Supporting Information

for Small, DOI: 10.1002/smll.201200168

Chiral Pinwheel Clusters Lacking Local Point Chirality

*Kai Sun, Ting-Na Shao, Jia-Le Xie, Meng Lan, Hong-Kuan Yuan, Zu-Hong Xiong, Jun-Zhong Wang, *Ying Liu, and Qi-Kun Xue *
Chiral Pinwheel Clusters Lacking Local Point Chirality**

Kai Sun, Ting-Na Shao, Jia-Le Xie, Meng Lan, Hong-Kuan Yuan, Zu-Hong Xiong, Jun-Zhong Wang, * Ying Liu, and Qi-Kun Xue*

Supporting Information
Supporting Information

Procedure of DFT calculation:
Density function theory (DFT) in the generalized gradient approximation (GGA) was used to calculate the electronic density of a free pentacene molecule. A double-numerical basis set, together with d-polarization functions (DNP), was chosen to describe the electronic wave functions. The Becke exchange functional (B88) in conjunction with the Lee-Yang-Parr correlation functional (BLYP), combined with a DFT-basis relativistic semi-core pseudopotential (DSPP) was used during the optimization. Self-consistent field (SCF) calculations were done with a convergence criterion of 10^{-6} hartree on the total energy and electron density.

Figure S. 1: STM images of irregular pentacene pinwheels. a) A R-pinwheel containing some defects (indicated by the arrow). b) A L-pinwheel with a dislocation (marked by the arrow). c) and d) show two irregular pinwheels with six different lobes. All the scale bars correspond to a length of 2 nm.
Figure S. 2: Three sequential images illustrating the robustness of pentacene pinwheels by low bias scanning at -0.5 V (18 nm \times 18 nm). From a) to b), the pentacene hexamer B changed to a pentamer B’, which reveals no shifting reversion. One pentacene molecule has been removed by STM tip. Meanwhile, three pentacene molecules have been moved from area-A to area-C. From b) to c), the hexamer B has been recovered from pentamer B’ by STM scanning. The three molecules in C position are removed.