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[1] Dyadic Green’s functions (DGFs) for continuously curved waveguides are important
for the feeding and radiation problems of cylindrically conformal slotted-waveguide
arrays. The major difficulty in the construction of these DGFs in curved waveguides and
cavities is that there are no entire-domain TE or TM modes with respect to the curving
direction, while the longitudinal-section electric (LSE) and magnetic (LSM) modes do not
have the complete orthogonality in terms of the dot product as required by the
conventional Ohm-Rayleigh method as practiced in literature. Therefore, the conventional
Ohm-Rayleigh method for constructing DGFs is not applicable to curved waveguides. In
this work, the DGFs are constructed with the help of the Lorentz reciprocity theorem and
the mode orthogonality based on the concept of power flow, and by adding the source
singularity terms. To reduce the orders of singularity of DGFs in their application to
waveguide walls, the common form of DGFs is then reformulated into a form convenient
for numerical computation by both forward and backward derivation procedures. Finally, a
general procedure is proposed for the reformulation of DGFs for common types of
waveguides. The DGFs derived are applicable to problems with curved waveguide
junctions, and coupling and radiating slots for conformal slotted-waveguide
antennas. INDEX TERMS: 0619 Electromagnetics: Electromagnetic theory; 0624 Electromagnetics:

Guided waves; 0609 Electromagnetics: Antennas; KEYWORDS: Green’s functions, eigenvalues/eigenfunctions,

curved waveguides, conformal slotted-waveguide antennas
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1. Introduction

[2] Continuously curved waveguides are used not only
as waveguide bends but also as feeding or radiating
guides for cylindrically conformal waveguide slot
antenna arrays [Fan, 1995]. In analyzing these problems,
one often uses the dyadic Green’s functions (DGFs) for
curved waveguides and cavities [Fan, 1995; Bates,
1969; Mittra, 1972]. Although many expressions of
DGFs have been derived for various straight waveguides
and cavities [Collin, 1960; Tai, 1994; Rahmat-Samii,
1975; Tai and Rozenfeld, 1976; Wang, 1978, 1982;
Kisliuk, 1980; Daniele, 1982; Pathak, 1983; Yang,
1992; Li et al., 1995], to our knowledge, no expressions

of DGFs for curved waveguides and cavities are avail-
able in literature.
[3] The major difficulty in the construction of the

DGFs for curved waveguides is that, unlike for straight
waveguides, there are no entire-domain TE or TM
modes with respect to the curving (also guiding) direc-
tion. There exist only the longitudinal-section electric
modes (LSE) and longitudinal-section magnetic modes
(LSM) in curved waveguides. However, these two sets
of modes do not have the complete orthogonality in
terms of the dot product. Furthermore, in contrast to
straight waveguides, one cannot carry out the infinite
volume integration in a curved waveguide as required by
the dot-product orthogonality because a curved wave-
guide is truncated at the two ends. As a result, the
conventional Ohm-Rayleigh method as practiced in
literature is not applicable to the curved waveguides
problems. Moreover, unlike common straight rectangular
waveguides, the complete expressions of DGFs for
curved guides cannot be constructed from the potential
functions by solving the scalar wave equations.
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[4] Another issue to be addressed is the treatment of
singularity in the DGFs. When applied to boundary
integral equations, the common expressions of the DGFs
are not convenient for numerical computation because of
their higher-order singularity. In the past, much work has
been done on the efficient numerical evaluation of DGFs
in the source region for both unbounded space and
waveguides and cavities in a volume integral form
[Wang, 1982, 1991; Pathak, 1983; Yang, 1992; Lee et
al., 1980; Yaghjian, 1980; Tai, 1981; Chew, 1989, 1990;
Nachamkin, 1990]. However, so far there is no report of
a systematic approach to applying DGFs for waveguides
and cavities to the boundary surfaces.
[5] In this paper, the DGFs for curved waveguides and

cavities are constructed through the fields due to a point
electric or magnetic source. The field expressions are
derived with the help of the Lorentz reciprocity theorem
and the LSE and LSM mode orthogonality based on the
concept of power flow, and by adding the source
singularity terms. The conventional form of DGFs is
reformulated into a form convenient for numerical com-
putation. Finally, a general procedure for reformulation
of DGFs for general waveguides is proposed for an
arbitrary waveguide.

2. Vector Wave Functions in Curved

Waveguides

[6] Consider a curved waveguide (or cavity) of rec-
tangular cross section with perfectly conducting walls,
filled with homogeneous medium with the electrical
parameters � and m, as depicted in Figure 1. With

respect to a cylindrical coordinate system (r, j, z),
the inner waveguide walls are defined by r = r1, r2 and
z = 0, c, and the two ends by j = j1, j2. There are four
possible cases for end conditions: both ends are
matched (Case I) or shorted (Case II), the end j = j1

is matched while the end j = j2 is shorted (Case III),
or vise versa (Case IV). A time dependence exp( jwt)
is implied and suppressed in the following discus-
sions.
[7] The eigenmodes in curved waveguides can be

classified as either LSE modes or LSM modes [Bates,
1969; Mittra, 1972]. For the LSE modes, their vector
wave functions are defined in terms of scalar wave
functions ymmn

± as

M�
mmn ¼ r� ẑy�

mmn; ð1Þ

N�
mmn ¼

1

k
r�r� ẑy�

mmn: ð2Þ

The scalar wave functions ymmn
± satisfy the same scalar

Helmholtz equation and the same boundary conditions as
those of Hz, and can be given by

y�
mmn ¼ Bmmn hmrð Þsin mpz

c

� �
F

�
mmn

jð Þ; ð3Þ

in which

Bmmn hmrð Þ ¼ J 0mmn hmr1ð ÞYmmn hmrð Þ

�Y 0
mmn

hmr1ð ÞJmmn hmrð Þ;

Figure 1. A curved waveguide and the coordinate system.

(4)

11 - 2 FAN AND LIU: DYADIC GREEN’S FUNCTIONS FOR CURVED WAVEGUIDES



��
mmn

jð Þ ¼

exp þ j mmnjð Þ
exp � j mmnjð Þ

�
for Case I

sin mmn j� j1ð Þ
sin mmn j2 � jð Þ

�
for Case II

exp þ j mmnjð Þ
sin mmn j2 � jð Þ

�
for Case III

sin mmn j� j1ð Þ
exp � j mmnjð Þ

�
for Case IV:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5Þ

where the superscript ± denotes the upper and lower
expressions, respectively. In the above formulas, k is

the wavenumber, hm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � mp=cð Þ2

q
=m hmð Þ � 0ð Þ; J

and Y are Bessel functions of first and second kinds, the

prime on the functions denotes derivative with respect to

the argument, and the eigenvalues mmn are the roots of

equation Bm
0 (hmr2) = 0.

[8] Similarly, for the LSM modes, the corresponding
vector wave functions are defined in terms of scalar wave
functions y�mn

± as

M�
�mn ¼ r� ẑy�

�mn; ð6Þ

N�
�mn ¼

1

k
r�r� ẑy�

�mn: ð7Þ

The scalar wave functions y�mn
± satisfy the same scalar

Helmholtz equation and the same boundary conditions as
those of Ez, and are given by

y�
�mn ¼ C�mn hmrð Þcos mpz

c

� �
F

�
�mn

jð Þ; ð8Þ

C�mn hmrð Þ ¼ J�mn hmr1ð ÞY�mn hmrð Þ

�Y�mn hmr1ð ÞJ�mn hmrð Þ; ð9Þ

where the eigenvalues �mn are the roots of the equation
C�(hmr2) = 0, and F�mn

± (j) takes the same form as
Fmmn

± (j) in (5) except that mmn is replaced by �mn and the
sine function by a cosine function.
[9] It can be shown that there is a one-to-one corre-

spondence between these two sets of eigenmodes in
curved waveguides and those in straight waveguides of
the same cross section. However, in contrast to straight
waveguides, the LSE(m,n) modes and LSM(m,n) modes
in curved waveguides are not degenerate. Only when the
radii of the curved walls become large, the eigenmode
fields and the eigenvalues of curved waveguides
approach those of straight waveguides.
[10] The symmetrical relations between the eigenfunc-

tions M and N are

M�
�
mmn

¼ 1

k
r� N�

�
mmn

; ð10Þ

N�
�
mmn

¼ 1

k
r�M�

�
mmn

: ð11Þ

Similar relations exist for straight waveguides.
[11] Using the orthogonality relations of trigonometric

functions and the radial functions in curved waveguides
given by Appendix A, we can show that the above vector
wave functions have the following orthogonal relations:

Zr2
r1

Zc

0

M�
mmn � N�

�m0n0

� �
� ĵdr dz

¼
Zr2
r1

Zc

0

N�
mmn �M�

�m0n0

� �
� ĵdr dz ¼ 0; ð12Þ

Zr2
r1

Zc

0

M�
mmn � N


mm0n0

� �
� ĵdr dz

¼ � 1þ d0m
2

h2mc

k
dmm0dnn0NmmnF

�0

mmn
jð ÞF


mmn
jð Þ; ð13Þ

Zr2
r1

Zc

0

M�
�mn � N


�m0n0

� �
� ĵdr dz

¼ � 1þ d0m
2

h2mc

k
dmm0dnn0N�mnF

�0

�mn
jð ÞF


�mn
jð Þ; ð14Þ

where dpq = 1 for p = q, and dpq = 0 for p 6¼ q. The mode
normalization constants Nmmn and N�mn have the expres-
sions in integral form:

Nmmn ¼
Zr2
r1

1

r
Bmmn hmrð Þ

 �2

dr; ð15Þ

N�mn ¼
Zr2
r1

1

r
Cmmn hmrð Þ

 �2

dr; ð16Þ

and in differential form:

Nmmn ¼
1

2mmn
hmrBmmn hmrð Þ

@Bmmn hmrð Þ
@mmn

� �r2

r¼r1

; ð17Þ

N�mn ¼
�1

2�mn
hmrC0

�mn
hmrð Þ @C�mn hmrð Þ

@�mn

� �r2

r¼r1

: ð18Þ

Note that the above orthogonality is based on the concept
of power flow, rather than the dot-product as required in
the conventional Ohm-Rayleigh method. The above
vector wave functions also form a complete set in the
source-freeregion. Hence the fields outside the source
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region can be uniquely expanded in terms of these
functions.
[12] In passing, we point out that for lossless curved

waveguides, the eigenvalues, mmn and �mn, are real for
only the dominant mode or a few lower-order modes,
and are imaginary forthe higher cutoff modes. The
eigenfunctions involve Bessel functions and modified
Bessel functions of imaginary orders. The accurate
numerical methods for computing these functions have
been given by Fan and Yang [1994a, 1994b, 1995].

3. Dyadic Green’s Functions for Curved

Waveguides and Cavities

3.1. Magnetic-Source Dyadic Green’s Functions

[13] The magnetic-source electric-field DGF GE
(m)

(r,
r0) and magnetic-source magnetic-field DGF GH

(m)
(r, r0)

satisfy the following partial differential equations and
boundary conditions, respectively

r�r� �k2
� �

G
mð Þ
E r; r0ð Þ ¼ �r � Id r� r0ð Þ ð19Þ

n̂� �G
mð Þ
E r; r0ð Þ ¼ 0 on the walls; ð20Þ

and

r�r� �k2
� �

G
ðmÞ
H r; r0ð Þ ¼ �jw�Id r� r0ð Þ; ð21Þ

n̂�r�G
mð Þ
H r; r0ð Þ ¼ 0 on the walls: ð22Þ

Note that for typesetting convenience (19) and (20) are
written in the operator form, and the corresponding
common form is givenby Tai [1994].
[14] The solutions of (19)–(22) can be written in the

form [Yang, 1992]

G
mð Þ
E r; r0ð Þ ¼

X
j

E mð Þ r; r0; û0j

� �
û0j; ð23Þ

G
mð Þ
H r; r0ð Þ ¼

X
j

H mð Þ r; r0; û0j

� �
û0j; ð24Þ

where r0 is the source location of a unit point magnetic
dipole in the û0j-direction û0j ( j = 1,2,3 in an orthogonal
coordinate system), and E(m) (r, r0; û0j) and H

(m) (r, r0; u0j)
are the electric and magnetic fields at the field point r
excited by this point magnetic dipole.
[15] In the following, we first determine the fields

outside the source point by applying the Lorentz reci-
procity theorem, and then add the source singularity-
terms to the field expressions.
[16] For a unit point magnetic dipole source, the

magnetic current density is Jm = m̂0d(r � r0). The excited
fields in a source-free region can be expanded in terms of

the vector eigenfunctions defined in the previous section,
as follows

E mð Þ� ¼
X
m

X
n

a�
mnM

�
mmn þ b�mnN

�
�mn

h i
j b j0; ð25Þ

H mð Þ� ¼ 1

jwm

X
m

X
n

a�
mnN

�
mmn þ b�mnM

�
�mn

h i
j b j0;

ð26Þ
where amn

± and bmn
± are coefficients to be determined.

[17] To obtain the expansion coefficients amn
± and

bmn
± in (25) and (26), we now apply Lorentz reciprocity

theorem [Collin, 1960] to a small volume enclosing
the source. Let E(2) and H(2) be the fields produced by
the magnetic current, J(2)m = Jm, and E(1) and H(1) be the
eigenmode fields defined in the previous section.
Consider the volume V bounded by the waveguide walls
and two cross-sectional plane j = j0 ± 0, as shown in
Figure 2. Now if Lorentz reciprocity theorem [Collin,
1960] is applied to this volume, the surface integral on S0
vanishes because of the boundary condition, i.e., n̂ �
E(1) = n̂ �E(2) = 0 on the walls. Also note that n̂ ¼ ĵ on
S1, n̂ ¼ �ĵ on S2, and Je

(1) = Je
(2) = Jm

(1) = 0, then the
Lorentz reciprocity reduces to

Z
S1

Z
E 1ð Þ

n
� H mð Þ� �H mð Þþ
h i

� E mð Þ� � E mð Þþ
h i

�H 1ð Þ � f̂ dS ¼
Z Z

V

Z
Jm �H 1ð ÞdV : ð27Þ

In the above equation, taking

E 1ð Þ ¼ M�
mmn; H 1ð Þ ¼ 1

jwm
N�

mmn; ð28Þ

and using the orthogonal relations given in the previous
section, we obtain amn

± in (25) as

a�
mn ¼ bmnN



mmn r0ð Þ � m̂0; ð29Þ

where

bmn ¼ � 2

1þ d0m

k

ch2mNmmnDmmn
; ð30Þ

Figure 2. Division of integration region.
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Dmmn ¼ F
þ0
mmn

j0ð ÞF�
mmn

j0ð Þ �F
�0
mmn

j0ð ÞFþ
mmn

j0ð Þ: ð31Þ

[18] Similarly, by letting

E 1ð Þ ¼ M�
�mn; H 1ð Þ ¼ 1

jwm
N�

�mn; ð32Þ

we also arrive at

b�mn ¼ amnN


�mn r0ð Þ � m̂0; ð33Þ

where

amn ¼ � 2

1þ d0m

k

ch2mN�mnD�mn

; ð34Þ

D�mn ¼ F
þ0
�mn

j0ð ÞF�
�mn

j0ð Þ �F
�0
�mn

j0ð ÞFþ
�mn

j0ð Þ: ð35Þ

The constants Dmmn and Demn have the following explicit
expressions for different end conditions,

Dmmn ¼

2 j mmn for Case I

mmn sin mmn j2 � j1ð Þ for Case II

mmn exp jmmnj2ð Þ for Case III

mmn exp �jmmnj2ð Þ for Case IV

;

8>><
>>:

ð36Þ

and

D�mn ¼

2 j �mn for Case I

�mn sin �mn j2 � j1ð Þ for Case II

�mn exp j�mnj2ð Þ for Case III

�mn exp �j�mnj2ð Þ for Case IV

:

8>><
>>:

ð37Þ

[19] Note that equations (25) and (26) apply to a
source-free region only. To arrive at expressions also
valid at the source region, we turn to the problem of the
source-singularity terms. In the work of Pathak [1983],
the expressions of the source-singularity terms for the
electric and magnetic fields due to a point electric source
J = ê0d (r � r0) are derived. By invoking the duality
principle, we obtain the expressions of the electric and
magnetic fields excited by a point magnetic source as
follows,

E rð Þ ¼ E� rð Þ; H rð Þ ¼ H� rð Þ � p̂p̂

jwm
d r� r0ð Þ � m̂0;

p b p0; ð38Þ

where p̂ is the propagation direction of the vector wave
functions with which the fields, E±(r) and H±(r), are
constructed. The second term in H(r) involving d(r �
r0) function is referred to as the source-singularity term,
and it is irrotational. By examining the discontinuity of
the fields on both sides of Maxwell’s equations in
scalar form, we also readily obtain the above expression

for the source-singularity term, as discussed by Yang
[1992].
[20] By taking p̂ ¼ ĵ0 and m̂0 ¼ û0j ¼ r̂0; ĵ0 and ẑ0,

respectively, and substituting the expressions of E(m)

and H(m) derived into (1) and (2), we finally obtain

G
mð Þ
E r; r0ð Þ ¼

X
m

X
n

amnN
�
�mn rð ÞM


�mn r0ð Þ



þ bmnM
�
mmn rð ÞN


mmn r0ð Þ
i

j b j0; ð39Þ

G
mð Þ
H r; r0ð Þ ¼ �k

jwm

X
m

X
n

amnM
�
�mn rð ÞM


�mn r0ð Þ



þ bmnN
�
mmn rð ÞN


mmn r0ð Þ
i

þ ĵĵ0d r� r0ð Þ= �jwmð Þ j b j0; ð40Þ

where amn and bmn are given by (30) and (34),
respectively.
[21] It can be seen that the above relatively simple

procedure, unlike the conventional Ohm-Rayleigh
method, does not involve the infinite integrals in spec-
trum domain and the vector eigenfunction expansions of
dyadic d-functions. Moreover, the expressions of GE

(m)

and GH
(m)

are obtained simultaneously without additional
derivation. Using the generalized function theory, we can
show GH

(m) ¼ 1=jw�ð Þr� GH
(m)

, similar to the relation of
E and H.

3.2. Electric-Source Dyadic Green’s Functions

[22] The electric-source electric-field DGF GH
(e)

and
electric-source magnetic-field DGF GH

(e)
r; r0ð Þ satisfy the

following partial differential equations and boundary
conditions, respectively

r�r��k2
� �

G
eð Þ
E r; r0ð Þ ¼ �jw m�Id r� r0ð Þ; ð41Þ

n̂�G
eð Þ
E r; r0ð Þ ¼ 0 on the walls; ð42Þ

and

r�r� �k2
� �

G
eð Þ
H r; r0ð Þ ¼ r � �Id r� r0ð Þ; ð43Þ

n̂�r�G
eð Þ
H r; r0ð Þ ¼ 0 on the walls; ð44Þ

[23] Using a procedure similar to that for a magnetic
source, we obtain,

G
eð Þ
E r; r0ð Þ ¼ �k

jw�

X
m

X
n

amnN
�
�mn rð ÞN


�mn r0ð Þ



þ bmnM
�
mmn rð ÞM


mmn r0ð Þ
i

þ ĵĵ0d r� r0ð Þ= �jw�ð Þ j b j0; ð45Þ
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G
eð Þ
H r; r0ð Þ ¼ �

X
m

X
n

amnM
�
�mn rð ÞN


�mn r0ð Þ



þ bmnN
�
mmn rð ÞM


mmn r0ð Þ
i

jbj0; ð46Þ

where amn and bmn are given by (30) and (34),
respectively. It can also be confirmed that GH

(e) =
�1=jwmð Þr�GH

(e). With the help of duality principle
and taking account of the boundary conditions on the
walls, we can also obtain the above expressions from
those of the magnetic-source dyadic Green’s functions.

4. Reformulation of Dyadic Green’s

Functions

[24] When the DGFs derived above are applied to the
boundary integral equation, there exist two main compu-
tational difficulties if the source and field points coin-
cide: one is the treatment of the d-function, and the other
is their higher-order singularities. To overcome these
difficulties, in this section, we first introduce the eigen-
mode expansions of the source-singularity terms, then
derive a new form of the DGF on the curved waveguide
walls using two different procedures, namely the forward
and backward derivations, based on the theory of gen-
eralized functions. The backward derivation procedure is
finally extended to an arbitrary waveguide in an orthog-
onal curvilinear coordinate system.

4.1. Expansion of the Source-Singularity Terms

[25] It is well known that in curved waveguides, there
are no pure TE and TM modes valid for the whole
waveguide region. However, because of the localized
effect of d-function, the unit vector p̂ in the source-point
term p̂p̂0d(r � r0) for a given p̂-propagating direction can
be considered as a constant vector in the neighborhood of
the source point. We first introduce the localized vector
eigenfunctions, M�

(E), N�
(E), Mm

(H ), and Nm
(H ), respectively

corresponding to TE and TM modes with the p̂-direction.
Then we define two new vector functions L�

(E ) = ry�
(E )

and Lm
(H) = rym

(H). Note that the M-functions do not have
p̂-components, while the p̂-components of N(E) and L(E)

or N(H) and L(H) have the same types of expansion
functions. Therefore, the d-function in the source-
singularity terms for magnetic field and electric field
can be expanded, respectively, as follows,

dH r� r0ð Þ ¼
X
m

Am
1

gp

@y Hð Þ
m

@p
; ð47Þ

dE r� r0ð Þ ¼
X
�

B�
1

gp

@y Eð Þ
�

@p
; ð48Þ

where gp is the metric coefficient.

[26] For the waveguide problem, because
@y Hð Þ

m

@p � y Hð Þ
m

and
@y Eð Þ

�

@p � y Eð Þ
� , and because both ym

(H) and y�
(E) are

complete sets, the expansions in (47) and (48) are

complete. It should be point out that although the above
expressions are derived in the neighborhood of the
source point, they are valid for the whole waveguide
region because the values of the complete expansions in
(47) and (48) are zero outside the source point, which
satisfies the properties of d-function.
[27] For the magnetic-source magnetic-field DGFs for

curved waveguides, p̂ ¼ ĵ; and the corresponding scalar
eigenfunctions are

y Hð Þ
mn ¼ Bmmn hmrð Þ cos mpz

c
e
 j mmnj; m; n ¼ 0; 1; 2; . . .ð Þ:

ð49Þ

Using the orthogonal relation in Appendix A

Zr2
r1

1

r
Bmmn hmrð ÞBmmn0 hmrð Þdr ¼ dnn0Nmmn ; ð50Þ

we can show that

ĵĵ0d r� r0ð Þ ¼ ĵĵ0d j� j0ð Þ
X1
m¼0

X1
n¼0

2

1þ d0m

�
Bmmn hmrð ÞBmmn hmr0ð Þ

cNmmnrr
0 CzCz0 ; ð51Þ

where Cz = cos (mpz/c) and Cz
0 = cos (mpz0/c). Similar to

the expansion of the source-singularity term ẑẑ0d(r � r0)
for straight waveguides, the above expression is valid
when both the source point and field point approach the
waveguide walls. Since the end conditions have no
effects on the d-function, the source-singularity terms for
cavities take the same form as that of waveguides.

4.2. Forward Derivation: First Procedure for
Reformulation

[28] In this subsection, starting from the common
expressions of DGFs for curved waveguides and cavities
in the previous section, we will derive their new forms
suitable for numerical computation. We refer to this
procedure as the forward derivation. (Another procedure,
the backward derivation, first assumes the existence of
this new form, as discussed in the next subsection.)
[29] As an example, consider the magnetic-source

magnetic field dyadic Green’s functions. When the
source and field points approach the curved waveguide
walls, i.e., r = r0 = R, where R = r1 or r2, the source and
field points are r = (R, j, z) and r0 = (R, j0, z0),
respectively. All r components of M�mn(r) and Nmmn(r)
vanish since B0

mmn(hmr1,2) = C�mn(hmr1,2) = 0.
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[30] The first term inside the summation of (40) con-
tains only the ĵĵ0-component, i.e.,

M�
�mn

rð ÞM

�mn

r0ð Þ ¼ U j0 � jð ÞMþ
�mn

rð ÞM�
�mn

r0ð Þ
þ U j� j0ð ÞM�

�mn
rð ÞMþ

�mn
r0ð Þ

¼ ĵĵ0h2mC�mn hmrð ÞC�mn hmr0ð ÞCzCz0

� U j0 � jð ÞFþ
�mn

jð ÞF�
�mn

j0ð Þ
h

þ U j� j0ð ÞF�
�mn

jð ÞFþ
�mn

j0ð Þ
i

¼ ĵĵ0h2m C�mn hmrð ÞC�mn hmr0ð Þ½ �
� CzCz0F

þ
�mn

jmð ÞF�
�mn

jMð Þ; ð52Þ

where U(x) is the unit step function, jm = min(j, j0), and
jM = max(j, j0).
[31] Denoting �g Nð Þ ¼ 1

h2m
N�

mmn rð ÞN

mmn r0ð Þ and F

±(j) =
Fmmn

± (j), we have

g Nð Þ ¼ Bmn r; r0ð Þ
h2mk

2
U j0 � jð Þ ĵ

@2

r@j@z
þ ẑh2m

� ��

� ĵ0 @2

r0@j0@z0
þ ẑ0h2m

� �
SzSz0F

þ jð ÞF� j0ð Þ

þ U j� j0ð Þ ĵ
@2

r@j@z
þ ẑh2m

� �

� ĵ0 @2

r0@j0@z0
þ ẑ0h2m

� �
SzSz0F

� jð ÞFþ j0ð Þ
�
; ð53Þ

where Bmn r; r0ð Þ ¼ Bmmn hmrð ÞBmmn hmr0ð ÞSz = sin (mpz/c)
and Sz0 = sin (mpz0/c).
[32] Now we consider the components in (53). First,

the diagonal components are

ẑẑ0g Nð Þ
zz ¼ ẑẑ0

1

k2
Bmn r; r0ð Þh2mSzSz0F

þ jmð ÞF� jMð Þ

¼ ẑẑ0Bmn r; r0ð ÞSzSz0Fþ jmð ÞF� jMð Þ

� 1

k2
ẑ
@

@z

� �
ẑ0

@

@z0

� �
Bmn r; r0ð Þ

� CzCz0F
þ jmð ÞF� jMð Þ; ð54Þ

ĵĵ0g
Nð Þ
jj0 ¼ ĵĵ0 Bmn r; r0ð Þ

k2h2m

mp
c

� �2

CzCz0

� @

r@jm

@

r0@jM

F
þ jmð ÞF� jMð Þ

¼ ĵĵ0 1

h2m
� 1

k2

� �
CzCz0

� @2

rr0@jm@jM

Bmn r; r0ð ÞFþ jmð ÞF� jMð Þ: ð55Þ

Then, from the relations

@

@z
SzSz0 ¼ � @

@z0
CzCz0 ;

@

@z0
SzSz0 ¼ � @

@z
CzCz0 ; ð56Þ

we obtain the first off-diagonal component

ĵẑ0g Nð Þ
jz0 ¼ � ĵẑ0

Bmn r; r0ð Þ
k2r

@

@z0
CzCz0

� U j0 � jð Þ @F
þ jð Þ
@j

F
� j0ð Þ

�

þ U j0 � jð Þ @F
� jð Þ
@j

F
þ j0ð Þ

�
: ð57Þ

[33] Using the differential formula of the step function
and the symmetry of d-function, we finally simplify this to

ĵẑ0g Nð Þ
jz0 ¼ � 1

k2
Bmn r; r0ð Þ

� ĵ
@

r@j

� �
ẑ0

@

@z0

� �
CzCz0F

þ jmð ÞF� jMð Þ: ð58Þ

[34] Similarly, the other off-diagonal component can
be obtained as

ẑĵ0g
Nð Þ
zj0 ¼ � 1

k2
Bmn r; r0ð Þ

� ẑ
@

@z

� �
ĵ0 @

r0@j0

� �
CzCz0F

þ jmð ÞF� jMð Þ:

ð59Þ
[35] Combining the above components, we arrive at

the more compact dyadic expression

g Nð Þ ¼ ẑ̂z0Bmn r; r0ð ÞSzSz0Fþ jmð ÞF� jMð Þ

þ ĵĵ0 1

h2m

@2

rr0@jm@j0
M

��

þ 1

k2
@2

r@jr0@j0 �
@2

rr0@jm@jM

� ��

� 1

k2
rtr0

t

�
Bmn r; r0ð ÞCzCz0F

þ jmð ÞF� jMð Þ;

ð60Þ
where

rt ¼ ĵ
@

r@j
þ ẑ

@

@z
; r0

t ¼ ĵ0 @

r0@j0 þ ẑ0
@

@z0
: ð61Þ

[36] Furthermore, we can show that the second term in
the above ĵĵ0 component can be reduced to�

@2

r@jr0@j0 �
@2

rr0@jm@jM

�
F

þ
mmn

jmð ÞF�
mmn

jMð Þ

¼ d j� j0ð Þ Fþ0
f0ð ÞF� f0ð Þ �F�0

f0ð ÞFþ f0ð Þ
h i

¼ d j� j0ð ÞDmmn ð62Þ

where the following formula [Jones, 1982]

a xð Þd0 x� x0ð Þ ¼ a x0ð Þd0 x� x0ð Þ � a0 x0ð Þd x� x0ð Þ;
ð63Þ
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has been used. Using the above formulas in the second
term of the summation in (40), we then have

�k

jwm

X1
m¼0

X1
n¼0

bmnh
2
mnĵĵ

0 1

k
CzCz0

@2

r@jr0@j0

�

� @2

rr0@jm@jM

�
Bmn r; r0ð ÞFþ jmð ÞF� jMð Þ

¼ ĵĵ0

jwm
d j� j0ð Þ

X1
m¼0

X1
n¼0

2

1þ d0m

Bmn r; r0ð Þ
cNmmnrr

0 CzCz0 ;

ð64Þ
which is nothing but the negative magnetic source-
singularity term, the last term of (40). Therefore, the
expression of the magnetic-source magnetic-field DGF
in (40) reduces to

G
mð Þ
H r¼r0¼R

�� ¼ �k2

jwm

X1
m¼0

X1
n¼1

2

1þ d0mð Þ
C0
�mn

hmr2ð Þ
h i2
cD�mnN�mn

� ĵĵ0CzCz0F
þ
�mn

jmð ÞF�
�mn

jMð Þ

� k2

jwm

X1
m¼0

X1
n¼0

2

1þ d0mð Þ
Bmmn hmr2ð Þ

 �2
cDmmnNmmn

�
�
ẑẑ0SzSz0 þ

�
ĵĵ0 1

hmR2

@2

@jm@jM

� 1

k2
rtr0

t

�
CzCz0

�
F

þ
mmn

jmð ÞF�
mmn

jMð Þ:

ð65Þ
Note that in this new expression, the d-function term
disappears, and the operator rt rt

0 is introduced. It is the
operator rt rt

0 that increases the order of singularity
associated with the dyadic Green’s functions. The
introduction of rtrt

0 is convenient for the follow-up
numerical treatment when applying the moment method
(MoM) to surface integral equations. Specifically, when
evaluating the double surface integrals of the MoM self-
coupling matrix elements, by using Gaussian theorem,
we can transfer the above differential operators in the
dyadic Green’s function to the basis function and test
function, respectively, so that the order of singularity in
the integrand due to the dyadic Green’s function will be
reduced to first order from third order, greatly accelerat-
ing the convergence rate of the series solution.

4.3. Backward Derivation: A More General
Reformulation Procedure

[37] In the previous subsection, starting with the com-
mon expression of DGFs, we derive a new form of the
DGFs for curved waveguides and cavities on the curved
walls. This form is also valid for an arbitrary waveguide
whose walls are parallel to orthogonal curvilinear coor-
dinate directions. Here we present a general, heuristic

procedure for the reformulation of DGFs for such a
waveguide.
[38] Taking curved waveguides as an example, let

c = a, and r = r0 = r2. Equation (40) can then be
written as

G
mð Þ
H ¼ 1

jwm

X1
m¼0

X1
n¼1



C0
�mn

hmr2ð Þ
�2

1þ d0mð ÞN�mna j�mn
ĵĵ0CzCz0

� e�j�mn jj�j0j þ 1

jwm

X1
m¼0

X1
n¼0

Bmmn hmr2ð Þ

 �2
1þ d0mð ÞNmmna

� 1

r2
�ĵẑ0CzSz0½

�

ẑĵ0SzCz0 � þ

h2m
jmmn

ẑ̂z0SzSz0

� jmmn
h2mnr

2
2

mp
a

� �2

ĵĵ0CzCz0

�
e�jmmnjj�j0j

� ĵĵ0

jwm
d r� r0ð Þ

����
r¼r0¼r2;

ð66Þ

where the source-singularity term is expanded according
to (47).
[39] Now we define a function gmn(r,r

0) for the
expansion function of the ĵĵ0 component within the
second summation in (66) as follows,

gmn r; r0ð Þ ¼ Bmmn hmrð ÞBmmn hmr0ð ÞCzCz0e
�jmmnjj�j0j: ð67Þ

Note that gmn(r,r
0) corresponds to the expansion

functions of ĵĵ0 component of Nmmn
± (r) Nmmn

± (r) wave
function in (40), and its transverse functions take the
same form as those of the expansion functions for dH
(r � r0) function.
[40] Using the relations

@

@j
e�jmmn jj�j0j ¼ � @

@j0 e
�jmmnjj�j0 j

¼ �jmmne
�jmmnjj�j0 j jbj0; ð68Þ

@2

@j@j0 e
�jmmnjj�j0 j ¼ m2mne

�jmmnjj�j0 j þ 2 jmmnd j� j0ð Þ;

ð69Þ

and applying rtrt
0 to (67), we arrive at

rtr0
t CzCz0e

�jmmnjj�j0j
h i

¼ ĵĵ0 2jmmn
rr0

d j� j0ð ÞCzCz0

þ ĵĵ0 m
2
mn

rr0
CzCz0

�
þ jmmn

mp
a

� �2

� 
ĵẑ0
1

r
CzSz0 � ẑĵ0 1

r0
SzCz0

� �
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þ ẑẑ0
mp
a

� �2

SzSz0

�

� e�jmmnjj�j0 j jbj0: ð70Þ
[41] Substituting (70) into (66) and rearranging, we

finally obtain

�G
mð Þ
H ¼ k2

jwm

X1
m¼0

X1
n¼1

C0
�mn

hmr2ð Þ
h i2

1þ d0mð ÞN�mna j�mn

� ĵĵ0CzCz0e
�j�mnjj�j0 j

þ k2

jwm

X1
m¼0

X1
n¼0

Bmmn hmr2ð Þ

 �2

1þ d0mð ÞNmmna jmmn

� ẑ̂z0SzSz0 þ ĵĵ0 m
2
mn

h2mr
2
2

CzCz0

� �
e�jmmnjj�j0 j

�

� 1

k2
rtr0

tCzCz0e
�jmmnjj�j0j

�
; ð71Þ

which is the desired results. Again similar to (65), in the
above expression the piecewise function only involves the
difference j � j0 given in explicit form. In comparison
with the expressions of the usual DGFs in piecewise
function form, this new expression is more suitable for
numerical treatment of the integration in the source
region.
[42] The above heuristic procedure can be generalized

to the reformulation of the DGFs for an arbitrary wave-
guide whose walls are parallel to orthogonal curvilinear
coordinate directions (u, v, p). Without loss of generality,
we define p̂ as the propagating direction, and u = u0 = u0
(at the wall). We give a general reformulation procedure
as follows: (1) Expand the d(r � r0) function term using
(47) or (48), depending on whether the source is
magnetic or electric. (2) Introduce the tangential deriv-
atives at the coordinate plane coincident with the
waveguide wall

rt ¼ p̂
1

gp

@

@p
þ v̂

1

gv

@

@v
;

r0
t ¼ p̂0

1

gp0

@

@p0
þ v̂0

1

gv0

@

@v0
; ð72Þ

and evaluate the term (�1/k2)rtrt
0 gmn(r � r0), where

gmn(r � r0) is the expansion function of the p̂p̂0-com-
ponent of N±(r)N
(r0) function in the common DGF
expression, whose transverse functions take the same
form as those of the expansion function of the d(r � r0)
function. (3) Substitute the above result into the original
expression of the DGF, cancel the source-point term, and
rearrange the terms in the expression into the desired form
with the vector operator (�1/k2)rtr0

t. The procedure has
been used for the transformation of the DGFs for straight
waveguides with rectangular and sectoral cross sections.

[43] Finally, it is worth pointing out that when r2 ! 1
(r2 � r1 = constant), using the large argument asymptotic
expansion of Bessel functions of both real and imaginary
orders and modified Bessel functions of imaginary orders
[Fan and Yang, 1994a, 1994b, 1995], we can show that the
expressions of DGFs for curved waveguides and cavities
derived above reduce to those of rectangular straight
waveguides and cavities.

5. Conclusions

[44] The dyadic Green’s functions for curved wave-
guides and cavities are derived through the Lorentz
reciprocity theorem and the LSE and LSM mode ortho-
gonality based on the concept of power flow, and by
adding the source singularity terms. These DGFs are then
reformulated into a new form suitable for numerical
computation when both the source and field points are
located at the same waveguide wall. A general reformu-
lation procedure is proposed for DGFs for an arbitrary
waveguide. The DGFs derived can be used for solving
problems with curved waveguide coupling and radiating
slots, as well as waveguide junction problems.

Appendix A: Orthogonality of the Radial

Functions

[45] Let Za (hmr) =Bmmn (hmr) orC�mn(hmr), and Zb(hmr)
Zb(hmr) = Bmmn0 (hmr) or C�mn0 (hmr). Then Za(hmr)
and Zb(hmr) satisfy the Bessel’s equations

1

r
d

dr
r
dZa hmrð Þ

dr

� �
þ h2m � a2

r2

� �
Za hmrð Þ ¼ 0; ðA1Þ

1

r
d

dr
r
dZb hmrð Þ

dr

� �
þ h2m � b2

r2

� �
Zb hmrð Þ ¼ 0: ðA2Þ

Multiplying (A1) by rZb(hmr) and (A2) by rZa(hmr),
taking the differences, and integrating from r1 to r2, we
obtain

Zr2
r1

1

r
Za hmrð ÞZb hmrð Þ dr ¼ 1

a2 � b2

�
n
hmr Z 0

a hmrð ÞZb hmrð Þ



:

� Z 0
b hmrð ÞZa hmrð Þ

ior2

r1
: ðA3Þ

Since B0
mmn;n0

hmr1;2
� �

¼ C�mn;n0 hmr1;2
� �

¼ 0; when n 6¼ n0

(mmn 6¼ mmn0 or �mn 6¼ �mn0), i.e., a 6¼ b, the right-hand
side of (A3) is equal to zero; while when n = n0 (mmn =
mmn0 or �mn = �mn0), i.e., a = b, the right-hand side is
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indeterminate. An application of the L’Hospital rule
results in

Zr2
r1

1

r
Za hmrð Þ½ �2dr ¼ 1

2a
hmrð Þ Za hmrð Þ @Z

0
a hmrð Þ
@a

��

� Z 0
a hmrð Þ@Za hmrð Þ

@a

��r2

r1

: ðA4Þ

Finally, we have

Zr2
r1

1

r
Bmmn hmrð ÞBmmn0 hmrð Þdr ¼ dnn0Nmmn ; ðA5Þ

and

Zr2
r1

1

r
C�mn hmrð ÞC�mn0 hmrð Þdr ¼ dnn0N�mn ; ðA6Þ

where the normalization constants, Nmmn and N�mn , are
given in (15)–(18).
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