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A model coupling differential equations and an optimization problem with equality and inequality constraints is described.
The first order optimality conditions are coupled with the differential equations to form a differential-algebraic system. In-
equality constraints for the optimization variables induce discontinuities in the first derivatives of the solution in time. Track-
ing techniques based on sensitivity analysis and second order multistep methods are proposed to locate the discontinuities.
Application to the dynamics of organic atmospheric aerosol particles is given to illustrate the detection of the activation of
constraints.

1 Optimization-Constrained Differential Equations

The modeling of the dynamics of organic-containing aerosol particles is a crucial step in the simulation of atmospheric pro-
cesses. A model problem for the description of the dynamics and mass transfer between an aerosol particle and the ambient
gas phase is presented following the model described in [1]. The thermodynamic equilibrium inside the particle is modeled by
a constrained global (non-convex) minimization problem, while differential equations describe the fluxes between the particle
and the surrounding gas arising in the mass transfer. The coupling appears in the fluxes of the differential equations and the
equality constraints of the optimization problem.

Let f : R×R
p×R

m → R
p Lipschitz continuous, g ∈ C∞(Rm) and A ∈ R

p×m. The problem reads: find b : (0, T ) → R
p

and z : (0, T ) → R
m satisfying

d

dt
b(t) = f(t,b(t), z(t)), a.e. t ∈ (0, T ), b(0) = b0, (1)

z(t) = argmin
z̃

g(z̃) s. t. Az̃ = b(t), z̃ ≥ 0.

The variable z(t) loses regularity when one of the inequality constraints zi(t) ≥ 0, i = 1, . . . , m is activated or deactivated.
More precisely the first derivative of zi(t) is discontinuous at the transition points when one component of z(t) ≥ 0 tends to
zero (activation) or when one component of z(t) = 0 becomes strictly positive (deactivation).

2 Numerical Model

We propose a numerical method that relies on a primal-dual interior-point method for the minimization problem coupled with
a first order implicit scheme for the time discretization of the resulting system of differential-algebraic equations [1]. Let
h > 0 be a fixed time step, tn = nh discrete times, and z

n and b
n denote respectively approximations of z(tn) and b(tn),

with b
0 = b0. The problem discretized in time corresponds to finding z

n ∈ R
m and b

n ∈ R
p at each time step satisfying:

1

h
(bn − b

n−1) = f(tn,bn, zn), n = 1, 2, . . . , (2)

z
n = arg min

z̃

g(z̃) s. t. Az̃ = b
n, z̃ ≥ 0.

The sequence of discrete variables is constrained by an optimization problem at each time step. The minimization problem
is replaced by its first order optimality conditions. Both are equivalent in the case of a convex optimization problem, but the
second order optimality conditions have to be satisfied to obtain the global minimum in the non-convex case [2]. The first
order optimality conditions provide the following system of nonlinear equations: find z

n ∈ R
m and b

n ∈ R
p satisfying:

1

h
(bn − b

n−1) = f(tn,bn, zn),

∇g(zn) + AT
λ

n
− θ

n = 0, Az
n = b

n, (3)

z
n ≥ 0, θ

n
≥ 0, z

n
i θ

n
i = 0, ∀i = 1, . . . , m,
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where λ
n and θ

n are the dual multipliers.
An interior-point method [4] relaxes the complementarity conditions z

n
i θ

n
i = 0 by introducing a penalty parameter ν > 0

that tends to zero at each time step. Thus these conditions are replaced by z
n
i θ

n
i = ν, i = 1, . . . , m, z

n > 0, θ
n > 0, and

then the variables θ
n
i are eliminated from the system by writing θ

n
i = ν/zn

i for i = 1, . . . , m. Starting with an interior-point
parameter ν0, the relaxed system of nonlinear equations is solved by applying one Newton iteration, then decreasing the
parameter νk = ξνk−1, ξ ∈ (0, 1) and repeating the process until convergence is reached [1, 2].

3 Tracking of Discontinuities

When an inequality constraint zi ≥ 0 is activated or deactivated, the variable z(t) is not continuously differentiable anymore.
In order to ensure the global convergence order of a numerical method for the time-discretization of the differential-algebraic
system (for instance any Runge-Kutta methods), the discontinuity points have to be located with a higher order method. We
discuss here only the activation case (when one component zi > 0 tends to zero).

Let us assume that the interval [tn−1, tn) contains a discontinuity point for the ith component of z. The fractional time step
h� ∈ (0, h) needed to locate the discontinuity point is obtained with a Taylor expansion and a first order approximation:

0 = zi(t
n−1 + h�) = zi(t

n−1) + h� dzi

dt
(tn−1) + O((h�)2), i.e. h�

� −zi(t
n−1)/

dzi

dt
(tn−1). (4)

The approximation of the first derivative dzi

dt
(tn−1) is based on sensitivity analysis techniques [4]. The differentiation of

the algebraic part of (3) with ν = 0 allows to compute the variations of the variable dz/dt(tn−1) and dλ/dt(tn−1):
[

∇2g(z) AT

A 0

] [
dz/dt(tn−1)
dλ/dt(tn−1)

]
=

[
0

db/dt(tn−1)

]
=

[
0

f(tn−1,bn−1, zn−1)

]

Once the fractional time step h� is obtained with (4), a predictor-corrector method based on two-steps Adams-Bashforth
and Adams-Moulton schemes [3] allows to determine the approximation b

n of b(t) at time tn−1 + h� as follows:

b̃
n = b

n−1 + h�

[(
1 +

h�

2h

)
f(tn−1,bn−1, zn−1) −

h�

2h
f(tn−2,bn−2, zn−2)

]
(predictor),

b
n = b

n−1 +
1

2
h�

(
f(tn−1 + h�, b̃n, z̃n) + f(tn−1,bn−1, zn−1)

)
(corrector).

The variable z̃
n is obtained by solving the pure optimization problem for given b̃

n [2]. Numerical results for the detection of
discontinuities are presented for the phase equilibrium problem described in [1, 2], applied to the hexacosanol-pinic acid-water
system. In the special case when all components of z(t) are strictly positive, the exact solution b(t) and the exact time of first
activation t� are known. Figure 1 illustrates the numerical approximation of b(t) and z1(t) and a convergence result when
activating the constraint z1(t) > 0 and going from three to two strictly positive components of z(t).
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Fig. 1 Numerical approximation of the trajectory b(t) (left) and first component of z(t) (middle), with computation of fractional time step
and detection of the discontinuity point, and log-log convergence plot of the error

˛
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