model show that
the structures of the NCEP and ERA-40 data are not
equivalent. Hence, even when the number of patterns is
constrained, the objective clustering methods still define
different patterns for NCEP and ERA-40, with slightly
different geopotential and temporal properties.
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Thus, even for models constrained by real-world obser-
vations, it is clear that some uncertainty is introduced
by the physical characteristics of both the variable fields
(e.g. spatial resolution) as well as the model formula-
tions. This is an important point to consider when we
next compare AOGCM-based patterns NCEP and ERA-
40 reanalysis-based patterns, as it implies that a priori we
should expect the AOGCM-based patterns to show some
differences as compared with the reanalysis-based pat-
terns simply because of their different spatial resolution
and physical parameterizations.

COMPARISON BETWEEN REANALYSIS AND
AOGCM-SIMULATED PATTERNS

AOGCM-based clustering patterns

We next apply the EM clustering algorithm to historical
total forcing simulations by CCSM3 and PCM, covering
the same region and time period as the reanalysis data
sets. The HAC method was also applied, but as we have

already shown it to be less stable than the EM method and
as the primary results obtained using the HAC approach
were not qualitatively different although less striking than
those obtained using the EM method, these results are not
shown here or discussed further.

As for the reanalysis data, the clustering algorithms
are applied separately to daily geopotential heights for
the same levels (Zg500, Zg700, and SLP; Zg850 not
available) to define a pre-set number of patterns K which,
based on reanalysis data, are 5/5/4 for Zg500/Zg700/SLP.
In Figure 5, we see the first (winter) and fifth (summer)
patterns for CCSM and PCM. Although the patterns
are similar, they are clearly not identical. CCSM has
stronger negative anomalies over the northern part of
the domain than does PCM for pattern #1, while the
opposite is true for pattern #5 – there is a larger positive
anomaly for PCM over the northern part of the domain
relative to CCSM. However, the general spatial patterns
in terms of both anomalies (coloured contours) and
average geopotential heights (black lines) are similar
between the models.
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Figure 5. The first (mainly winter) and fifth (mainly summer) patterns resulting from EM-based clustering for CCSM Zg700 (a) and (b) and for
PCM Zg700 (c) and (d).
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A qualitative comparison between the AOGCM-based
patterns and the reanalysis-based patterns shown in
Figure 2 for NCEP and ERA-40 reveals some strong
similarities. Overall, it is clear that the AOGCMs are
successfully capturing the major characteristics of mean
summer and winter circulation patterns over the eastern
half of North America. However, there are also some
clear differences. For pattern #1 (winter), PCM appears
to do better than CCSM at capturing the transition
from strongly negative to less negative anomalies that,
in the reanalysis and PCM plots, runs in a northwest
direction from the Midwest up to Alberta. However,

PCM overestimates the gradient in the southwest. For
pattern #5 (summer), PCM again appears to be slightly
more successful than CCSM at capturing the northward
extension in the large positive anomaly that, in the
reanalysis patterns, reaches upward into Hudson Bay.

AOGCM-based seasonal circulation frequencies

Further information is obtained from monthly histograms
showing the AOGCM-simulated frequency of each pat-
tern (Figure 6) that can then be compared to the same
histograms generated from the reanalysis data (Figure 3
and 4). Comparing Figure 3 and 4 with Figure 6, we first
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Figure 6. Monthly histograms for EM-generated patterns for the 5 CCSM Zg700 patterns (empty bars) and for the 5 PCM Zg700 patterns (shaded
bars).
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see that the AOGCMs clearly show the shift from the
‘winter’ pattern (#1) through the transition patterns (#2-
4) to the summer pattern (#5), and back again in the
autumn. So there is no question but that the AOGCMs
are capable of successfully capturing the primary sea-
sonal patterns and transitions over eastern North America.
As with the patterns compared above, however, there
are some significant differences between the individual
models themselves and between the AOGCM-simulated
frequencies and reanalysis-based ones.

Although CCSM and PCM are both NCAR-based
models, they have different development histories and
contain distinct representations of many key atmospheric
and oceanic processes. In addition, the CCSM has
higher resolution than the PCM. Comparing the model-
simulated temporal distributions as displayed in his-
tograms (Figure 6) with reanalysis (Figure 3 and 4), one
of the first things we see is that the temporal frequency
of modelled patterns derived from the newer and higher-
resolution model (CCSM) are not necessarily closer to
the distribution of the higher-resolution reanalysis data
(ERA-40 1.125°). For level Zg500, where resolution was
seen to have the strongest impact in the reanalysis data,
the (1.4° resolution) CCSM histograms are closer to the
NCEP (2.5°) and ERA-40 2.5° than to ERA-40 1.125°.
This suggests that, at this level, model formulation and
parameterization of dynamics plays a more important role
in determining the degree to which seasonal circulation
patterns are reproduced than the actual resolution of the
model. This would not likely hold true for extremely
coarse models. For PCM (2.8°), at level Zg500 we could
have expected it to be closer to NCEP and ERA-40 2.5°

than ERA-40 1.125°. However, we see that for Zg500,
PCM does not have a clear ‘closest’ reanalysis partner
although its patterns do resemble those from NCEP and
ERA. For Zg700, the PCM Zg700 histograms are slightly
closer to ERA40 2.5° for winter. It is more difficult to
say something about proximity for the SLP histograms
from CCSM or PCM, the reanalysis SLP histograms for
NCEP being very close to the ERA40 SLP histograms
for the EM method.

We next turn to the issue of seasonality, and the
question of whether the AOGCMs are able to reproduce
the shifts in patterns that occur by season that are apparent
in the reanalysis-based patterns. The first thing we notice
from Figure 6 (where patterns were identified using the
EM algorithm) is the extension of the summer patterns
and shifts in modelled seasonality relative to reanalysis.
In general, the closer to the ground level (i.e. the higher
the pressure level), the clearer the summer extension for
CCSM and the more dominant the transition pattern #4
for PCM. The frequencies of the transition patterns are
then reduced or shifted relative to reanalysis (Figure 3
and 4) as a consequence.

For Zg500, CCSM simulates summer conditions too
early, reducing the frequencies of transitional patterns
and anticipating summer characteristics by 1 month (see
website Vrac and VanDorn, 2006). Indeed, the main
CCSM Zg500 summer pattern (#5) is already the most

frequent pattern in June, which is clearly not true for
the reanalysis data sets. In contrast, for PCM (the lower-
resolution model), the appearance and disappearance of
the main summer and winter patterns correspond well
with the timing of the same patterns for the reanalysis
data.

For Zg700, the CCSM summer pattern extends into
both the shoulder seasons. Again, the main summer
pattern (#5) is more frequent in September/October and
May/June than it is for the reanalysis patterns. In other
words, CCSM tends to simulate summer-like conditions
at the Zg700 level before they really start and after
they have ended, according to reanalysis. CCSM winter
patterns are more consistent with reanalysis, exhibiting
similar monthly frequencies. For PCM, we also have
an early appearance of the main Zg700 summer pattern
(#5) in May that is not as noticeable in the reanalysis
data sets. This PCM summer pattern has the highest
frequency in June – again indicating too early summer
conditions – that is not true in reanalysis. In contrast to
CCSM, which extends summer conditions into the fall,
with the PCM we see early appearances of a transition
pattern in August that is slightly too frequent as compared
to reanalysis. At the opposite end of the annual cycle,
PCM Zg700 winter conditions are very weak at the
beginning of the cold season. The main PCM Zg700
winter pattern (#1) appears in October/November, i.e. at
the right time but with a too low frequency relative to
reanalysis.

For SLP, although the CCSM histograms for July/
August are close to those for reanalysis, CCSM clearly
induces modelled summer conditions too early before
summer and too strong in early fall. Furthermore, the
CCSM winter signal is very weak as the transitional
patterns are all present in winter with about the same fre-
quencies. That is not true in the reanalysis patterns, which
clearly display a dominant winter pattern. For PCM, the
frequencies of the main SLP summer pattern (#4) are
not high enough for June and July – representing weak
summer conditions for the first half of the summer – and
too high (i.e. patterns too frequent) in the first half of
fall in September and October – corresponding to very
late summer conditions. This summer shift implies late
fall conditions (strong in November) are still leading the
histogram of December. In contrast, the reanalysis his-
tograms already present strong winter conditions for this
month. Although showing less variability than the reanal-
ysis, PCM SLP histograms for January/February are clear
enough. However, the winter conditions (and its main
pattern) last too long, through March and April.

The primary conclusions we can draw from these
results above are that: (1) the AOGCM models are
capable of reproducing similar though not identical
patterns to those produced by the reanalysis data, and
(2) these patterns also show coherent seasonal signals for
dominant winter and summer patterns, and transitional
patterns evident in spring and fall. At the same time,
however, the models have difficulties in identifying
the shifts between seasons, with summer and/or winter
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patterns being extended into the shoulder seasons and
some transitional patterns remaining too strong into the
primary seasons, a bias not seen in any of the reanalysis-
based patterns regardless of the physical model used or
the spatial resolution of the data.

Although sometimes shifted or reduced – with some
degree related to the elevation – the most important
transition characteristics between seasons do seem to
be captured by the models in terms of atmospheric
circulation patterns, with the general exception of a too-
early commencement for the summer season, seen across
most models and levels.

To verify that these results are not due to some
instability of the model-based clustering method, analysis
of additional CCSM and PCM simulations is already
underway. However, a first sign of the stability of the
method is given by looking at the patterns that we obtain
from different sampling time periods.

Sensitivity of the patterns to the sampling period

A preliminary examination of the clusters and their
seasonal frequencies resulting from four different 10-
year data sets (1980–1989, 1985–1994, 1990–1999, and
1980–1998 for every second year) reveals two main con-
clusions. First, samples that takes years that are evenly
distributed throughout the period exhibit similar patterns
and monthly frequencies to the 20-year period, suggesting
that 20 years of daily data provides a sufficiently large
sample size that can be used to characterize climatologi-
cal circulation patterns over eastern North America. Sec-
ond, however, patterns generated from consecutive years
earlier in the time period (e.g. 1980–1989) with those
generated later (e.g. 1990–1999), although continuing to
identify similar patterns, also show some consistent evo-
lution in the seasonal patterns over this time. Specifically,
fall patterns are extending into winter, spring patterns
are beginning earlier in the year, and winter patterns are
less distinct in the later time periods. These shifts can
certainly be at least partially attributed to the smaller
sample size. However, this shift is (1) only really evi-
dent for winter patterns and transition patterns close to
winter, and (2) is present not only in ERA and NCEP,
but also in PCM and CCSM, which have no reason to
have the same ‘natural variability’ fluctuations as ERA
and NCEP. This could suggest a common driver for the
changes among all four of these models. Given that the
CCSM and PCM total-forcing simulations are not being
run with prescribed sea surface temperatures or any other
type of observational constraint, the natural suspect for a
common driver would be anthropogenic greenhouse gas
emissions and their influence on climate. This suggests
the possibility that the differences in the patterns that we
observe between the 1980’s and the 1990’s may be due
to climate change. This hypothesis will be investigated
in future work that includes longer time periods.

Although this analysis was confined to the period
1980–1999, we hypothesize that some of this over-
extension of the summer season has the potential to be

because of over-estimation of the effects of anthropogenic
climate change on the circulation patterns, since one
of the primary features of climate change over North
America is to extend the summer season. This hypothesis
will also be tested in future studies by comparing
AOGCM-derived patterns from earlier in the century
with reanalysis, as well as characterizing the shifts in
the frequencies of these patterns that are expected over
the coming century under a range of climate change
scenarios.

CONCLUSIONS AND FURTHER WORK

In this study, we first examined the ability of cluster-
ing algorithms to identify the primary seasonal patterns
in atmospheric circulation over North America, based on
reanalysis data for the period 1980–1999. We then com-
pared the resulting patterns and their monthly frequencies
with those simulated by AOGCMs to assess the degree to
which models are able to capture the seasonal characteris-
tics seen in reanalysis. Two different clustering methods,
EM and HAC, were used to define large-scale atmo-
spheric patterns for reanalysis (NCEP, ERA40 1.125°,
and ERA 40 2.5°), while the EM method only was used
to identify the dominant atmospheric circulation patterns
in AOGCM historical total-forcing simulations (PCM
and CCSM). These two methods were applied separately
to each of the four levels – Zg500, Zg700, Zg850, and
SLP – to capture and compare the seasonality character-
istics present in the five data sets, allowing us to draw a
number of conclusions.

First, we saw that the clustering method used to deter-
mine the atmospheric structures influences the definition
of these patterns. In general, the EM approach appears
to be generally more reliable than the HAC approach.
Specifically, more variability and stronger transition pat-
terns are detected using the EM approach, reflecting the
ability to more realistically simulate observed weather
patterns even within seasons such as summer or winter
that tend to be dominated by a single pattern. Further-
more, we determined that NCEP and ERA-40 do not
contain the same exact seasonal features and that the dif-
ferences in spatial resolution between the data sets do not
entirely explain the discrepancies, particularly at lower
levels.

Given that the EM method produced clusters that
appear to be more stable and less sensitive to data issues
such as resolution, we then applied it to clustering of
AOGCM-based patterns. Although seasonal signals seem
to be correctly simulated by CCSM and PCM according
to both EM and HAC patterns (with some differences
according to the level), we note some seasonal shifts or
even extensions of the primary seasons are clearly visible
(mainly for summer patterns) and are altitude-dependent.
This suggests that the AOGCMs, while clearly capable
of reproducing the main seasonal circulation patterns,
also demonstrate significant biases in the timing and the
mean shape of the patterns. These patterns appear to be
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a function of the physics of the model that determines
dynamics at various levels (with higher levels being
closer to reanalysis than the lower levels, as would be
expected since the flow at those levels is more zonal
and surface-level pressure is affected by more regional-
scale processes that the models may have difficulty in
simulating) more than of the resolution, since higher-
resolution CCSM did not perform noticeably better than
PCM on a consistent basis.

Despite the demonstrated dependence of circulation
pattern characteristics on the clustering method used,
we believe this comparison of AOGCM-based patterns
with reanalysis to be robust, for two reasons. First,
additional analysis of AOGCM simulations using the
HAC approach (not discussed here, see website Vrac and
VanDorn, 2006, for additional figures) produced similar
shifts in summer patterns. Perhaps more importantly,
however, these conclusions are consistent with those of
independent studies that do not involve clustering. For
example, Hayhoe et al. (2006) find that present-day PCM
and CCSM simulations have a summer northward shift
in the jet stream over eastern North America that occurs
approximately 1–2 months too early in the year, which
would also be expected to result in premature simulation
of summer conditions over the region.

It is clear that seasonal shifts present in AOGCM
simulations and captured in large-scale patterns can
have important repercussions if the patterns are used to
project future climate change. However, before applying
this method to assess the implication of future shifts
in seasonal circulation patterns under a climate change
scenario, we instead propose a future intermediary step
to examine whether differences have occurred between
a past historical and the present-day time period, not
only within reanalysis data but also within the AOGCM
simulations. This follow-on study of past and present
seasonal evolution will be an important step to further
evaluate the capability of AOGCMs to reproduce the
types of shifts in circulation patterns that are likely to
be occurring due to anthropogenic change, and which
determine the net effect of climate change on surface
conditions at the regional to local scales.
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APPENDIX A – DESCRIPTION OF EM METHOD

To define the atmospheric patterns, we employ a mix-
ture of statistical distributions (Pearson, 1894). In this
approach, we estimate g, the pdf of one of the variables
(e.g. Zg850), as a weighted sum or mixture of K para-
metric pdfs gi (i = 1, . . . , K), with parameters αi :

g(x) =
K∑

i=1

πigi(x; αi ). (1)

Here πi is called the ‘mixture ratio’ and corresponds
to the posterior probability of belonging to component
i, or the ith pattern. In this formulation, the ith pattern,
say Pi , is associated with and is actually defined by the
ith pdf gi . In this work, we consider that the gi pdfs
are Gaussian pdfs. Hence, we deal with a mixture of
Gaussians where αi = (µi , �i ) with µi a vector of means
and �i the variance-covariance matrix of gi .

To estimate the parameters α1, . . . , αK and π1, . . . , πK

of such a mixture, we use an EM type algorithm (Demp-
ster et al., 1997; for review, see McLachlan and Peel,
2000) consisting of two successive and iterative steps
of expectation and maximization of the so-called com-
plete log-likelihood. The estimation process is performed
through the R function Mclust developed by Fraley and
Raftery (2006) in the mclust R package. A constraint is
imposed on the variances in the maximization process
(M step) to avoid singularities of the likelihood. These
singularities occur when a vector of the means of one
component, say µi , is set equal to any observed multidi-
mensional data and the variances tend to zero.

The number of components K is generally either given
a priori according to some prior knowledge, or adjusted
by an expert after comparisons of results for several
values of K . In this work, several K are tested from
K = 1 to K = 10 and the one minimizing the Bayesian
Information Criterion (BIC, Raftery, 1986a, 1986b) is
kept. More precisely, each EM run tries to fit the model
given in Equation (1) with the data for a given value of
K but also for several given structures of the variance
matrix of the K components. Here, the variance matrix
can be spherical, diagonal, or ellipsoidal and with equal
or varying volumes. The BIC is then calculated for
each variance structure and each K and the couple (K ,
variance model) minimizing the BIC is kept.

For the chosen variance model and the chosen K , pat-
terns are obtained by applying the principle of posterior
maximum. For pattern Pi ,

Pi = {x;πigi(x , αi ) ≥ πjgj (x , αj ), ∀j = 1, . . . , K}. (2)
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In other words, each x is allocated to the cluster for which
the associated model maximizes the posterior probability
that x belongs to this cluster.

APPENDIX B – SENSITIVITY OF CIRCULATION
PATTERNS TO SPATIAL RESOLUTION

In addition to differences in model formulation, we
hypothesize that part of the discrepancy between the
ERA-40 and NCEP patterns (for a given set of patterns
based on either EM or HAC) may arise from their
different spatial resolution, which is 1.125° for ERA40
and 2.5° for NCEP. For that reason, we derived new
patterns based on ERA-40 data at 2.5° spatial resolution,
identical to that of NCEP.

For the EM-based patterns (see website Vrac and Van-
Dorn, 2006), the influence of spatial resolution appears
to grow with elevation – i.e. the 2.5° NCEP and ERA-
40 patterns become more and more similar to each other
higher level. In fact, for Zg500, the histograms of the five
patterns from NCEP are almost identical to those from
the ERA-40 2.5° data. In contrast, for Zg850, the lowest
level at which ERA-40 2.5° was available, the histograms
of the five patterns from ERA-40 1.125° are equivalent
to those from ERA-40 2.5° and distinctly different from
NCEP. This level shows no influence of the spatial res-
olution of the data set. For Zg850 with the EM method,
therefore, it seems that the differences between NCEP
and ERA-40 arise from the models themselves, whereas
for the Zg500 level, the primary differences between
reanalysis-derived patterns is due to the resolution of
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Figure 7. The same as Figure 3, but for ERA40 2.5° dataset.
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the original dataset used to identify the clusters, not the
model used to generate the geopotential fields.

Results for Zg700, an intermediate level, confirm this
hypothesis. In Figure 7, we see influences from both fac-
tors - dataset resolution and the model used – according
to season. To begin with, the histograms for the summer
months (JJAS) are equivalent among all three reanal-
ysis data sets (NCEP, ERA-40 1.125°, and 2.5° – see
Figures 3 and 4), so no model or resolution differences
are seen there. In the winter, NCEP patterns seem to be
clearer than ERA-40 patterns (for either 1.125° or 2.5°).
In addition, the ERA40 1.125° histograms for the winter
months (DJF) are very similar to ERA40 2.5° winter, but
not to NCEP. So, for winter, the differences seem to be
model-based and the resolution does not appear to affect
either the definition or the appearance of the seasonal
patterns. For the transition seasons, however, April/May
and October/November patterns from ERA-40 1.125° are
surprisingly closer to NCEP than to ERA-40 2.5°.

For clusters determined using the HAC algorithm,
there is no consistent elevation gradient. In general, rela-
tive to EM, HAC-based clusters produce more differences
arising from the models themselves (NCEP, ERA-40)
than from the resolution, but at the same seasons for
each level. For Zg500, the histograms of summer months
(JJA) are the same for ERA40 2.5° and 1.125°, with one
pattern taking 100% of July and August. For the other
months, the frequencies of the ERA40 2.5° patterns are
clearly between the ERA-40 1.125° and NCEP frequen-
cies, reflecting the influence of both the resolution and
the actual model. For Zg700, summer month (JAS) fre-
quencies for ERA40 2.5° are close to those for NCEP,
but winter structures (1 and 2 in Figure 3) are about the
same for ERA40 1.125° and 2.5°. We can see that tran-
sition seasons are different for all three of the different
reanalysis data sets, suggesting that even if the resolution
influences the definition and the temporal frequencies of
the patterns, the discrepancy between the data sets them-
selves is at least as important as the resolution. This last
remark is true for all four seasons for Zg850, where we

clearly see some features being different due to the mod-
els and others due to the resolution.

APPENDIX C – SENSITIVITY OF CIRCULATION
PATTERNS TO MODEL PARAMETERIZATION

Since the circulation patterns identified from NCEP and
ERA-40 fields at the same resolution and using the same
clustering method are still not identical (see Appendix
B, above), we next assess the degree to which model
formulation is capable of introducing systematic errors
into the output through evaluating the characteristics
of the first PCs of the geopotential height fields to
which our clustering methods were applied. To make
our comparisons between NCEP and ERA-40 2.5° in the
same factor space (i.e. space of the PC), NCEP reanalyses
are projected onto the ERA-40 2.5° factor space. In other
words, the rotation matrix applied to ERA-40 to define
the ERA-40 PCs has, here, also been applied to the NCEP
data. In this section, we only present results for Zg700,
but similar results can be obtained for the other levels
examined previously. Let us define PCi(ERA-40) to be
the linear combination given by the ith PC for ERA-
40 2.5°. In Figure 8, we represent ERA-40 2.5° PC i vs
NCEP values of PCi(ERA-40) (i.e. NCEP data projected
onto the ith factor axis), for i = 1, 2.

As expected, the comparison of the ERA-40 2.5° PCs
with the NCEP values of PCi(ERA-40) reveal some
significant discrepancies between the PCs simulated by
each model. If NCEP and ERA-40 provided the same
exact data, Figure 8 would show the y = x line. Here,
although being close to a straight line, these graphics
do not represent y = x but rather a shift in this line.
This shift is also evident when looking at the statistical
distributions. In Figure 9, we see the densities of the PCs
for ERA-40 2.5° Zg700 (red lines) as compared with the
densities of the NCEP values for PCj (ERA-40) (black
lines), for the first two PCs of the variance of each field.
Whereas the variances and correlations of the PCs are
the same for NCEP and ERA-40 2.5° in the ERA-40 2.5°
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Figure 8. ERA-40 2.5° Zg700 PC i versus NCEP values of PCi (ERA-40), for the first two principal components. The black line represents the
y = x line.

Copyright  2006 Royal Meteorological Society Int. J. Climatol. 27: 603–620 (2007)
DOI: 10.1002/joc



SEASONAL CIRCULATION PATTERNS OVER NORTH AMERICA 619

0.
02

0
0.

00
0

0.
01

0

de
ns

ity

−40 −20 0 20

Principal component 1 

de
ns

ity

−20 −10 0 10 20 30

Principal component 2

0.
00

0.
02

0.
04

0.
06

0.
08

Figure 9. Densities of ERA-40 2.5° Zg700 PC i (red lines) and densities of the NCEP values of PCi (ERA-40) (black lines), for the first two
principal components.

factor space – as is generally not the case for raw data,
i.e. not transformed via PCA (see for instance Gleisner
et al., 2005) - the means (and so the densities) are shifted
for most of the NCEP PCs relative to ERA-40. Moreover,
for PC 1, which explains the largest part of the variance,
the densities are bimodal and we can remark that the
modes are shifted for NCEP relative to ERA-40, leading
to opposing phases (i.e. local maxima of the densities).
That means that, for PC 1, an NCEP component with high
density corresponds to a value of an ERA-40 component
with lower density and conversely. These clear shifts of
the densities of PCs seen in Figure 9 illustrate that the
structures of NCEP and ERA-40 2.5° reanalyses are not
equivalent and so provide an additional reason to explain
why the clustering algorithms, even when constrained
by the number of patterns, continue to capture different
structures and thereby induce different patterns for NCEP
relative to ERA-40 2.5°.

As we saw previously for the patterns themselves,
it appears that the differences between the NCEP PCs
and the ERA-40 2.5° PCs depend on the elevation. The
higher the level of the atmosphere, the more influential
the spatial resolution and so the closer NCEP PCs to the
ERA-40 2.5° PCs. Moreover, the shifts between ERA-
40 PCs and the NCEP values of PCi(ERA-40), seen in
Figures 9 and 8, are visible when plotting on the same
graph (not shown here but available on website Vrac
and VanDorn, 2006) ERA-40 PC i vs ERA-40 PC i + 1
and the NCEP values of PCi(ERA-40) vs the NCEP
values of PC(i+1)(ERA-40). As expected, the scattering
is similar, but when NCEP reanalyses are classified in
ERA-40 2.5° clusters, the gap between NCEP and ERA-
40 makes the distinction between the classes maladaptive
to NCEP structure.
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