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[1] Basin-scale internal waves are examined using a combined field observation and 3-D
numerical approach. The field site, Lake Tahoe (CA-NV) during winter, is characterized
by the presence of a weak density stratification and the passage of several storm fronts
of varying character. Under these conditions internal waves with periods greater than
5 days and displacements of 30 m are possible. The model used is shown to have
negligible numerical dissipation and sufficiently small phase lag over the time periods
needed to represent basin-scale waves. Both the numerical results and the observations
identify the presence of three Kelvin modes and one Poincaré mode. While the wave
periods are consistent with theoretical predictions, the spatial characteristics are far more
complex than theory can predict. The spatial features are revealed through analysis of
the integrated potential and kinetic energy fields yielded by the model. This shows that the
basin topography exerts an influence on both Kelvin and Poincaré waves. The effect of the
variable storms and, in particular, the phasing of the storms with respect to the
internal waves is shown to be responsible for the amplification and annihilation of the
basin-scale waves. INDEX TERMS: 1845 Hydrology: Limnology; 4255 Oceanography: General:

Numerical modeling; 4544 Oceanography: Physical: Internal and inertial waves; KEYWORDS: internal waves,

numerical modeling, observations, Lake Tahoe, wind-wave phase interaction, cooling
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1. Introduction

[2] Lake Tahoe (Figure 1) is located along the crest of the
Sierra Nevada mountain range, between California and
Nevada at an altitude of 1898 m. It has a maximum depth
of 505 m, and an average depth of 313 m. Its surface area is
501 km2, and that of the watershed is 812 km2. The lake
contains 156 km3 of water, with a hydraulic residence time
of approximately 650 years. The watershed’s geology, large
volume, and limited drainage area are largely responsible
for the lake’s sparse algal population and clear waters
[Goldman 1988]. Few nutrients are naturally available to
fertilize its waters. However, human development in the
Tahoe Basin over the last five decades has been damaging
to the lake. The lake has responded to increased nutrient and
particulate loading from the streams, atmosphere and
groundwater with steadily increasing algal growth and a
progressive reduction of clarity. Secchi depth has declined
approximately 10 m in the last 30 years [Jassby et al.,
1999].
[3] Typically, thermal stratification commences around

March and reaches a maximum in August, at which time
the top of the thermocline is approximately 20 m below the
water surface. Slow weakening of the stratification may lead
to approximately isothermal conditions by February in about

one year in four [Jassby et al., 1999]. Several investigators
have noted evidence of internal waves in Lake Tahoe,
although the internal wave climate is largely undocumented
[Thompson, 2000].
[4] The energy imparted by the wind to a stratified lake

leads to basin-scale internal waves. These waves provide a
driving force for vertical and horizontal transport in strati-
fied lakes [Imberger, 1998; MacIntyre et al., 1999], and
need to be accurately modeled for the correct simulation of
the dynamics of nutrients and particles. The spatial charac-
teristics and oscillation periods of individual internal wave
modes are controlled by the density stratification, the geo-
metric properties of the enclosing basin, and, in the case of
large lakes, by the Earth’s rotation [e.g., Imboden, 1990].
The internal oscillations are either Kelvin or Poincaré
waves. Kelvin waves are long gravity waves with subiner-
tial frequencies that are trapped at the boundaries of the
lake. The perturbations travel cyclonically (counterclock-
wise) around a basin in the Northern Hemisphere with
amplitudes exhibiting an exponential decay offshore with
a scale of O(�), the internal Rossby radius of deformation.
The velocity fields show maxima at the boundaries (where
the motion is rectilinear), and the current vectors in the lake
interior rotate cyclonically [see, e.g., Hutter, 1984; Ante-
nucci and Imberger, 2001]. Poincaré modes are also pro-
gressive waves. In the Poincaré modes (or rotating internal
seiches) the perturbations propagate anticyclonically with
superinertial frequencies. As shown by Antenucci et al.
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[2000], the isopycnal displacements induced by a Poincaré
wave measured in cross section have a standing structure
and are, in general, undistinguishable from those induced
by a linear seiche. Poincaré waves, however, differ from
the linear seiches in that the velocity vectors rotate anti-
cyclonically. The maximum amplitudes of the water veloc-
ity induced by the wave are observed at the center of the
basin. Thus the origin of isopycnal oscillations (either a
linear seiche or a Poincaré wave) can only be positively
confirmed by inspection of the velocity vectors at a single
location or inspection of temperature records from multiple
locations.
[5] Early studies on internal oscillations used simplified

analytical formulations in which lakes were represented as
simple domains having two-layer density stratification.
With increased computer power more sophisticated numer-
ical models were developed that allowed for arbitrary
bathymetry [Horn et al., 1986], continuous stratification
[Monismith, 1987], or both of these combined [Munnich,
1996; Fricker and Nepf, 2000]. In all cases, rotational
effects were neglected. Munnich [1996] and Fricker and
Nepf [2000], for example, assumed that the internal waves
can be represented using a 2-D vertical model aligned with
the principal axis of the lake, an approach that may be
justified for narrow lakes. The first analytical formulation
that accounted for Coriolis effects considered circular flat
bottom domains with a two-layer stratification [Csanady,
1973]. Schwab [1977] also incorporated rotational effects in
the analysis of internal oscillations in two-layer systems of
arbitrary planform but assumed a uniform equivalent depth.

In all these cases the internal waves are analyzed using
eigenvalue techniques, which precludes the combination of
arbitrary geometry, continuous stratification, rotational
effects, and a temporally and spatially variable wind field
with the internal wave climate of the basin. By contrast, the
combination of these factors and their influence on the
basin-scale internal waves can be realistically represented
in a 3-D hydrodynamic model.
[6] In this study the basin-scale internal wave climate of

Lake Tahoe during winter cooling is characterized by using
a three dimensional (3-D) hydrodynamic model [Smith,
1997; Rueda and Schladow, 2002]. The 3-D model results
are combined with a theoretical analysis of the initial
conditions, using simplified models of the lake geometry,
and the statistical analysis of the observations from two
thermistor chains and a current meter. While the simulation
of basin-scale internal waves with 3-D models has been the
subject of recent work by Hodges et al. [2000] and Ante-
nucci et al. [2000] in Lake Kinneret, Saggio and Imberger
[1998] in Lake Biwa, and Beletsky and O’Connor [1997] in
the Great Lakes, the present study is distinctive in several
important respects. First, the stratification in Lake Tahoe is
extremely weak and spread over a broad metalimnion. Such
conditions pose challenges to models, as numerical diffu-
sion and phase errors can dominate and obscure the under-
lying physical processes. Thus, as a test of a 3-D modeling
approach, the present case is severe. Second, the length
scales at Lake Tahoe define a different set of conditions.
While the horizontal scales are the same order of magnitude
as those in Lake Biwa and Lake Kinneret, the vertical scale
is an order of magnitude larger in Lake Tahoe. This depth,
combined with the weak stratification, results in vertical
excursions of the internal waves frequently exceeding 50 m
at the lake margins (Figure 2c), producing enhanced hori-
zontal gradients near the boundaries. Lake Tahoe and the
Great Lakes differ in horizontal scale by an order of
magnitude, resulting in Rossby numbers of O(10�1) and
O(10�2) respectively. As the characteristics of the flow field
vary greatly with the values of the Rossby number [Cush-
man-Roisin, 1994] it is expected that the two cases will be
fundamentally different. Third, at Lake Kinneret the internal
wave climate was driven by a highly regular, diurnal,
summer sea breeze. The present study was performed
during winter when series of energetic storms act on the
lake. The associated wind during these storms has the most
dramatic influence on the internal wave climate of Lake
Tahoe. The timing of the storms does not follow a clear
pattern, and the wind field associated with each of the
storms does not have a clear directional character. As will be
shown, the phase between the periodic internal wave field
and the aperiodic storm wind field is a critical feature that
accounts for much of the evolution of the internal dynamics
of Lake Tahoe, and probably in many other lakes.

2. Methods

2.1. Field Observations

[7] Two thermistor chains were deployed in Lake Tahoe
during winter 1999–2000 to provide continuous record of
the winter temperature and density structure (Figure 1). One
of the chains was deployed at the INDEX station, a site near
the west shore (N 39�6.7440, W 120�8.9320) with a depth of

Figure 1. Lake Tahoe bathymetry (contoured on 100 m
intervals) and instrument locations (circles). Thermistor
chain locations are MIDLAKE and INDEX. USCG
indicates the location of the meteorological station. Loca-
tions used in the analysis of the model output (squares) are
identified by the column and row numbers that they occupy
in the computational grid.
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approximately 124 m. The second thermistor chain was
deployed closer to the center of the lake, at the MIDLAKE
station (N 39�7.5350, W 120�0.7310), where the depth is
approximately 464 m. The time series of temperature
analyzed in this work are 24-day segments from the larger
data set collected during the winter months of 1999–2000.
The time series start on day 350 1999 (16 December) and
end on day 9 2000 (9 January). Water temperature was
sampled at 2-min intervals, using Oregon Environmental
Instruments 9311, Richard Brancker Research TR-1000F
and Seabird SBE-39 thermistors. The thermistors were
calibrated to an accuracy of better than 0.005�C and
attached at 10 to 40 m intervals, with the closer spacing
near the surface. A Sontek Argonaut velocity meter was
placed on the INDEX mooring chain at 7 m below the free
surface. It measured velocity in a single 1 m vertically
integrated bin at 20 min averaged intervals. Meteorological
data were collected at the dock of the Tahoe U.S. Coast
Guard station (N 39�10.838, W120�07.1570). Figure 2a
displays the time series of wind data. In addition, shortwave
radiation, air temperature and relative humidity data were
recorded at 10-min intervals during this period. Details on

the thermistor chains and the weather station are described
by Thompson [2000].
[8] The internal wave field was analyzed using power

spectra and wavelet transforms of the integrated potential
energy (IPE) and integrated kinetic energy (IKE), defined as

IPE tð Þ ¼
Zz1
z0

r z; tð Þ g z dz ð1aÞ

IKEðtÞ ¼ 1

2

Zz1
z0

r z; tð Þ u2 þ v2
� �

dz ð1bÞ

The IPE gives a clear and concise picture of the frequency
content of the internal wave field and also of the relative
distribution of potential energy among frequencies [An-
tenucci et al., 2000]. IKE accomplishes the same for the
horizontal kinetic energy [see Antenucci and Imberger,
2001]. Here, z is the vertical coordinate, g is the acceleration
of gravity, r is density, u and v are velocities in the two

Figure 2. Time series of (a) wind speed and direction, (b) isotherm depths at the MIDLAKE station, (c)
isotherm depths at the INDEX station, and (d) horizontal velocity components measured 7 m below the
free surface at the INDEX station. All variables are presented with a 6-hour moving average filter, except
for the wind speed, which shows 10 min averages. Isotherms in Figures 2b and 2c are shown every 0.5�C.
Here 5.5�C has been marked for reference. The period under analysis started on day 350 1999 (16
December) and ended on day 9 2000 (9 January).
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horizontal components, and z0 and z1 represent the bottom
and top of the water column respectively. Spectral estimates
in the Fourier analysis were averaged in the frequency
domain to improve confidence [Saggio and Imberger,
1998]. Continuous wavelet transform was used for time-
frequency analysis, adopting the Morlet wavelet [Torrence
and Compo, 1997]

y tð Þ ¼ p�1=4 exp � t2

2

� �
exp iw0tð Þ; ð2Þ

with w0 = 6 as mother wavelet. The continuous wavelet
transform of the IPE time series is defined as

C s; tð Þ ¼
Z þ1

�1
IPE uð Þys;t uð Þdu ð3Þ

where

ys;t tð Þ ¼
1ffiffi
s

p y tð Þ u� t

s

� �
ð4Þ

The coefficient C represents the characteristics of the IPE
signal at scale s. The scale s in the Morlet wavelet utilized
here and the equivalent Fourier period T are approximately
equal, with T = 1.03 s [Torrence and Compo, 1997].
Identical expressions pertain to the continuous wavelet
transform of the IKE time series.
[9] All averaging refers to time averages of temperature

records obtained by individual thermistors. Although
Thorpe et al. [1996] suggest that averaging should be
performed on the depth of the isotherms, to reduce uncer-
tainty, this was not considered warranted. It was considered
that far greater uncertainties reside in the model initial
conditions and model inputs (such as the areal wind field)
than in the choice of a method for time-averaging of
temperature profiles.

2.2. Three-Dimensional Model for Flow and Transport

2.2.1. Governing Equations and Boundary Conditions
[10] A 3-D free surface hydrodynamic model was used to

simulate the evolution of the internal wave field. The model
is based on the continuity equation for incompressible
fluids, the Reynolds-averaged form of the Navier-Stokes
equations for momentum, the transport equation for temper-
ature, and an equation of state relating temperature to fluid
density. The governing equations, incorporating the hydro-
static and Boussinesq approximations, may be written in
Cartesian rectangular coordinates as
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[11] Due to the Boussinesq approximation the density is
neglected everywhere except in the buoyancy term. In the
hydrostatic approximation, it is assumed that the weight of
the fluid identically balances the pressure in the conserva-
tion equation for vertical momentum. The nonhydrostatic
terms can be safely neglected as long as the internal waves
being represented have much longer horizontal wavelengths
than their vertical wavelengths, which is the case for basin-
scale oscillations (Appendix A). Another limitation of the
hydrostatic model relates to the fact that frequency disper-
sion is not represented [e.g., Bauer et al., 1994], but simple
scaling arguments based on the observations suggest that
these effects can also be safely neglected in the simulations
of basin-scale waves in Lake Tahoe. In equations 5 through
9, the velocity components in the x, y, and z directions are
denoted by u, v, and w, f is the Coriolis parameter, g is the
acceleration of gravity, r is water density variation with
respect to a mean reference value r0, T is the temperature
and z is the water surface elevation above an undisturbed
level at z = 0. The coefficients KH and KV represent the
horizontal and vertical turbulent momentum transfer coef-
ficients (or kinematic eddy viscosity), and DH and DV are
the horizontal and vertical turbulent transfer coefficients
(eddy diffusivity) for temperature. The last term in equation
8 is a source-sink term representing the divergence of the
downward solar irradiance I, where cp is the heat capacity of
water. The attenuation of the solar irradiance I with depth z
from its value at the free surface I0 is modeled in terms of
two length scales, L1 and L2, and an empirical constant, R,
using a law of the form [Rosati and Miyakoda, 1988]

I ¼ I0 R exp � z

L1

� �
þ 1� Rð Þ exp � z

L2

� �	 

ð10Þ

[12] An equation for z is obtained by integrating the
continuity equation (equation 5) over the water column
and combining it with the kinematic boundary condition
at the free surface,
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vdz
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Here z = �H (x, y) is the depth of the bottom boundary
measured from the undisturbed free surface z = 0.
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[13] The boundary conditions at the free surface, z = z (x,
y, t), are

r0KV
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¼ t0x; t0y
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; r0DV

@T

@z

� �
¼ HS ð12Þ

where (t0x, t0y) is the surface wind stress vector, and HS

represents the net effect of the nonpenetrative components
of the heat flux (evaporation, conduction and long-wave
radiation). The fluxes of heat (HS) and momentum (t0x, t0y)
at the free surface are calculated using a bulk parameteriza-
tion [Kondo, 1975; Liu and Schwab, 1987]. At the lower
boundary, z = �H (x, y),
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Here, n is the direction normal to the bottom boundary and
(tbx, tby) is the bottom frictional stress which is determined
from the bottom velocity (ub, vb) by a quadratic law of the
form

tbx; tby
� �

¼ Cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2b þ v2b

q
ub; vb½ � ð14Þ

where Cd is a drag coefficient, considered constant in the
model. Along the shoreline, in the horizontal direction, a
perfect slip condition is imposed in which the water is
allowed to move parallel to the shoreline without any
resistance. No heat flux is permitted across lateral or bottom
boundaries, which given the depth of Lake Tahoe, is a safe
assumption. The possible effects on the bottom boundary
layer of near bed-stratification caused by sediment or
chemical concentration [Dimai et al., 1994] are neglected,
given the limited information that exists on Lake Tahoe.
Stratification in the model arises purely by temperature
differences.
2.2.2. Numerical Solution of the Hydrodynamic and
Transport Equations
[14] The grid system is composed of horizontal layers, and

the governing equations are integrated over the height of each
layer. The model uses a semi-implicit three-level leapfrog-
trapezoidal finite difference scheme on a staggered Cartesian
grid (Arakawa C grid) to solve the layer-averaged form of the
3-D shallowwater and transport equations [Smith, 1997]. The
semi-implicit approach for the hydrodynamic equations is
based on treating the gravity wave and vertical diffusion
terms implicitly to avoid time step limitations due to gravity-
wave CFL conditions, and to guarantee stability of the
method. All other terms, including advection, are treated
explicitly. The leapfrog-trapezoidal algorithm used for time
stepping gives second order accuracy both in time and space.
2.2.3. Dissipation and Phase Lag in the
Numerical Algorithm
[15] The ability of the numerical model to simulate

internal oscillations was verified against the analytical
solution for internal seiches in a rectangular basin with flat
bottom and uniform stratification, given by Eliason and
Bourgeois [1997]. The analytical solution assumes that (1)
the motion is effectively 2-D in a vertical plane, (2) the fluid

is inviscid and (3) nonlinear terms can be neglected. The
code was modified accordingly to solve the governing
equations assumed in the analytical solution, and it was
set up to simulate the first vertical and horizontal internal
seiche in a 20000 � 4000 � 12 m basin, with constant
buoyancy frequency N = 0.04045 s�1, and velocity ampli-
tude of 10 cm s�1. A time step �t = 720 s, and 2000 �
2000 � 1 m cells were used to discretize the problem. At the
end of the 6 day simulation period the stratification had not
changed significantly in the basin. Analytical and numerical
solutions are compared in Figure 3. The amplification factor
and the celerity ratio of the numerical scheme [e.g., Gray
and Lynch, 1979], calculated by comparing the surface
velocity from the two solutions in the center of the basin,
were 1.0000 and 1.0019 respectively (1.069 for the density
at the end of the basin). These values indicate that the
solution scheme is essentially free of numerical dissipation,
and for the grid used it displayed only a slight phase shift.
Assuming that the accuracy of the internal wave represen-
tation is similar in Lake Tahoe as that in the numerical
experiment, the estimated lag in 18-hour period waves is
approximately 2 min. A principal determinant of the phase
shift is the ratio of wavelength to grid size, l/�x, with
larger values reducing the phase shift. For the test case this
ratio had a value of 20. For the first horizontal mode lateral
seiche in Lake Tahoe, and the 500 m grid used, l/�x  80,
and hence we would expect less phase shift in its numerical
simulation.
2.2.4. Turbulence Model
[16] The 3-D lake model uses a modified formulation of

the 2.5 level Mellor-Yamada turbulence closure scheme to
parameterize vertical mixing [Kantha and Clayson, 1994].
This formulation incorporates the quasi-equilibrium turbu-
lencemodel (QETE) ofGalperin et al. [1988] with readjusted
parameters, and a parameterization of shear-instability-
induced mixing in the strongly stratified region below the
surface mixed layer. It was developed to correct some of the
deficiencies of the original formulation of the Mellor-

Figure 3. Verification exercise: time series of simulated
(solid line) and analytical (dashed line) results for horizontal
velocity, vertical velocity, and density in a rectangular basin.
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Yamada 2.5-Level closure scheme, which was shown to
misrepresent the depth of the surface mixed layer in oceanic
applications [e.g., Martin, 1985]. Two partial differential
equations are used to calculate the turbulent kinetic energy,
q2/2, and a turbulent macroscale, l, given by

@q2

@t
� @

@z
lqSq
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@z
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¼ 2 Ps þ Pb � e½ � ð15Þ
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Here, k is the von Karman constant, and Ps, Pb and e stand
for shear production, buoyant production and the dissipation
of turbulent kinetic energy, given by

Ps ¼ Kv
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þKv
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@r
@z

; e ¼ q3
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in which B1 is an empirical constant. The boundary
conditions applied at the top and the bottom boundaries are
calculated from the friction velocity u* as [Blumberg, 1986]

q2 ¼ B
2=3
1 u*
� �2

; q2l ¼ 0 ð18Þ

[17] The turbulent fluxes of momentum (u, v) and
temperature (T) are represented using a diffusion model
and the concepts of eddy viscosity and diffusivity. The
eddy viscosity and diffusivity are calculated from q and l
as KV = Smlq and DV = Shlq in which Sm and Sh are
stability functions that account for the effects of stratifica-
tion on mixing. They are calculated as [Kantha and
Clayson, 1994]

Sh ¼
A2 1� 6A1

B1

� �
1� 3A2Gh 6A1 þ B2 1� C3ð Þð Þ ð19Þ

Sm ¼ A1

1� 6A1
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þ 9 2A1 þ A2 1� C2ð Þ½ �ShGh

1� 9A1A2Ghð Þ ð20Þ

Gh ¼ � Nl

q

� �2

ð21Þ

The values of the constants in the model are (A1, A2, B1, B2,
C1, C2, C3, Sq, E1, E2) =(0.92, 0.74, 16.6, 10.1, 0.08, 0.7,
0.2, 0.2, 1.8, 1.33) as suggested by Kantha and Clayson
[1994]. Gh is bounded from above, so that the variance of
the velocity fluctuations are positive definite, according to

Gh � A2 B1 þ 12A1 þ 3B2 1� C3ð Þ½ �f g�1 ð22Þ

The upper bound on Gh is set to 0.029 [Kantha and
Clayson, 1994]. The lower bound on Gh reflects that under
strong stable stratification conditions, there is a limit to the
size beyond which eddies are incapable of overturning. This

bound is dictated by the Ozmidov scale, Lo = (e/N3)1/2, and
is given by Gh > �0.28.
[18] A 3-level, fully implicit algorithm is adopted for the

numerical solution of the turbulence equations [Fletcher,
1991]. The method has a truncation error of O(�t2, �x2), is
A-stable and damps out spurious oscillations associated
with stiff problems. The numerical algorithm is presented
in Appendix B. The mixing routines were tested against
other deepening laws and mixed-layer models published in
the literature [Kato and Phillips, 1969; Pollard et al., 1973;
Kundu, 1980; Sherman et al., 1978] giving very satisfactory
results [see Rueda, 2001].

3. Measured Response in Lake Tahoe

3.1. Evolution of the Internal Wave Climate

[19] Figure 2 displays the evolution of isotherm depths, at
the MIDLAKE and INDEX stations, obtained from 6-hour
moving averages of the temperature record. No indication
exists in those observations of vertical oscillation modes
higher than 1, hence only first vertical modes will be
considered in the discussion that follows. The time series
of the 5.5�C isotherm (obtained by vertical linear interpo-
lation from individual temperature records) will be used as a
reference. This isotherm is located close to the base of the
metalimnion (Figure 4), and it will hence experience sig-
nificant oscillations due to internal waves.
[20] Observations at the INDEX station suggest that three

intervals of internal wave activity can be distinguished
(Figure 2): (1) interval 1 (days 350 through 357 in 1999)
with significant internal wave activity at both subinertial
and superinertial frequencies, and amplitudes of up to 30 m;
(2) interval 2 (from day 358 1999 through day 1 2000)
where the subinertial oscillations observed in Interval 1 with

Figure 4. Vertical temperature distribution obtained by
time-averaging temperature records at the MIDLAKE
station from day 350 to day 354 1999. The locations of
the thermistors are indicated by squares.
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periods above 24 hours vanish; the diurnal and superinertial
periodicity dominate during this interval; (3) interval 3
(from day 2 2000 to the end of the record) when the wind
again excites the internal waves at the periods previously
observed during Interval 1.
[21] At the MIDLAKE station these intervals are not

present. Instead, over the first 15 days the isotherms initially
deepen (the 5.5�C isotherm descends from 90 m to 120 m)
and the surface layer cools. Internal oscillations with lower
than diurnal periodicity are observed throughout this time.
Then, starting approximately day 365 1999, the isotherms
rise, with the 5.5�C isotherm, for example, rising from 120
m to approximately 90 m. The upward migration of the
isotherms seems to suggest that processes of larger time-
scales than those of the internal waves exist in the lake.
Those are most probably driven by seasonal differential
cooling and lateral advection, as suggested by Thompson
[2000]. Satellite imagery (not shown) for the first days of
2000 confirmed significant surface temperature spatial var-
iation between shallow boundary areas and the center of the
lake, with the former being much colder (S. J. Hook,
unpublished data, 2000). The picture, here outlined, of the
evolution of the internal wave field in both observation
stations is supported by the wavelet analysis (not shown)
applied to the IPE time series.

3.2. General Features of the Water Column

[22] The speed of propagation of first vertical mode
internal waves c was estimated on a daily basis by solving
the eigenvalue problem for the spatial structure of internal
waves in nonrotating frames [Kundu, 1990], using the
temperature records from the MIDLAKE station. The back-
ground stratification was determined for each daily window
by averaging temperature records for each of the thermistors
on the chain. Initially (first 15 days), the speed of prop-
agation is approximately constant at about 0.240 ±

0.004 m s�1, reducing to approximately 0.18 m s�1 on
the last day of the experiment. Based on a mean temperature
profile obtained by time-averaging the temperature records
at the MIDLAKE station for the first three days of the 24-
day period (Figure 4) the estimated speed of propagation is
0.240 m s�1. The internal Rossby radius of deformation,
defined as

� ¼ c

f
ð23Þ

is about 3 km for the first vertical mode internal waves, well
below the width of Lake Tahoe (20 km), suggesting that
internal oscillations are either Kelvin or Poincaré modes.
[23] Using daily averaged temperature profiles at MID-

LAKE, one can estimate, on the basis of timescales and
dimensionless numbers, the expected response of the water
column. For example, the steepening timescale [Horn et al.,
2001] for Lake Tahoe was estimated to be approximately 50–
100 days, which is much longer than the timescale of the
Kelvin waves in Lake Tahoe as observed in the short
observation period of this experiment. Hence nonlinear
steepening, and probably wave dispersion effects, can be
initially neglected in the study of the basin-scale internal
waves in Lake Tahoe. The Lake (LN) and Wedderburn (W )
numbers, which parameterize the response of the water
column to a constant wind stress [Imberger and Patterson,
1990], are well above unity throughout this period, suggest-
ing relatively small isotherm displacements compared to the
thickness of the surface layer and little possibility of immi-
nent lake overturn.

3.3. Spectra of Integrated Potential Energy

[24] The power spectra of IPE from the INDEX and
MIDLAKE stations are shown in Figures 5a and 5b. The
spectrum at MIDLAKE reveals energetic oscillations at w 
1.6 10�5 Hz (17 h period), a decay of the energy with w�2,
as in the Garret-Munk internal wave model [Garret and
Munk, 1979], and an accumulation of energy again at the
buoyancy frequency of the thermocline (N  6 � 10�4 Hz).
Very little energy exists at frequencies below the inertial
frequency (w  9 � 10�4 Hz). At the INDEX station, the
IPE spectrum shows peaks at approximately 128, 58, 24,
and 17 hours (Table 1), and, as was the case at MIDLAKE,
a characteristic w�2 energy decay and a slight increase of
energy at the buoyancy frequency. The superinertial fre-
quency (corresponding to the 17 h period) represents the
characteristic signature of a Poincaré wave, which can be
detected throughout the lake. Due to its nearshore location,
the chain at the INDEX station also detects the presence of

Figure 5. Power spectra of integrated potential energy
(IPE) at (a) INDEX and (b) MIDLAKE stations. Dashed
lines indicate 95% confidence levels.

Table 1. Comparison of Periods Found in the Numerical

Simulations With Those Found in the Observations and Predicted

by the Analytical Circular Modela

Oscillatory
Mode

IPE
Observations

Velocity
Observations

IPE
Simulations

Velocity
Simulations

Analytical
Model

KW H1V1 127.6 124.3 133.4 135 113b

KW H2V1 56.8 57.9 60.3 62.1 57b

KW H3V1 – 36.2 – 39.3 37.6b

Diurnal 23.7 25.9 29.6 25.2 –
PW H1V1 17.6 16.9 16.6 16.9 16.1–17.8

aPeriods are in hours.
bBased on a 34,000 m diameter circular model.
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subinertial Kelvin waves. The peaks at w  10�5 Hz (a
period of 24 h) in the spectra at both the INDEX and
MIDLAKE stations correspond to the weak diurnal perio-
dicity of the wind-forcing. These same features are revealed
by the wavelet transform.

3.4. Spectra of Velocity

[25] The total spectrum of the velocity records measured
by the surface meter at the INDEX station (Figure 6e) also
reveals peaks at the same frequencies observed in the
spectra of IPE time series. It shows, furthermore, a concen-
tration of energy at approximately 7.7 � 10�6 Hz (36 h
period). All peaks, but that with diurnal periodicity, most
likely represent the signature of free-internal oscillations.
The rotational behavior of the vector time series at each of
those characteristic frequencies was exposed by first isolat-
ing the oscillations with a Butterworth digital band-pass
filter (see Table 2) and then displaying the filtered velocity
components as vector plots (Figures 6a–6d). This reveals a
velocity vector rotating cyclonically with approximately
124, 58 and 36-hour periods (Figures 6a, 6b, and 6c),
consistent with the interpretation that the subinertial oscil-
lations represent Kelvin waves. The 17-hour period vector
time series shows an anticyclonic rotation (Figure 6d),
characteristic of the velocity field in a Poincaré wave.

4. Analytical Model of Lake Tahoe

[26] To yield analytical estimates of the internal wave
field, Lake Tahoe is approximated as a circular, flat-bottom
basin with a diameter of 19,600 m (the maximum width of
the basin in the east-west direction) or 34,000 m (the
maximum length in the north–south direction). By chang-
ing the diameter, some uncertainty is introduced since
complex bathymetry cannot be represented with such a
model. The smaller diameter better represents the lake’s

surface area (496 km2), while the larger diameter gives a
better representation of Lake Tahoe’s perimeter (108 km). A
two-layer stratification is assumed with a speed of prop-
agation of interfacial waves, c = 0.240 m s�1. Due to the
lake’s latitude (q  39�), the inertial period of oscillation is
19.07 hours (inertial frequency  9.189 10�5 s�1). The
solution to the inviscid linear equations of motion in a
circular flat bottom basin with a two-layer stratification is
given by Csanady [1967] and it has recently been reviewed
by Antenucci et al. [2000]. Two kinds of solutions are
possible, one with subinertial frequencies (Kelvin waves)
and another with superinertial frequencies (Poincaré waves).

4.1. Kelvin Waves

[27] For each azimuthal wave number n (= 1, 2, . . .) there
is one Kelvin mode provided that the condition [Csanady,
1967]

b ¼ f 2R2
0

c2
> nðnþ 1Þ ð24Þ

is met. For Lake Tahoe, b will vary from 12 to 40,
depending on the dimensions of the circular model, and the
basin can support Kelvin waves with up to 3–5 nodal
diameters. Based on the analytical model presented by
Csanady [1967] and using values for the largest circular

Figure 6. Vector plots of band-pass filtered velocity records for segments of the data set that reveal the
sign of rotation: (a) H1V1 Kelvin wave with period of 128 h, (b) H2V1 Kelvin wave with period of 55 h,
(c) H3V1 Kelvin wave with period of 37 h, and (d) H1V1 Poincaré wave with period of 17 h. (e) Total
spectrum of the velocity records showing peaks with those periods encountered in the analysis of
isotherm displacements.

Table 2. Parameters in the Design of Butterworth Filters Used to

Isolate the Internal Wave Oscillations

Oscillatory Mode Filter Order

Passband, Hz

wmin wmax

KW H1V1 5 2.069 � 10�6 2.986 � 10�6

KW H2V1 4 4.250 � 10�6 7.528 � 10�6

KW H3V1 3 6.333 � 10�6 9.083 � 10�6

PW H1V1 3 1.600 � 10�5 1.733 � 10�5
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model of Lake Tahoe, the following characteristic periods
can be estimated: 113 ± 2 hours for the first azimuthal mode
(one nodal diameter), 57 ± 1 hours for the second mode (two
nodal diameters), and 38 ± 1 hours for the third azimuthal
mode (three nodal diameters). For the fourth and fifth
azimuthal modes the periods are estimated to be approxi-
mately 28 and 22 hours respectively. These latter two
periods are not observed in any of the experimental records
and hence they are not considered further. The larger
circular model was used, since it approximates better the
perimeter of Lake Tahoe. These estimates agree with those
given by dividing integer multiples of the perimeter P by the
speed of propagation of the internal wave in the absence of
rotation [Csanady, 1973; Hodges et al., 2000].

4.2. Poincaré Waves

[28] In this case, for fixed n, the individual solutions to
the inviscid linear equations of motion may be distinguished
by the number m of nodal circles present in the correspond-
ing pattern of surface and interface elevations. The spatial
pattern of the Poincaré waves will hence consist of cells of
radial dimensions rj � rj � 1 (rj = radius of the jth nodal
circle) and of angular width (p + 2kp)/2n, with k = 0, 1, 2,
. . . [Csanady, 1967]. For the circular model of Lake Tahoe,
the solution of the frequency equation indicates that only the
lowest modes have a frequency close to the inertial fre-
quency. The two-layer circular models predicts Poincaré
waves of the first azimuthal mode with a characteristic
period ranging from 17.84 ± 0.04 hours for the larger
diameter to 16.12 ± 0.08 hours for the smaller diameter.

5. The 3-D Model of Lake Tahoe

5.1. Model Setup

[29] Bathymetric information at 500 m resolution was
extracted from a recent bathymetric survey of Lake Tahoe
[Gardner et al., 1998]. This horizontal grid spacing, about
20% of the Rossby radius, allows for an accurate represen-
tation of the Kelvin wave phase speed [Schwab and
Beletsky, 1998]. The vertical dimension of Lake Tahoe
was discretized using 5 m cells. The total number of
computational cells in the grid was 325136, of which almost
80% were wet (active in the computations). The time step
was set to �t = 300 seconds and the results were saved
every 1800 seconds. In each time step, two trapezoidal
iterations were performed after the initial leapfrog step,
which in previous tests had given very satisfactory results
[Rueda, 2001]. The simulation started on day 346 1999, to
capture the observed oscillations between days 350 and 360
1999. The simulation was initialized with a horizontally
homogeneous temperature field. The initial vertical distri-
bution of temperatures was obtained from the profile in
Figure 4 by linearly interpolating to the centers of the
computational cells. From day 346 to 350, heat fluxes were
suppressed in the model since the initial profile approxi-
mates the background temperature distribution on day 350
(observations do not exist for day 346).
[30] To represent the attenuation of short-wave solar

radiation in the water column, the values of R, L1 and L2
in equation 10 were set to 0.58, 0.35 m and 23 m
respectively, consistent with Type I or clear water, accord-
ing to the classification proposed by Jerlov (referenced by

Rosati and Miyakoda [1988]). The simulation was driven
with meteorological data collected at the U.S. Coast Guard
station (Figure 1), the only station available at the time.
Although this site is generally well exposed, it is likely that
there are significant differences in both wind magnitude and
direction across a lake of this size. Recent measurements
have shown that the frequency response of the wind-forcing
at this site is strongly correlated with other sites across the
lake (Schladow, unpublished data). The incoming long-
wave radiation was calculated using standard formulations
and assuming a cloud cover fraction of 0.15, since the long-
wave radiation sensor malfunctioned during the period of
the simulations. The bottom drag coefficient was 0.002, as
suggested for a mud bottom [Smith, 1997]. Given the depth
of the basin, this parameter has little effect on the results.
The horizontal eddy viscosity was set to a constant value of
1 m2s�1, the lowest of the range of values suggested by
Cheng et al. [1976]. This was necessary to keep computa-
tions stable.

5.2. Basin-Scale Internal Waves in Model Results

[31] The model results were validated with data from the
INDEX station, where the observations reveal a broad
spectrum of internal waves existing in Lake Tahoe. Figure
7a compares simulated and observed temperatures at two
different depths (surface and 74 m deep) at the INDEX
station (station 3,32 in the model results). The thermistor at
74 m is in the upper part of the metalimnion, and experi-
ences significant oscillations due to internal waves. Figure
7b compares simulated and observed time series of inte-
grated potential energy at the INDEX station. This provides
a global measure of the internal wave activity in the water
column. The close agreement between simulated and
observed surface temperatures suggests that cooling and
mixing rates, that determine the surface temperature during
a cooling period, are well represented in the model. The
internal wave climate is not represented equally well. Even

Figure 7. Comparison of observations and simulations at
the INDEX station: Time series of (a) observed and
simulated temperatures at 2 m and 74 m below the surface;
(b) observed and simulated integrated potential energy.
Station (3, 32) in the model is taken as representative of the
INDEX station.
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though the model predicts reasonably the initial (7–10 days)
period of observation, the match deteriorates as time pro-
gresses. The model captures the decay of the Kelvin waves
from Interval 1 to Interval 2 of the observations, but does not
reproduce the excitation of Kelvin waves in Interval 3.
Possible causes of such disagreement are discussed below.
[32] Figure 8 shows the power spectrum of the simulated

and observed IPE signals at the INDEX station. Both time
series are sampled every 30 min for consistency. The same
four peaks are encountered in the simulation and in the
analysis of the thermistor chain records: three peaks in
the subinertial range of the frequency, and one peak in the
superinertial range. The periods found in the spectral
analysis of the 3-D model results and the observations
along with the periods predicted by the analytical model
are compared in Table 1. The 3-D model predicts internal
wave energy close to that observed, as evident by the
proximity of both spectra in Figure 8, but slightly over-
predicts it at the internal wave frequencies. Also, the quasi-
diurnal peak in the model does not correspond exactly to the
peak in the observations (closer to 24 h). The rotational
character of the velocity field at each of the peaks was
studied, by calculating the rotary spectra [e.g., Fofonoff,
1969] of the velocity records from node (32, 18, 30) in the
grid (Figure 9). While the total spectrum of the velocity at
node (3, 32) displays the same peaks as in the velocity

observations, its rotational character is not clear, given that
it is adjacent to the western boundary in the numerical grid.
The choice of node (32, 18) as ‘‘observation’’ point is
somehow arbitrary, although justified in that the rotational
character of the velocity field is pronounced there (given it
is far enough from the boundary), and both sub- and
superinertial oscillations are detectable in the rotary spec-
trum (since it is within the internal Rossby radius from the
boundary). The oscillations with a period of 16–18 h have a
very strong anticyclonic rotating component, following the
behavior expected for a Poincaré wave. The cyclonic
rotating components of the velocity time series, on the other
hand, dominate in the sub-inertial range of frequencies that
are associated with the Kelvin modes. The spectrum shows
clearly the 37 h signal. The origin of the diurnal signal
seems to be associated with the weak diurnal periodicity in
the wind time series, since this peak was only observed in
the spectra of velocity time series close to the surface.

5.3. Spatial Structure of IPE Oscillations

[33] To visualize the spatial structure and evolution of
internal wave modes in Lake Tahoe, the numerical model
was set to calculate and record the IPE at every horizontal
position hourly. The IPE at each horizontal location was
detrended and band-pass filtered to isolate the oscillations
with the characteristic frequencies revealed in the spectra.
The passbands (in Hz) and order of the filters, used to
isolate the different modes of oscillation, are given in
Table 2. Here, results for the first 100 hours of the study
period are emphasized, when the simulations most closely
match the observations.
[34] Figure 10 displays the evolution of the IPE caused by

the subinertial oscillations in sequences of plots at quarter-
period (T/4) increments. Kelvin waves are seen traveling
cyclonically around Lake Tahoe, with the shore on the right,
and with one (Figures 10a, 10b, 10c, and 10d), two (Figures
10e, 10f, 10g, and 10h) and three (Figures 10i, 10j, 10k, and

Figure 8. Spectrum of simulated (thin line) and observed
(thick line) IPE at the INDEX station. Arrows mark periods
identified in the analysis of observed IPE at the INDEX
station. Dashed lines define confidence (95%) intervals.

Figure 9. Rotary spectra of simulated velocity 150 m
below the surface at node (32,18,30). The total spectrum is
obtained by adding the anticyclonic (dashed) and cyclonic
(thin solid line) components.
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10l) nodal diameters. Increases in the IPE field (red) represent
areas of upwelling or rising of isotherms, while troughs (blue)
represent areas of downwelling or depression of the iso-
therms. A characteristic feature that is especially visible in the
first Kelvin mode, is an away-shore ‘‘tongue’’ where the IPE
undergoes significant oscillations. This feature trends to the
south-east, out of the western embayment of Lake Tahoe. In
Figure 10b it is present in a downwelled phase, while in
Figure 10d it is in an upwelled phase. Careful observations of
the IPE evolution show that the oscillations in this area lead
those in the western embayment. The mechanism for the
generation of this feature is unresolved, although it appears
linked to topographical features. First horizontal mode Kel-
vin waves were repeatedly observed in Lake Tahoe during the
four year study of Thompson [2000], but with periodicities
that increased from 2.5–3 days in the early Fall, to values
closer to those presented here, later in winter. Higher modes,
though, have not previously been documented in Lake Tahoe.
[35] The spatial structure of the superinertial (17 h)

oscillations of the IPE field is illustrated in the sequence

of plots in Figure 11. Here each plot is separated by 2 h,
(slightly less than T/8). It can be clearly seen that the phase
propagates anticyclonically around the basin. The behavior
of the IPE oscillations in the surrounding embayments,
though, does not follow the basin-scale pattern. For exam-
ple, in Figures 11a and 11b, the wave is causing upwelling
in the western shore in the main basin (high positive IPE)
while close to the shore in the embayment the IPE signal
shows negative values (downwelling). The IPE in the
embayment oscillates with a node along the east–west
direction, contrary to the general behavior in the main deep
basin. The horizontal structure of the oscillations is thus far
from being simple. For both the Poincaré mode and the
previously discussed Kelvin mode, topographic effects exert
considerable influence on the spatial structure of the internal
wave field.
[36] A slightly different view of the individual internal

wave fields is obtained if one plots the vertical displacement
of the 5.5�C isotherm from its equilibrium position. This is
shown in Figures 12a–12d for the three Kelvin modes and
the Poincaré mode. It is clear from Figure 12 that the high
internal wave displacements that are observed are the result
of the coincidence of several modes.

5.4. Spatial Structure of IKE Oscillations

[37] The evolution of the IKE field was studied, follow-
ing the procedures described above for the IPE. The
amplitudes, defined as the maximum value in the filtered
IKE time series during one selected period, are represented
in gray scale surface plots. The time frame studied is day

Figure 10. Three modes of Kelvin waves reproduced in
the modeled IPE and presented at quarter period intervals.
Sense of rotation is cyclonic in all cases. (a–d) First
horizontal mode; (e–h) second horizontal mode; (i–l) third
horizontal mode. Time series of IPE at each horizontal
location are first detrended and then band-pass filtered as
specified in Table 2.

Figure 11. First mode Poincaré wave reproduced in the
modeled IPE and presented at 2 h intervals. Sense of
rotation is anticyclonic. Wave period is approximately 17 h.
Time series of IPE at each horizontal location are processed
as indicated in Figure 10. A black box is included to display
the clockwise phase propagation of the Poincaré wave.
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350 to 356, 1999 when the agreement between observations
and simulations is high. Figure 13 shows the IKE amplitude
distribution, for the 17-hour period (Figure 13b) and the
128-hour (Figure 13a) period oscillations. These are the
most energetic oscillations observed in the lake. The ampli-
tude of the 128-hour period IKE (Figure 13a) is, in general,
highest along the boundaries although regions of increased
values projecting from boundaries toward the lake interior
(marked in Figure 13a with stars) are present. This pattern
repeats itself in higher Kelvin horizontal modes. The
regions of high IKE, projecting toward the interior of the
lake, coincide with locations where the boundary becomes
convex to the cyclonic direction of propagation of the
Kelvin wave. Numerical experiments with flat-bottom cir-
cular basins, modified to produce convex boundaries, show
similar features. The 17-hour oscillations of the IKE field
(Figure 13b) exhibit, in general, maximum values at the
center. Figure 13b also shows an area of low velocity
magnitude along the east–west axis at the center of the
lake, which corresponds to a line of low IPE oscillations
(see Figure 11).

5.5. Interaction Between the Wind and the Basin-Scale
Internal Waves

[38] Awell known result in classical mechanics is that the
amplitudes of the motions described by a forced harmonic
oscillator depend on the energy of the forcing mechanism,
the frequency of the forcing compared with the natural

Figure 12. Spatial structure of the 5.5�C isotherm displacement: (a) H1V1 Kelvin wave, (b) H2V1
Kelvin wave, (c) H3V1 Kelvin wave, and (d) H1V1 Poincaré wave. Gray scale gradation corresponds to
vertical axis scale in each frame.

Figure 13. Spatial distribution of the amplitude of IKE
oscillations caused by (a) Kelvin wave mode 1 and (b)
Poincaré wave. The amplitudes were first normalized using
the maximum value in the domain. The natural logarithmic
of the normalized amplitude (AN) is shown using a gray
scale. Contours are shown every 0.25 units in the
logarithmic scale. Stars mark areas where the high kinetic
energy intrude into the interior of the basin.
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frequency of the oscillator, and their relative phase [see, e.g.,
Wilson, 1972]. Those concepts are applicable to basin-scale
internal waves as shown by Antenucci et al. [2000], given
that isopycnal oscillations are forced by the wind. Antenucci
et al. [2000] also presented an analytical model of the
response of a two-layer rectangular basin undergoing inter-
nal oscillations, with the wind-forcing applied impulsively.
In that model, the wind amplifies the signal when a zero
relative phase exists. At zero phase, the impulsive force is
applied as the wave passes through zero from trough to
crest. A relative phase of half the period of the internal wave
(±T/2) results in cancellation of the internal wave energy.
This model, although simple, provides insight in the nature
of the interaction between the wind applied impulsively on
the surface of the lake and the internal waves. Here, the role
played by the wind field, in determining the injection-
drainage of energy into the internal wave field of Lake
Tahoe, is examined by the means of numerical experiments.
In particular, the wind phase relative to the phase of the
internal wave is investigated. The focus is on two strong
wind events with very different effects on the Kelvin wave.
The first event commences on day 346 1999, previous to
westerly winds of up to 13 m s�1. The inclusion of this
event in the simulations proved to be critical in reproducing
the large oscillations on days 350 to 360, which points to its
role in exciting Kelvin waves. During the second event, on
day 355, winds of up to 10 m s�1 blew from the east. The
wind acts in opposition of phase with the Kelvin wave,
which at that time is causing upwelling at the western shore
(Figure 2). It is this event that weakens the Kelvin wave in
Interval 2 of the simulations. To test this hypothesis,
simulations were conducted in which the wind was turned
to zero in the momentum equations after day 355 (simu-
lation 1) and after day 357 (simulation 2). The Kelvin wave
signal (with a period of 110 hours) was isolated from the
simulated IPE time series at the horizontal location (3, 32),
next to the INDEX station, using wavelet transforms. Figure
14 shows the amplitude of the Kelvin wave IPE signal for
simulations 1 and 2, as well as for the measured wind field.
The decay in the Kelvin wave amplitude was measured as the
time for it to become half its maximum value (Td). The decay

in the signal for simulation 2 (Td = 134 h) is similar to that in
the simulation with the true wind field (Td = 122 h), while for
simulation 1 the decay is significantly longer (Td = 270 h).
[39] The evolution of the amplitude of the Kelvin wave in

the observed data can also be studied in relation to the
relative phase of the wind and the internal oscillations. The
Kelvin wave signal in the observed IPE time series at
the INDEX station was extracted from the wavelet trans-
forms and plotted together with the east-west wind compo-
nent at the USCG weather station (Figure 15). An increase
in the IPE time series marks an upwelling at the western
shore of the lake, while downwelling periods corresponds to
decreasing trends in the series. Easterly winds acting at the
time of upwelling will act to energize the internal wave
(energizing event), while at the time of downwelling will
drain energy from the internal wave (weakening event). In
Figure 15 the energizing events are marked with dark
shaded bars, while the weakening events are marked with
light shaded bars. The decay in the Kelvin wave amplitude
follows a series of weakening events, while a series of
energizing events precedes the excitation of Kelvin waves at
the end of the period under study.

6. Summary and Conclusions

[40] A three-dimensional model for flow and transport in
lakes has been used to study the nature of the dominant
basin-scale internal waves of Lake Tahoe and their relation
to the wind field, under winter conditions. The lake was
weakly stratified with a well-defined metalimnion between
50 and 150 m below the free water surface. Despite the
weak vertical stratification, the lake was still highly stable
with respect to vertical overturn and therefore representative
of the conditions that many shallower lakes experience for
much of the year. However, the weak stratification, com-
bined with the size of Lake Tahoe, yielded conditions that
produced large amplitude internal oscillations with periods
approaching 128 hours. Such conditions constitute a very
severe test for a numerical model, requiring, in particular,

Figure 14. Evolution of the amplitude of simulated IPE
signal for the first horizontal mode Kelvin wave (128 h
period) at station (3, 32), as calculated through wavelets. The
amplitude is normalized using themaximum value in the time
series. Reference simulation (solid line) and simulations
conducted by removing the wind momentum flux after day
355 (dashed line) and day 357 (dotted line) in 1999.

Figure 15. Measured IPE signal at the INDEX station for
the first horizontal mode Kelvin wave (as calculated
through wavelets) and east–west component of the wind
vector. The time series have been normalized using the
maximum value during the time window analyzed. Vertical
dark shaded bars mark strong wind events when the phase
of wind and the Kelvin wave results in the wave being
enhanced. Light shaded bars mark events when the
interaction is destructive.
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low levels of numerical dissipation and phase loss, and
accuracy in the representation of the turbulent transport.
[41] Four modes of oscillation were isolated in the

measured internal wave field, and were positively identified
through analysis and display of the model results. Three of
the modes have subinertial frequencies and were identified
as vertical mode one Kelvin waves traveling cyclonically
around the perimeter of the lake with periodicities of
approximately 128, 57 and 37 h. The longer period Kelvin
wave has horizontal mode 1, while the others have hori-
zontal modes 2 (57 h) and 3 (37 h). The fourth internal wave
mode was identified as a vertical mode one, horizontal
mode one Poincaré wave having a period of about 17 h,
causing transverse oscillations of the isotherms. This is the
first time that such a rich array of basin-scale internal wave
types has been positively demonstrated to exist in Lake
Tahoe, and reinforces similar findings in other medium to
large lakes [Hodges et al., 2000; Saggio and Imberger,
1998]. The second and third mode Kelvin waves have
previously only been observed in considerably larger lakes
such as the Great Lakes [Schwab, 1977].
[42] Simplified circular models of Lake Tahoe’s basin

were able to estimate the period of the internal wave modes
observed. However, the spatial structure of the wave fea-
tures cannot be predicted with such tools, particularly in
lakes with relatively complex boundaries such as Lake
Tahoe. In such cases topographical effects appear to distort
the idealized wave structures, and to introduce sub-basin
(embayment) oscillations, which appear to exist almost
independently of the main basin oscillations. The details
of these processes are still not understood, although the
effects are clearly evident in the model results.
[43] The numerical experiments and the analysis of IPE

records at the INDEX station substantiate the critical role of
the relative phase of the wind and the isopycnal oscillations in
the decay of the internal wave energy. This has been shown
here to be the dominant mechanism of wave dissipation in
Lake Tahoe, where storm wind-forcing is not periodic, or at
least does not coincide with that of the energetic Kelvin
wave. The phase difference between the wind and the
internal wave field was seen to be capable of either amplify-
ing the wave energy or annihilating it. While observations
and the simulations presented here are similar in the first 10–
15 days of the period under study (including a phase of
amplification and annihilation), the simulations do not
capture the excitation of subinertial waves during Interval
3 at the INDEX station. This could be due to a combination
of factors such as (1) numerical diffusion in the momentum
equations draining energy from the internal waves, (2)
numerical diffusion in the temperature transport equation
causing the interface to smear out, (3) the inherent phase
error of the numerical algorithm, or (4) the misrepresentation
of the relative phase between the wind and the internal waves
due to the availability of only a single observation station.
[44] The identification and description of the internal wave

field was facilitated by the conjunctive use of both detailed
field measurements and a three-dimensional modeling
approach. The latter provides spatially intensive information
that is not possible to gain with a field measurement program.
It also enables one to a posteriori select points of particular
interest or importance for analysis. While in the present study

the measurements were taken prior to the development of the
model, future measurement campaigns will be conducted
with the benefit of this tool. It is therefore interesting to
consider how a model would best be used. It is evident that
for topographically complex lakes, such as Lake Tahoe, the
spatial and temporal response of the internal wave field is not
straightforward, and the use of simple analytical models to
guide instrument placement (as is often done) could miss
many of the most interesting features.
[45] We believe that model results can help identify the

fewest sampling points that will capture the greatest range
of responses, so that in turn the models can be better
validated. The lake responses are likely to vary with the
strength of the stratification, the vertical location of the
stratification with respect to particular bathymetric features,
and seasonal changes in wind patterns. Even from year to
year, the response of this system is likely to differ, due to the
aperiodic interaction of the wind field and the internal wave
field. The effects of a single storm were shown to change
the internal wave behavior for periods of order 10 days.
During certain times (Intervals 1 and 3) the storms increased
the internal wave response, while in Interval 2 they were the
primary agents in the dissipation of the wave energy. Thus
this finite set of sampling points is likely to be inadequate to
the task of completely describing the system. The responses
are simply too varied, and too changeable. It is only through
the combined use of a modeling and informed sampling
program can the maximum understanding be gained.

Appendix A

[46] The simplest possible balance in the representation
of linear internal wave oscillations is one that invokes the
interplay between the inertial and gravity terms [e.g., Cush-
man-Roisin, 1994]
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[47] Assuming a solution of the form � = �0exp[i(lx +
my + nz + wt)], where � represents any of the variables
involved in the balance, (l, m, n) are the wave numbers in
the x, y and z directions and w is the frequency of the
oscillations, it can be shown that the dispersion relation,
linking the frequency and the wave number of such an
internal wave is given by

w2 ¼ N2 l2 þ m2

l2 þ m2 þ n2
ðA6Þ
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[48] For waves with l2 + m2 � n2 (i.e. horizontal wave-
lengths much longer than the vertical wavelengths) the
dispersion relation reduces to

w2 ¼ N2 l
2 þ m2

n2
ðA7Þ

which is the identical dispersion relation that would be
obtained if in equation A4, a balance between the pressure
and gravity terms (i.e., hydrostatic balance) were assumed.
This is in general the case for basin-scale internal waves. In
the particular case of Lake Tahoe, where the basin-scale
waves would have a characteristic horizontal length scale of
approximately 20 km (the width of the lake) and a vertical
dimension of 500 m (the maximum depth), the ratio of
vertical to horizontal wavelengths is O (10�2) and hence
l2  10�5n2, which justifies the use of an hydrostatic code
as a first approach to study such waves.

Appendix B

[49] The model solves Equations 15 and 16, governing
the transport of TKE and turbulence macro-scale, using a 3-
level fully implicit scheme [Fletcher, 1991; Ferziger and
Peric, 1996]. The variables q2 and q2l are defined at vertical
velocity points (interfaces between two cells aligned in the
vertical direction). The discretized equations are written as
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[50] In the leapfrog solution of the momentum equation
the eddy coefficients are centered in time, i.e. the eddy
viscosity and diffusivity are those calculated for time n.
Hence the solution for q2 and q2l at time n + 1 is not needed
for the calculation of the velocity solution during the initial
leapfrog step. The solution for q2 and q2l is obtained after
the solution of the momentum and continuity equations with
the leapfrog step, and no further iterations are performed.
Once q2 and q2l at n + 1 have been calculated at the end of
the leapfrog step, the eddy viscosity and diffusivity are
calculated at n + 1 and averaged with the coefficients
already calculated for the previous time n, to obtain the
eddy coefficients at time n + 1/2, that are used in the
trapezoidal iterations.
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