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[11 Dyadic Green’s functions (DGFs) for continuously curved waveguides are important
for the feeding and radiation problems of cylindrically conformal slotted-waveguide
arrays. The major difficulty in the construction of these DGFs in curved waveguides and
cavities is that there are no entire-domain TE or TM modes with respect to the curving
direction, while the longitudinal-section electric (LSE) and magnetic (LSM) modes do not
have the complete orthogonality in terms of the dot product as required by the
conventional Ohm-Rayleigh method as practiced in literature. Therefore, the conventional
Ohm-Rayleigh method for constructing DGFs is not applicable to curved waveguides. In
this work, the DGFs are constructed with the help of the Lorentz reciprocity theorem and
the mode orthogonality based on the concept of power flow, and by adding the source
singularity terms. To reduce the orders of singularity of DGFs in their application to
waveguide walls, the common form of DGFs is then reformulated into a form convenient
for numerical computation by both forward and backward derivation procedures. Finally, a

general procedure is proposed for the reformulation of DGFs for common types of
waveguides. The DGFs derived are applicable to problems with curved waveguide
junctions, and coupling and radiating slots for conformal slotted-waveguide

antennas.
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1. Introduction

[2] Continuously curved waveguides are used not only
as waveguide bends but also as feeding or radiating
guides for cylindrically conformal waveguide slot
antenna arrays [Fan, 1995]. In analyzing these problems,
one often uses the dyadic Green’s functions (DGFs) for
curved waveguides and cavities [Fan, 1995; Bates,
1969; Mittra, 1972]. Although many expressions of
DGFs have been derived for various straight waveguides
and cavities [Collin, 1960; Tai, 1994; Rahmat-Samii,
1975; Tai and Rozenfeld, 1976; Wang, 1978, 1982;
Kisliuk, 1980; Daniele, 1982; Pathak, 1983; Yang,
1992; Li et al., 1995], to our knowledge, no expressions
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of DGFs for curved waveguides and cavities are avail-
able in literature.

[3] The major difficulty in the construction of the
DGFs for curved waveguides is that, unlike for straight
waveguides, there are no entire-domain TE or TM
modes with respect to the curving (also guiding) direc-
tion. There exist only the longitudinal-section electric
modes (LSE) and longitudinal-section magnetic modes
(LSM) in curved waveguides. However, these two sets
of modes do not have the complete orthogonality in
terms of the dot product. Furthermore, in contrast to
straight waveguides, one cannot carry out the infinite
volume integration in a curved waveguide as required by
the dot-product orthogonality because a curved wave-
guide is truncated at the two ends. As a result, the
conventional Ohm-Rayleigh method as practiced in
literature is not applicable to the curved waveguides
problems. Moreover, unlike common straight rectangular
waveguides, the complete expressions of DGFs for
curved guides cannot be constructed from the potential
functions by solving the scalar wave equations.
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Figure 1.

[4] Another issue to be addressed is the treatment of
singularity in the DGFs. When applied to boundary
integral equations, the common expressions of the DGFs
are not convenient for numerical computation because of
their higher-order singularity. In the past, much work has
been done on the efficient numerical evaluation of DGFs
in the source region for both unbounded space and
waveguides and cavities in a volume integral form
[Wang, 1982, 1991; Pathak, 1983; Yang, 1992; Lee et
al., 1980; Yaghjian, 1980; Tai, 1981; Chew, 1989, 1990;
Nachamkin, 1990]. However, so far there is no report of
a systematic approach to applying DGFs for waveguides
and cavities to the boundary surfaces.

[5] In this paper, the DGFs for curved waveguides and
cavities are constructed through the fields due to a point
electric or magnetic source. The field expressions are
derived with the help of the Lorentz reciprocity theorem
and the LSE and LSM mode orthogonality based on the
concept of power flow, and by adding the source
singularity terms. The conventional form of DGFs is
reformulated into a form convenient for numerical com-
putation. Finally, a general procedure for reformulation
of DGFs for general waveguides is proposed for an
arbitrary waveguide.

2. Vector Wave Functions in Curved
Waveguides

[6] Consider a curved waveguide (or cavity) of rec-
tangular cross section with perfectly conducting walls,
filled with homogeneous medium with the electrical
parameters ¢ and p, as depicted in Figure 1. With
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A curved waveguide and the coordinate system.

respect to a cylindrical coordinate system (p, ¢, z),
the inner waveguide walls are defined by p = p;, p, and
z=0, ¢, and the two ends by ¢ = ¢y, ;. There are four
possible cases for end conditions: both ends are
matched (Case I) or shorted (Case II), the end ¢ = ¢,
is matched while the end ¢ = ¢, is shorted (Case III),
or vise versa (Case IV). A time dependence exp( jwt)
is implied and suppressed in the following discus-
sions.

[7] The eigenmodes in curved waveguides can be
classified as either LSE modes or LSM modes [Bates,
1969; Mittra, 1972]. For the LSE modes, their vector
wave functions are defined in terms of scalar wave
functions ﬂﬁmn as

ME =V x 2t

wmn wmn?

(1)

1
+ sl
N = %V X V X 20, (2)
The scalar wave functions ﬂﬁmn satisfy the same scalar
Helmbholtz equation and the same boundary conditions as

those of H., and can be given by

. (MTZ
1bpimn = Bum (hmp)SlIl (T) (Di:mn(@)’ (3)
in which
By, (hnp) = J;imﬂ (hmp1) Y, (hp)
=Y. (oW, (hup), ()
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exp(+
{ Xp J ankp for Case |
exp —J Hmn@
{ sin ,,, (@ — @1; for Case II
n . sin p’mn P2
o (P) = 7
{exp +Jj an“p for Case III
sinp,,, (92 — @)
{ sin Homn (L,p o kpl) for Case IV
eXp (_J Hmnkp)

where the superscript + denotes the upper and lower
expressions, respectively. In the above formulas, & is

the wavenumber, 5, = \/k? — (mﬂ/c)z(%m(hm) <0), J
and Y are Bessel functions of first and second kinds, the
prime on the functions denotes derivative with respect to
the argument, and the eigenvalues p,,, are the roots of
equation B/, (h,,p2) = 0.

[s] Similarly, for the LSM modes, the corresponding
vector wave functions are defined in terms of scalar wave
functions ;,,, as

=V x 2t (6)

(7)

emn emn?

Ni

emn—kVXVXzﬂ)

emn*

The scalar wave functions 1., satisfy the same scalar
Helmbholtz equation and the same boundary conditions as
those of E,, and are given by

= Conhpeos (")

C€Mn (hmp) = JEmn (hmpl ) Yémn (hmp)
—Y.

Emn (hmpy )Jemn (hmp), 9)

where the eigenvalues ¢,,, are the roots of the equation
Chyps) = 0, and @, (p) takes the same form as
CDjm,,(ap) in (5) except that i, is replaced by ¢, and the
sine function by a cosine function.

[o] It can be shown that there is a one-to-one corre-
spondence between these two sets of eigenmodes in
curved waveguides and those in straight waveguides of
the same cross section. However, in contrast to straight
waveguides, the LSE(m,n) modes and LSM(m,n) modes
in curved waveguides are not degenerate. Only when the
radii of the curved walls become large, the eigenmode
fields and the eigenvalues of curved waveguides
approach those of straight waveguides.

[10] The symmetrical relations between the eigenfunc-
tions M and N are

——V><Ni

1
k mn’ ( 0)

M
W
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1
ann:]—(VxM?ﬁm. (11)
Similar relations exist for straight waveguides.

[11] Using the orthogonality relations of trigonometric
functions and the radial functions in curved waveguides
given by Appendix A, we can show that the above vector

wave functions have the following orthogonal relations:

J oy o
// En X ME,, ) - Gdpdz =0, (12)
P c
+
//(M;Lmn Npmn) (‘pdp dz
pr 0
1 + Som Hic
D 0 Z 6mm’6nn’]\[ q);t,m (@)(Dli1;z(@)7 (13)
P c
/ (M, X N&y) - dp dz
pr 0
1 + Som H?
= — +2 0 %6mm’6nn’N€mnq}i ( )q)t,,( )7 (14)

where §,,, = 1 for p = ¢, and &, = 0 for p # g. The mode
normalization constants », ~and N, have the expres-
sions in integral form:

P2

1 2
Ny, :/B[Bumn(hmpﬂ dp, (15)
P1
P2
1 2
Nsm,, = 6 [Cu,,,,, (hmp)] dpv (16)
P1
and in differential form:
1 OB, (hmp)1™
Ny =——L hppB, (hyp) —m 2 . (17
an 2“’"’!7‘[{ umn( " ) 8“]’1” p:pl ( )

Ce hm P2
men = 2 {hmpcé (hmp) a '””( p)
Emn mn

. (18)
aemn }P—Pl

Note that the above orthogonality is based on the concept
of power flow, rather than the dot-product as required in
the conventional Ohm-Rayleigh method. The above
vector wave functions also form a complete set in the
source-freeregion. Hence the fields outside the source
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region can be uniquely expanded in terms of these
functions.

[12] In passing, we point out that for lossless curved
waveguides, the eigenvalues, p,,, and ¢, are real for
only the dominant mode or a few lower-order modes,
and are imaginary forthe higher cutoff modes. The
eigenfunctions involve Bessel functions and modified
Bessel functions of imaginary orders. The accurate
numerical methods for computing these functions have
been given by Fan and Yang [1994a, 1994b, 1995].

3. Dyadic Green’s Functions for Curved
Waveguides and Cavities

3.1. Magnetic-Source Dyadic Green’s Functions

[13] The magnetic-source electric-field DGF G (r
r") and magnetic-source magnetic-field DGF G('") (r, )
satisfy the following partial differential equations and
boundary conditions, respectively

(VxVx )Gy (r,r) = -V xTo(r—+) (19)

ix G (r,r') =0 on the walls, (20)

and
(V x V x )G (r,¥) = —jwed(r —¥), (21)
i x ¥V x E}(L;’l)(r, r') =0 on the walls. (22)

Note that for typesetting convenience (19) and (20) are
written in the operator form, and the corresponding
common form is givenby 7ai [1994].

[14] The solutions of (19)—(22) can be written in the

form [Yang, 1992]
ZE (r r; 12’) !

ZH m) (l‘ Y ft,) o

where 1’ is the source 1ocat10n of a unit point magnetic
dipole in the &';-direction &; (j = 1,2,3 in an orthogonal
coordinate system), and E(™ (r, '; A') and H™ (v, r'; )
are the electric and magnetic fields at the field pomt r
excited by this point magnetic dipole.

[15] In the following, we first determine the fields
outside the source point by applying the Lorentz reci-
procity theorem, and then add the source singularity-
terms to the field expressions.

[16] For a unit point magnetic dipole source, the
magnetic current density is J,,, = 7'8(r — r’). The excited
fields in a source-free region can be expanded in terms of

(23)

(24)
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the vector eigenfunctions defined in the previous section,
as follows

= Z Z |:OL’"anlimn + BﬁnN?;nn} > @/7

He LY Yo

(25)

+ NE £ M S
manmn + an emn:| @ < @ )

(26)
where o, and (3, are coefficients to be determined.
[17] To obtain the expansion coefficients a;,, and
B, in (25) and (26), we now apply Lorentz reciprocity
theorem [Collin, 1960] to a small volume enclosing
the source. Let E® and H® be the fields produced by
the magnetic current, J?=7 and EV and H be the
eigenmode fields defined in the previous section.
Consider the volume V" bounded by the waveguide walls
and two cross-sectional plane ¢ = ¢’ £ 0, as shown in
Figure 2. Now if Lorentz reciprocity theorem [Collin,
1960] is applied to this volume, the surface integral on Sy
vanishes because of the boundary condition, i.e., 7 X
ED =7 xE® = 0 on the walls. Also note that i = $ on
S, i=—( on Sy, and JV = J@ = J = 0, then the
Lorentz reciprocity reduces to

5//{Eu)

- _ H<’")+} _ {Ew)— _ E“””}

1>-&>dS=///J,,,-H“> (27)
v
In the above equation, taking
1
EV=m; ~ HU=—N (28)
Jwp

and using the orthogonal relations given in the previous
section, we obtain oﬁm in (25) as
— byNE,, (1) -1, (29)

where
2 k

L+ bom chi Ny, Ay,

bmn = - ’ (30)
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A, =07 (P, (¢) - ($)Pr (¢).  (31)
[18] Similarly, by letting
EY — MmE , HY = L + , (32)
emn qu emn

we also arrive at

Brﬁn = am”N;an (r,) ! ﬁl,’ (33)
where
2 k

mn — ) 34
“ 1+ Som 2N, A, (34)
B = O () @ () ~ O () @L (). (35)

The constants A, ~and A, have the following explicit
expressions for different end conditions,

27 Woun for Case I

— Mo sin Mo (@2 - @1)
Momn exp(]umnkPZ)
Homn eXP(—ijn@z)

for Case 11 . (36)
for Case III
for Case IV

Honn

and

2] €mn for Case |

€mn sin €mn (@2 - @1)
€mn CXP (] €mn L192)
€Emn €XP (_jfmn @2)

[19] Note that equations (25) and (26) apply to a
source-free region only. To arrive at expressions also
valid at the source region, we turn to the problem of the
source-singularity terms. In the work of Pathak [1983],
the expressions of the source-singularity terms for the
electric and magnetic fields due to a point electric source
J =68 (r — r') are derived. By invoking the duality
principle, we obtain the expressions of the electric and
magnetic fields excited by a point magnetic source as
follows,

E(r)

for Case 11 . (37)
for Case III
for Case IV

€mn

2P g
Jwp

—E*(r), H(r)=H()~ Lo r) i,

pzp, (38)
where p is the propagation direction of the vector wave
functions with which the fields, E(r) and H*(r), are
constructed. The second term in H(r) involving d(r —
r’) function is referred to as the source-singularity term,
and it is irrotational. By examining the discontinuity of
the fields on both sides of Maxwell’s equations in
scalar form, we also readily obtain the above expression
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for the source-singularity term, as discussed by Yang
[1992].

[20] By taking p =@ and ' *uj *p,ap and Z,
respectwely, and substituting the expressions of E(’")
and H" derived into (1) and (2), we finally obtain

Z Z am”men Mjmn( /)

+ MG, (NG, ()] @29, (39)
(m _ —k M* (¢
G l' I‘ ]wu zm: zn: am’l smn smn (l‘)
+ bmﬂNpimn( )ijn< /):|
+¢o(r—r)/(—jwop) w2, (40)

where a,,, and b,,, are given by (30) and (34),
respectively.

[21] It can be seen that the above relatively simple
procedure, unlike the conventional Ohm-Rayleigh
method, does not involve the infinite integrals in spec-
trum domain and the vector eigenfunction expanswns of
dyadic d-functions. Moreover, the expressions of GE
and G}; 7 are obtained simultaneously without additional
derivation. Using the generalized function theory, we can
show G = = (1/jwe)V x G.", similar to the relation of
E and H.

3.2. Electric-Source Dyadic Green’s Functions

[22] The electric-source electric-field DGF G(e) and
electric-source magnetic-field DGF G(C)( r’) satisfy the
following partial differential equations and boundary
conditions, respectively

(V x V x —i2)GY (r,v) = —jwpld(r — 1), (41)
i x Cg)(r, r') =0 on the walls, (42)

and
(VxVx —k)Ge (r,r) =V xIo(r—r), (43)
nxV x E}?(r, r') =0 onthe walls,  (44)

[23] Using a procedure similar to that for a magnetic
source, we obtain,

~le) _k /
G n
E l' I' ]L.OE Z Z am fmn emn(r)
+ buM;,

umn( )M;Emn( /):|
+ePo(r—r')/(—jwe) 9= ¢, (45)
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Z Z am" Emn men( /)

+ NG, (MG, ()] ¢,

pmn (46)
where a,,, and b,,, are given by (30) and (34)
respectlvely It can also be confirmed that G5 o) =
(=1/jwp)Vx G, With the help of duality prm01p1e
and taking account of the boundary conditions on the
walls, we can also obtain the above expressions from
those of the magnetic-source dyadic Green’s functions.

4. Reformulation of Dyadic Green’s
Functions

[24] When the DGFs derived above are applied to the
boundary integral equation, there exist two main compu-
tational difficulties if the source and field points coin-
cide: one is the treatment of the d-function, and the other
is their higher-order singularities. To overcome these
difficulties, in this section, we first introduce the eigen-
mode expansions of the source-singularity terms, then
derive a new form of the DGF on the curved waveguide
walls using two different procedures, namely the forward
and backward derivations, based on the theory of gen-
eralized functions. The backward derivation procedure is
finally extended to an arbitrary waveguide in an orthog-
onal curvilinear coordinate system.

4.1. Expansion of the Source-Singularity Terms

[25] It is well known that in curved waveguides, there
are no pure TE and TM modes valid for the whole
waveguide region. However, because of the localized
effect of d-function, the unit vector p in the source-point
term pp'8(r — r’) for a given p-propagating direction can
be considered as a constant vector in the neighborhood of
the source point. We first introduce the localized vector
eigenfunctions, M%), N, M(H ), and N(H ), respectively
corresponding to TE and TM modes w1th the p-direction.
Then we define two new vector functions L&) = Va{)
and L(H) V1I)(H) Note that the M-functions do not have
p-co Ig)onents whlle the p-components of N and L®
or N and LY have the same types of expansion
functions. Therefore, the 6-function in the source-
singularity terms for magnetic field and electric field
can be expanded, respectively, as follows,

1 c‘hb
- , 47
l‘ l' zp: Hg ap ( )
E(r—v)=> B.— ! ‘% (48)
3 gp

where g, is the metric coefficient.
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[26] For the Wavegulde problem, because 20 ~ ’lbu

and m—‘ ~ lb , and because both w(H) and ﬂ)(Ej are
complete sets, the expansions in (47) and (48) are
complete. It should be point out that although the above
expressions are derived in the neighborhood of the
source point, they are valid for the whole waveguide
region because the values of the complete expansions in
(47) and (48) are zero outside the source point, which
satisfies the properties of 6-function.

[27] For the magnetic-source magnetic-field DGFs for
curved waveguides, p = ¢, and the corresponding scalar
eigenfunctions are

O = B, (hup) cos Weﬁ"‘"w?, (m,n=0,1,2,...).
c

(49)
Using the orthogonal relation in Appendix A
P2 |
/ EBU,W, (hmp)Bpm/ (hmp)dp - 6nn [T (50)
P
we can show that
8(r—r') = $¢'8(p — ¢') i f: :
m=0 n=0 1 + 60’"
m BL hm !
0B, ) )
cN,,, pp'

where C, = cos (mmz/c) and C,' = cos (mnZ'/c). Similar to
the expansion of the source-singularity term 22'8(r — r')
for straight waveguides, the above expression is valid
when both the source point and field point approach the
waveguide walls. Since the end conditions have no
effects on the d-function, the source-singularity terms for
cavities take the same form as that of waveguides.

4.2. Forward Derivation: First Procedure for
Reformulation

[28] In this subsection, starting from the common
expressions of DGFs for curved waveguides and cavities
in the previous section, we will derive their new forms
suitable for numerical computation. We refer to this
procedure as the forward derivation. (Another procedure,
the backward derivation, first assumes the existence of
this new form, as discussed in the next subsection.)

[29] As an example, consider the magnetic-source
magnetic field dyadic Green’s functions. When the
source and field points approach the curved waveguide
walls, i.e., p = p' = R, where R = p, or p,, the source and
field points are r = (R, ¢, z) and ¥ = (R, ¢, 2,
respectlvely All p components of M,,,,(r) and N,nn(r)
vanish since B pmn(hmpl 2) emn(hmpl,Z)
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[30] The first term inside the summation of (40) con-
tains only the ¢¢'-component, i.e.,

M. ()M (F') = U(¢' — )M, (r)M_ (r)
+U(p—¢)M_ ()M (r')

CPCP h2 Cf,,m(hmp) fm,,(hmp) C.Cy
U - 0! (90, (¥)

+U(p =P, (9)® (¢)

= @@,hz [Ce,, (hmp)Ce,, (i l)]
CC.CD! (,)P, (Py);

where U(x) is the unit step function, ,, = min(ep, '), and

©ur = max(p, ©). ) _ N
[31] Denoting g/ = 7r SN, (0N, () and () =
+2h2>

;1 (p), We have

_ Buun(ps ¢/ &

gV = #{U(@ @)(
+2’h§1>5252’q’+(@)¢(@’)

82 ~72

POy 82 2 >

pOpOz
: Cp’iJré’hz S5 D™ ()P (¢) ¢, (53)
000z m ) EEE 7

(52)

~t
(&p p' 0 07’
+U(p — @)(

where By, (p,p') = By, (hwp)B,,, (hwp')S- = sin (mwz/c)
and S, = sin (mnZ'/c).

[32] Now we consider the components in (53). First,
the diagonal components are

2/ 0 (V) — 33

g =5 k2 Buun(p, 0V, S-S (,) D™ (i91)
% By (p, p/)SZSZ’(I)+ (©n) P (e1r)

R

-Czsz‘b (@) P (Par); (54)
Aar (N) AA/an(pap/) mm
PPE ~ 2, ( ) GG
0 0
—_— O (g, )
Do oo (@)@ (ppr)
— 4 (hz )
—————Buu(p,p") P (0,) P (py)- (55
e B0 ) () () (59)
Then, from the relations
0 0 0 0
ESZSZ’ ~ % =+ C.Cz, @SZSg = —aczczf, (56)
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we obtain the first off-diagonal component

s (N) Man(p,p) 0
W =W T g GG
oP" () .
o /
U — ) =5 P ()
ob~
LU - ) %dﬁ(w] | (57)

[33] Using the differential formula of the step function
and the symmetry of 6-function, we finally simplify this to

N 1
¢l = =2 B (p:0)

(o0 (2 ) o (o). (9

[34] Similarly, the other off-diagonal component can
be obtained as

2 o)

1
kag@;’ = _Fan(pap/)
o) GG () ()

() (¥7a
(59)

[35] Combining the above components, we arrive at
the more compact dyadic expression

g™ = 22 By (p, )-S5 DT (0, )P ()
1 7
" {W {@ pp' 09, 0},
1 P P
e (pawp’aw’ pp’&pm&pM”

1 _
ﬁvtV;}an(p; p/)CzCz’(D+(@m)q) (@M)v
(60)

where
0 0 , ., 0

=Gt i =@ —— 7. (61
\ ¢p8@+28z’ A\ xpp/&pﬁ-zaz/ (61)

[36] Furthermore, we can show that the second term in
the above $¢' component can be reduced to

( o e )qﬁ (en)®,, (on1)
pOep' 0 pp' D, Dpyy ) M T W
=8(p— ) [q>+’(¢/)qy(¢/) _ q)*/(d)/)qfr((b/)}
=8(p—¢)A,,

where the following formula [Jones, 1982]

(62)

a(x)8 (x — x0) = a(x)8 (x — x0) — o (x0)8(x — xp),
(63)
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has been used. Using the above formulas in the second
term of the summation in (40), we then have

S S

82
mn@qo/ C.Cy (

Jwp = i pOpp’ Oy
- )an<p, 0D (0,0 (917)
pp' 09, 00y
A Al 00 00 /
PP ’ 2 B (p p)
= —6 — 7CZCZ'7
o (¢ @)n; Z= 1+ 8om Ny, pp'
(64)

which is nothing but the negative magnetic source-
singularity term, the last term of (40). Therefore, the
expression of the magnetic-source magnetic-field DGF
in (40) reduces to

[ ()]

P& X 2
Jp-—r = =N ; ; (1+8om) cA.,N.,
-QP'C; z/‘b,”n(@m)(bem,,(@M)
B oS S [By,, ()]
Jwp f=g =g (1+8om)  cAy N,
1 ?
{zg/szszl + | o' I Op Oons

(65)

Note that in this new expression, the 6-function term
disappears, and the operator V, V, is introduced. It is the
operator V, V; that increases the order of singularity
associated with the dyadic Green’s functions. The
introduction of V,V, is convenient for the follow-up
numerical treatment when applying the moment method
(MoM) to surface integral equations. Specifically, when
evaluating the double surface integrals of the MoM self-
coupling matrix elements, by using Gaussian theorem,
we can transfer the above differential operators in the
dyadic Green’s function to the basis function and test
function, respectively, so that the order of singularity in
the integrand due to the dyadic Green’s function will be
reduced to first order from third order, greatly accelerat-
ing the convergence rate of the series solution.

4.3. Backward Derivation: A More General
Reformulation Procedure

[37] In the previous subsection, starting with the com-
mon expression of DGFs, we derive a new form of the
DGFs for curved waveguides and cavities on the curved
walls. This form is also valid for an arbitrary waveguide
whose walls are parallel to orthogonal curvilinear coor-
dinate directions. Here we present a general, heuristic
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procedure for the reformulation of DGFs for such a
waveguide.

[38] Taking curved waveguides as an example, let
¢ =a, and p = p' = p,. Equation (40) can then be
written as

1 o0 o0

mpz)]z

G m —_ Emn A A/CZCZ,
Jop mz:: nz:; 1 + 60’" fmnajemn i
0 2
.e ~Jemn|o—¢'| + — M
Jwp mzo = 1 + Som)N, d
1 o o 2 5
- — [HP2 CSo FEYS. Co] + —-22'S.S,
P2 n
7jumn (@)ZAA/CC [0 —']
2,05 \ a 7e
Al
— £ 5(r - ) (66)
Jen p=p'=p,

where the source-singularity term is expanded according
to (47).

[39] Now we define a function g,,,(r,r") for the
expansion function of the $@ component within the
second summation in (66) as follows,

Zun(1,1) = By, (hyp)B,, (hp') C.CoeMmle=?1 (67)
Note that g,,,(r.,r') corresponds to the expansion
functions of $@' component of N;,,,(r) Nj,,(r) wave
function in (40), and its transverse functions take the
same form as those of the expansion functions for &z
(r — r) function.

[40] Using the relations

= e mle=¢ — _ 9 e Il o=
o8 oy’

= +ju P >
mn

e2y, (68)

82

Fodd e Mmlo—¢l — annefjum\@fdl + 2, 8(0 — @),

(69)
and applying V,V, to (67), we arrive at
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+2A’( ) S.Sy }

Ce Ml o2y (70)

[41] Substituting (70) into (66) and rearranging, we
finally obtain

2
e e et
H _JWMZZ (1 + dom) Ne,, @ j€mn

m=0 n=1
@@/Czcz,e —J€mn|p—¢']

‘ 2
f: i By,,, (hnp,)]
]wu m=0 n=0 (L + Som )Ny, @ JHomn

a0 umn
{[ZZ'SZSZ 60 /h2 %CC ]e ||

1 )
_ kzvtvgczcz,ejumnvv}’ (71)

which is the desired results. Again similar to (65), in the
above expression the piecewise function only involves the
difference ¢ — ¢ given in explicit form. In comparison
with the expressions of the usual DGFs in piecewise
function form, this new expression is more suitable for
numerical treatment of the integration in the source
region.

[42] The above heuristic procedure can be generalized
to the reformulation of the DGFs for an arbitrary wave-
guide whose walls are parallel to orthogonal curvilinear
coordinate directions (u, v, p). Without loss of generality,
we define p as the propagating direction, and u = 1’ = u,
(at the wall). We give a general reformulation procedure
as follows: (1) Expand the §(r — r’) function term using
(47) or (48), depending on whether the source is
magnetic or electric. (2) Introduce the tangential deriv-
atives at the coordinate plane coincident with the
waveguide wall

1 1
Vt - a ‘A}i 27
Ve, op™ Vg ov
1 0 1 9
vy 2y 2 72
Tl oy e v (72)
and evaluate the term (—1/&%)V,V, gua(r — r'), where

Zun(r — 1) is the expansion function of the pp’-com-
ponent of N*(r)NT(r") function in the common DGF
expression, whose transverse functions take the same
form as those of the expansion function of the §(r — r')
function. (3) Substitute the above result into the original
expression of the DGF, cancel the source-point term, and
rearrange the terms in the express10n into the desired form
with the vector operator (—1/k*)V,V,. The procedure has
been used for the transformation of the DGFs for straight
waveguides with rectangular and sectoral cross sections.
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[43] Finally, it is worth pointing out that when p, — oo
(p2 — p1 = constant), using the large argument asymptotic
expansion of Bessel functions of both real and imaginary
orders and modified Bessel functions of imaginary orders
[Fan and Yang, 1994a, 1994b, 1995], we can show that the
expressions of DGFs for curved waveguides and cavities
derived above reduce to those of rectangular straight
waveguides and cavities.

5. Conclusions

[44] The dyadic Green’s functions for curved wave-
guides and cavities are derived through the Lorentz
reciprocity theorem and the LSE and LSM mode ortho-
gonality based on the concept of power flow, and by
adding the source singularity terms. These DGFs are then
reformulated into a new form suitable for numerical
computation when both the source and field points are
located at the same waveguide wall. A general reformu-
lation procedure is proposed for DGFs for an arbitrary
waveguide. The DGFs derived can be used for solving
problems with curved waveguide coupling and radiating
slots, as well as waveguide junction problems.

Appendix A: Orthogonality of the Radial
Functions

[45] Let Z(x (hmp) = Bumn (hmp) or Cemn(hmp)’ and Zi(hmp)

ZB(hmp) = Bumn’ (hmp) or Cfmn’ (hmp) Then Z(x(hmp)
and Zs(h,p) satisfy the Bessel’s equations

L d [ dZ.(hyp) ) o
— ) Zo(hp) =0, (Al
il BN GRS LGRS NN

p
1d [
P
pdp
Multiplying (A1) by pZ(h,p) and (A2) by pZ.(h.up),

taking the differences, and integrating from p; to p,, we
obtain

()

1 1
—Zo(hup)Zs(hp) dp =
5 Zalhmp) 3(hmp) dp 7
P1
A 21, ) Z3 ().
P2
_Zé(hmp)zu(hmp)}} : (A3)
P1
Since B, (hnpy,) = Ce,,, (hnp12) = 0, when n # n’

(T2 pm,,, Of €,y 7# Emw), 1.€., A # (3, the right-hand
side of (A3) is equal to zero; while when n = n’ (,,, =

Wt O € =€), 1.€., & = (3, the right-hand side is
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indeterminate. An application of the L’Hospital rule
results in

0Z ‘(hmp) P2
—Z' (hy,
A S IR
1
Finally, we have
P2 1
/ ngm” (hmp)Bum,,/ (hmp)dp = 6"”’Nlimn’ (AS)
P1
and
P2 1
/ _Ce,,,,, (hmp) Ce,,m/ (hmp)dp = 6nn’Ne,,,,,> (A6)
p

P1

where the normalization constants, N, —and N, are
given in (15)—(18).
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