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Abstract

Pseudomonas butanovora grows on butane by means of an inducible soluble alkane monooxygenase (sBMO). The induction of
sBMO was studied using the wild type and a sBMO reporter strain. The reporter strain has the lacZ::kan cassette inserted into
bmoX, the gene that encodes the a-subunit of the hydroxylase of sBMO. The b-galactosidase activity in the reporter strain was
not induced by butane, but was induced by 1-butanol and butyraldehyde. P. butanovora expressed sBMO product-independent
activity at 3.0 ± 1 nmol ethylene oxide min�1 mg protein�1 in stationary phase. The sBMO product-independent activity likely
primes the expression of sBMO by butane.
� 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Pseudomonas butanovora (ATCC 43655) is an aerobic
Gram-negative bacterium that is able to grow on n-
alkanes (C2–C9) as sole sources of carbon and energy
[1]. The 16S rDNA nucleotide sequence of P. butanovora
suggested that this bacterium is phylogenetically affili-
ated to the genera Thauera and Azoarcus [2] rather than
to the genus Pseudomonas.

Pseudomonas butanovora utilizes butane (C4 n-
alkane) by inducing the expression of a soluble alkane
0378-1097/$22.00 � 2005 Federation of European Microbiological Societies

doi:10.1016/j.femsle.2005.06.058

* Corresponding author. Tel.: +541 737 5385; fax: +541 737 5310.
E-mail addresses: sayavedl@science.oregonstate.edu (L.A.Sayavedra-

Soto), doughtyd@onid.orst.edu (D.M. Doughty), kurthe@science.
oregonstate.edu (E.G. Kurth), peter.bottomley@oregonstate.edu
(P.J. Bottomley), arpd@science.oregonstate.edu (D.J. Arp).
monooxygenase, sBMO. The enzyme catalyzes the oxi-
dation of butane to 1-butanol. The 1-butanol is oxidized
to butyraldehyde by two inducible alcohol dehydrogen-
ases [3,4]. Butyraldehyde is oxidized to butyric acid by at
least two aldehyde dehydrogenases, and is then further
metabolized through the b-oxidation pathway of fatty
acid metabolism [5].

The first three enzymes in the pathway have been
characterized genetically and biochemically [3,4,6]. The
first enzyme, sBMO, is encoded by six structural genes
and is a multicomponent enzyme composed of a hydrox-
ylase, a regulatory protein, and a pyrimidine nucleotide
oxidoreductase. The protein structure and gene arrange-
ment of sBMO in P. butanovora is very similar to the sol-
uble monooxygenase (sMMO) from methanotrophs [6].
Two alcohol dehydrogenases are involved in the second
step and are PQQ-containing enzymes (a quinoprotein
. Published by Elsevier B.V. All rights reserved.
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and a quinohemoprotein). The two alcohol dehydrogen-
ases are directly linked to butane metabolism. The simul-
taneous inactivation of the genes for the alcohol
dehydrogenases impeded the growth of P. butanovora

on butane [3,4]. The involvement of dedicated alcohol
dehydrogenases in alkane metabolism has been reported
for other microorganisms [7,8].

Methane, gaseous alkanes (C2–C5) and liquid alk-
anes (C6) can serve as growth substrates for bacteria
[9–13]. The monooxygenase from P. butanovora shares
more commonalities structurally with the methane oxi-
dizers [14–16] than with the liquid alkane oxidizers. In
contrast, the regulation of sBMO expression shares
more commonalities with the liquid alkanes oxidizers.
The enzymes that catalyze the oxidation of liquid alk-
anes are different in composition from the monooxyge-
nases for gaseous alkane utilizers. For example, in
Pseudomonas putida GPO1, a membrane-associated
binuclear iron-containing alkane hydroxylase is pro-
duced in response to C6–C12 alkanes [17–23]. In Acine-

tobacter ADP1, an integral-membrane hydroxylase
initiates the metabolism of PC12 alkanes [24,25]. The
hydroxylase of P. putida GPO1 and Acinetobacter

ADP1 are regulated by interaction of regulatory ele-
ments with the alkane substrates [26,27]. Two distinct
monooxygenases are present in most methane oxidizers.
These monooxygenases are differentially regulated by
Cu. Under conditions of Cu limitation, a soluble meth-
ane monooxygenase is produced [14] and under condi-
tions of Cu sufficiency, a particulate monooxygenase is
produced [16].

The induction profiles of the enzyme involved in the
utilization of butane in P. butanovora were previously
documented [28]. The enzymes were induced in response
to butane and its oxidation metabolites. Cells grown on
metabolites of butane oxidation readily consumed the
metabolites as well as the downstream products. How-
ever, these cells consumed the precursors of the growth
metabolite more slowly. In this communication, we use
the wild-type P. butanovora and the sBMO reporter
strain P. butanovora bmoX::lacZ::kan to further under-
stand the induction of sBMO activity.
2. Materials and methods

2.1. Strains and growth conditions

Pseudomonas butanovora (ATCC 43655) was cultured
in sealed bottles (720 ml) containing 100 ml of liquid
medium and 620 ml of air, with 30 ml of butane gas
(99.0%; Airgas, Inc., Randor, PA) added as an overpres-
sure. The alternative energy and carbon sources (sodium
citrate or sodium lactate) were added at 5–10 mM con-
centration. The basic growth medium was optimized
from [29] and consisted of 2 mM MgSO4 Æ7H2O,
400 lM CaCl2 Æ2H2O, 0.05 mM FeSO4, 60 mM NH4Cl,
phosphate buffer (7 mM Na2HPO4 Æ7H2O, and 15 mM
KH2PO4; pH 7.2), 0.01 g/l yeast extract and the trace
elements described [30]. The sBMO reporter P. butano-
vora mutant strain bmoX::lacZ::kan has the lacZ::kan

cassette disrupting bmoX. P. butanovora bmoX::lacZ::
kan is BMO-deficient and resistant to kanamycin and
was produced by electroporation of the donor plasmid
pB21 into P. butanovora wild type as described [3,6].
Plasmid pB21 has the lacZ::kan cassette from pKOK6
[31] inserted into bmoX, the gene that encodes the a sub-
unit of the hydroxylase component of sBMO. The cells
were recovered in basal medium with sodium citrate
for 3 h at 30 �C and then challenged with 20 lg of kana-
mycin sulfate ml�1. A loop of the culture was streaked
onto a kanamycin plate and a single colony was used
to propagate a clonal culture for the experiments. The
correct gene inactivation was corroborated by Southern
hybridization.

2.2. Nucleic acid manipulations

DNA manipulations were performed using standard
protocols [32]. DNA-free RNA was prepared using a
Bio-Rad (Hercules CA, USA) kit. Quantitative RT-
PCR (qRT-PCR) was performed on an iCycler iQ single
color Real-Time PCR detection system with an iQ
SYBR Green Supermix (Bio-Rad). Data were analyzed
with Gene Expression Macro version 1.1 (Bio-Rad).
Primers were designed to amplify 200–300 bp of the
open reading frames coding for sBMO.

2.3. Activity assays

Cells of P. butanovora were harvested at an OD of
approximately 0.5, washed twice in basal medium and
suspended to a similar OD as at the time of harvest.
For most experiments, the cell suspensions were incu-
bated 3 h in either 10% (headspace) butane, 2 mM 1-
butanol, 2 mM butyraldehyde or 2 mM sodium butyrate
as indicated.

The activity of sBMO in whole cells was measured in
10 ml sealed serum vials by the oxidation of ethylene, an
alternative substrate for sBMO, to ethylene oxide [6,28].
Protein concentration was determined by the Biuret as-
say with serum albumin as standard [33].

The b-galactosidase activity in P. butanovora bmoX::

lacZ::kan was measured using o-nitrophenyl-b-D-galac-
topyranoside (ONPG) [34]. P. butanovora bmoX::lacZ::

kan cells were harvested, washed once in basal medium,
and 1 ml of cell suspension (�0.01 OD) was assayed.
The inducers were added at the indicated concentrations
and incubated for 2 h. At the end of the induction
treatment, the development of color was initiated by
the addition of ONPG and stopped by the addition of
NaHCO3 (1%, v/v). The b-galactosidase activity was
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calculated as described [35]. Citrate in the medium was
measured using a commercial kit from Boehringer–
Mannheim/Roche (Germany).
Fig. 2. Induction of ethylene oxidation in P. butanovora cells (top) and
b-galactosidase activity in P. butanovora bmoX::lacZ::kan (bottom) by
the substrates indicated. Cells were grown on sodium lactate, harvested
in the stationary phase and washed before the 2.5 h incubation in the
substrate indicated.
3. Results

3.1. Reporter strain characterization

The reporter strain of P. butanovora was constructed
to analyze the activation of the bmo promoter (Pbmo).
Two kanamycin-resistant mutants of P. butanovora,
bmoX::lacZ::kan (forward orientation) and bmoX::-

kan::lacZ (reverse orientation), were isolated. The cor-
rect insertion point and orientations were corroborated
by Southern hybridization and phosphorimaging
(Fig. 1). The insertion of the cassette into bmoX ren-
dered P. butanovora unable to utilize butane for growth
but still capable of growing on citrate, lactate, 1-butanol
and butyraldehyde. The wild-type strain and both mu-
tant strains were tested for b-galactosidase activity. Only
P. butanovora bmoX::lacZ::kan induced b-galactosidase
activity when subjected to the compounds described be-
low. The P. butanovora bmoX::lacZ::kan strain was used
to characterize the expression of sBMO.

3.2. Induction of Pbmo

Wild-type cells, when incubated in butane or in bu-
tane and citrate, induce sBMO activity within 2 h
(Fig. 2 and [5,28]). However, 1-butanol and butyralde-
hyde were more efficient in inducing sBMO activity,
whereas sodium butyrate was not effective. To test if bu-
tane was indeed an inducer of sBMO, we incubated P.

butanovora bmoX::lacZ::kan cells in the presence of bu-
tane, 1-butanol, butyraldehyde, or sodium butyrate.
Surprisingly, butane, the primary substrate of sBMO,
did not induce Pbmo to express b-galactosidase activity
(Fig. 2). On the other hand, incubations with either
Fig. 1. Southern hybridization (left) and map (right) of the insertion of a lacZ::kan cassette into bmoX. The DNA from two mutant strains in bmoX

was used and shows the two possible orientations of the cassette. The hybridizations are to the bmoX probe and kan probe. Lane 1: wild-type P.

butanovora; lane 2: strain bmoX::lacZ::kan (forward orientation); lane 3: strain bmoX::kan::lacZ (opposite orientation). The same blot was used for
both hybridizations.
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1-butanol or butyraldehyde induced b-galactosidase
activity in P. butanovora bmoX::lacZ::kan. In most in-
stances butyraldehyde induced up to 10% more sBMO
activity or b-galactosidase activity than 1-butanol.
These results suggest that Pbmo is activated by two of
the oxidation products of butane.

If 1-butanol and butyraldehyde are the actual induc-
ers of sBMO activity, it is necessary for the bacterium to
possess enough sBMO activity to oxidize butane to 1-
butanol to start the induction of Pbmo. Indeed, there
is precedent in P. butanovora for a relatively low sBMO
activity when grown on substrates other than butane or
its immediate oxidation products [28]. In wild-type cells,
this activity was detected by following the accumulation
of ethylene oxide in sealed vials or in [U14C]-acetylene
sBMO labeling experiments [28], using a non-optimized
growth medium. Butane-grown cells typically develop
activities between 20 and 100 nmol EtO mg pro-
tein�1 min�1 depending on the growth conditions [6,36].
Fig. 3. Growth phase product-independent activity on sodium citrate
grown P. butanovora bmoX::lacZ::kan as measured by b-galactosidase
activity. Growth of culture with 5 mM sodium citrate (black
square symbols) with corresponding b-galactosidase activity (white
square symbols); growth with 10 mM sodium citrate culture
(black triangle symbols) with corresponding b-galactosidase activity
(white triangle symbols).

Table 1
Product-independent activity in P. butanovora bmoX::lacZ::kan cultures limit

Nitrogen Carbon 5 mM

30.0 mM Activity 27.3 ± 6.4 unitsa

Final OD 0.40
Citrate left 60.01 mMb

0.05 mM Activity 2.3 ± 0.2 units
Final OD 0.31
Citrate left 0.86 ± 0.06 mM

a Miller units.
b Lowest detection limit for the assay.
3.3. Product-independent induction of Pbmo

Of significance to the present observation that prod-
ucts induced sBMO activity is the fact that wild-type
cells grown with citrate or lactate showed sBMO activity
(3.0 ± 1 nmol EtO mg protein�1 min�1). In P. butano-
vora, the activity that develops without the addition of
butane or any of its metabolites we refer to as prod-
uct-independent sBMO activity. This product-indepen-
dent activity was seen consistently in the reporter
strain bmoX::lacZ::kan (20–40 Miller units; e.g. Fig. 2,
buffer treatment and Fig. 3). In the wild-type strain
and reporter strain bmoX::lacZ::kan, product-indepen-
dent activity was detected at higher levels when the cells
entered the stationary phase. We proceeded to charac-
terize the development of this activity during growth
using the reporter strain bmoX::lacZ::kan (Fig. 3). In
all instances, the induction of the product-independent
activity developed to higher levels in the stationary
phase, triggered by the depletion of the carbon source
(Table 1). The product-independent activity developed
to higher levels when either sodium lactate (Fig. 2) or so-
dium citrate (Fig. 3 and Table 1) was depleted from the
growth medium. Cells grown in nitrogen limited med-
ium, but with sufficient carbon, did not develop higher
product-independent activity in the stationary phase
(Table 1).

We determined the response of wild-type cells to bu-
tane in relatively short incubations by qRT-PCR. The
mRNA for bmoX accumulated in a 25 min incubation.
This suggests that the product-independent activity is
sufficient to prime the expression of sBMO. However,
ed for carbon (sodium citrate) or nitrogen (NH4Cl) at stationary phase

7 mM 10 mM

33.6 ± 5.3 units 36.7 ± 1.3 units
0.59 0.75
60.01 mM 60.01 mM

2.4 ± 1.7 units 2.6 ± 1.4 units
0.30 0.30
3.56 ± 0.09 mM 4.43 ± 0.42 mM

Table 2
Fold inductiona sBMO mRNA in sodium citrate grown P. butanovora

upon exposure to butane

Time (min) Cells in logarithmic growth Cells in stationary phase

0 1.00 ± 0.11 5.19 ± 1.84
10 1.52 ± 1.14 5.74 ± 0.33
25 2.33 ± 0.27 23.24 ± 2.35

a Fold increase with respect to the levels at time zero in cells during
logarithmic growth.
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the bmoX mRNA levels accumulated to higher levels in
stationary phase cells than in logarithmic phase cells
(Table 2).
4. Discussion

Here we show that the inducer for sBMO is not
butane, its natural substrate, but two of the products
of the oxidation of butane, 1-butanol and butyralde-
hyde. For the oxidation of butane, P. butanovora has
the following attributes. One, the activities of the two
1-butanol alcohol dehydrogenases are not present in
the absence of their substrates [3]. Two, a relatively
low constitutive aldehyde dehydrogenase activity is pres-
ent in the absence of the substrate [28]. Three, the en-
zymes carrying out the oxidation of 1-butanol and
butyraldehyde are induced to higher levels by their cor-
responding natural substrate [28]. Four, P. butanovora
uses the product-independent sBMO activity to produce
1-butanol and butyraldehyde to prime the activation of
Pbmo. Five, the butyraldehyde produced by the induced
alcohol dehydrogenases would be rapidly consumed but
still lead to activation of Pbmo. This strategy permits P.
butanovora to accumulate 1-butanol to activate Pbmo,
while still not accumulating any butyraldehyde that
the alcohol dehydrogenases might produce. Butyralde-
hyde is toxic at high levels to the cell [4]. The end result
is the full induction of sBMO activity (Figs. 2 and 4).
Evidence of this is that P. butanovora responds to bu-
tane in the first 10 min upon exposure by producing de
novo BMO mRNA (Table 2). The product-independent
sBMO activity is sufficient to produce the necessary 1-
butanol to prime the induction of Pbmo.

When the source of carbon becomes limiting, P. but-
anovora uses resources to ready itself for the next avail-
able carbon substrate. It was in this state that the
product-independent sBMO activity increased. The
Fig. 4. Model for the activation of Pbmo. In the absence of butane
(dashed arrows), low levels of sBMO are maintained. When butane is
present, the expression levels are enhanced by the 1-butanol and
butyraldehyde produced (thick arrows).
depletion of carbon source (Fig. 3 and Table 1) prompts
the cell to develop higher product-independent activity.
This phenomenon has been observed in other organisms
[37,38]. When carbon is scarce, the cells prepare for a
quick response to a new carbon source when it becomes
available. Indeed, this level of product-independent
sBMO activity made P. butanovora produce more
mRNA when butane was supplied to stationary phase
cells than to logarithmic phase cells (Table 2). In P. but-

anovora, butane oxidation is initiated through the
product-independent sBMO activity to produce the
1-butanol necessary to enhance the activation of Pbmo

(Figs. 3 and 4). In energy limiting conditions, the low
product-independent sBMO activity may help the bacte-
rium to react to the alkane without wasting valuable
energy resources.
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