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[1] We present a simple approach to estimating ground-level fine particulate matter
(PM2.5, particles smaller than 2.5 mm in diameter) concentrations by applying local scaling
factors from a global atmospheric chemistry model (GEOS-CHEM with GOCART
dust and sea salt data) to aerosol optical thickness (AOT) retrieved by the Multiangle
Imaging Spectroradiometer (MISR). The resulting MISR PM2.5 concentrations are
compared with measurements from the U.S. Environmental Protection Agency’s (EPA)
PM2.5 compliance network for the year 2001. Regression analyses show that the annual
mean MISR PM2.5 concentration is strongly correlated with EPA PM2.5 concentration
(correlation coefficient r = 0.81), with an estimated slope of 1.00 and an insignificant
intercept, when three potential outliers from Southern California are excluded. The MISR
PM2.5 concentrations have a root mean square error (RMSE) of 2.20 mg/m3, which
corresponds to a relative error (RMSE over mean EPA PM2.5 concentration) of
approximately 20%. Using simulated aerosol vertical profiles generated by the global
models helps to reduce the uncertainty in estimated PM2.5 concentrations due to the
changing correlation between lower and upper tropospheric aerosols and therefore to
improve the capability of MISR AOT in estimating surface-level PM2.5 concentrations.
The estimated seasonal mean PM2.5 concentrations exhibited substantial uncertainty,
particularly in the west. With improved MISR cloud screening algorithms and the dust
simulation of global models, as well as a higher model spatial resolution, we expect that
this approach will be able to make reliable estimation of seasonal average surface-level
PM2.5 concentration at higher temporal and spatial resolution. INDEX TERMS: 0305

Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0345 Atmospheric Composition

and Structure: Pollution—urban and regional (0305); 0394 Atmospheric Composition and Structure:
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1. Introduction

[2] Epidemiological studies around the world have shown
strong and consistent correlations between adverse health
effects and outdoor fine particle matter (PM2.5, particles
with diameters less than 2.5 mm) [Pope, 2000]. Some of the
mortality studies as reviewed by Wallace [2000] have

consistently shown an increase of 1–8% in deaths per
50 mg/m3 increase in outdoor air particle concentrations
without apparent threshold. The importance of long-term
PM2.5 monitoring has recently been emphasized in order to
evaluate the health effects of low or moderate exposure as
well as repeated exposure to elevated pollution levels
[Samet et al., 2000; Schwartz et al., 1996]. However, for
many epidemiology studies, particle measurements from
stationary ambient monitoring (SAM) sites have been used
as surrogates of exposures for individuals living substantial
distances (20–100 miles) from the sites [Ito et al., 2001].
[3] Since aerosol optical properties such as aerosol opti-

cal thickness (AOT, a dimensionless measure of aerosol
abundance and its light extinction capability in the entire air
column) derived from satellite observations is directly
related to particle mass loading [Chow et al., 2002; Malm
et al., 1994], studying its association with surface-level
PM2.5 mass concentration may provide a cost effective
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way for PM2.5 pollution monitoring. To date, satellite
remote sensing has been applied to monitor long-range
transport of Asian and Saharan dust [Chiapello and Moulin,
2002; Husar et al., 2001; Wang et al., 2003] and charac-
terize ambient particulate pollution [Falke et al., 2001; Liu
et al., 2002; Sifakis and Deschamps, 1992].
[4] The launch of NASA EOS satellite Terra in December

1999 provided a new opportunity for monitoring particle
pollution from space. Two instruments aboard Terra, MISR
and the Moderate-Resolution Imaging Spectroradiometer
(MODIS), were specially designed to retrieve aerosol opti-
cal properties including AOT over most of the land surface
and the oceans [Diner et al., 1998; Kaufman et al., 1998,
2002; Martonchik et al., 1998]. Preliminary studies have
shown that MODIS AOT data can be used to detect and
track the transport of pollutants and extreme pollution
episodes [Engel-Cox et al., 2004; Hutchison, 2003]. In
addition, a strong linear relationship (correlation coefficient
r = 0.70) was found between MODIS AOT measurements
and 24-hour PM2.5 concentrations from seven sites in
Alabama, indicating a good potential for satellite derived
aerosol optical properties to be used in air quality studies
[Wang and Christopher, 2003].
[5] We showed in a previous study that an empirical

regression model using MISR AOT and a few geographical
and meteorological parameters is able to estimate surface-
level 24-hour average PM2.5 concentrations within approx-
imately 45%, with a correlation coefficient of approximately
0.7 between observed and predicted PM2.5 concentrations
(Y. Liu et al., Estimating ground level PM2.5 over the
eastern United States using satellite remote sensing,
submitted to Environmental Science and Technology,
2004, hereinafter referred to as Liu et al., submitted
manuscript, 2004). This paper extends our previous study
by developing a simple approach that establishes a
predictive relationship between surface PM2.5 concentra-
tions and AOT. This simple approach relies on a global
chemistry and transport model (CTM) to provide a better
physical basis for relating satellite AOT measurements to
the spatial and temporal pattern of surface PM2.5

concentrations.
[6] In section 2, we describe this approach, which

involves analysis of data from the CTMs, PM2.5 data from
the U.S. Environmental Protection Agency’s (EPA) PM2.5

compliance network and speciation and trend network
(STN), and AOT retrievals from MISR for the year 2001.
In section 3, the summary statistics of the different data sets
are presented. The agreement in geographical patterns and
seasonal variations between model and observations is
discussed. PM2.5 concentrations derived from the MISR
AOT are compared with EPA PM2.5 data and sources of
uncertainties are discussed in detail. Finally, major findings
and potential future improvements to the current analysis
are summarized in section 4.

2. Description of Data and Method

2.1. Simulated Aerosol Data by GEOS-CHEM
and GOCART

[7] The GEOS-CHEM model is a global 3-D tropospheric
chemistry and transport model driven by assimilated meteo-
rological observations from the Goddard Earth Observing

System (GEOS) of the NASA Global Modeling and Assim-
ilation Office. The fully coupled oxidants-aerosol simulation
by GEOS-CHEM provides sulfate (SO4

2�), nitrate (NO3
�),

ammonium (NH4
+), elemental carbon (EC), and organic

carbon (OC) aerosol concentrations for the period of 2001
at 3-hour temporal resolution, 2� latitude � 2.5� longitude
horizontal resolution, and 30 sigma vertical layers. When
calculating AOT using aerosol dry mass concentrations,
particle growth with increased relative humidity is taken into
account by applying different hydroscopic growth factors to
all hydrophilic species using local relative humidity condi-
tions [Martin et al., 2003]. Detailed descriptions of GEOS-
CHEM as well as its aerosol simulations can be found
elsewhere [Bey et al., 2001; Park et al., 2003, 2004]. The
lowest model levels are centered at approximately 10, 50,
100, 200, and 400 m above the surface.
[8] Since EPA’s compliance network measures 24-hour

average PM2.5 concentration according to a fixed sampling
schedule (every third or sixth day) regardless of weather
conditions, seasonal mean GEOS-CHEM surface PM2.5

concentrations were calculated using all eight 3-hour out-
puts per day for each species. The calculation of columnar
AOT values followed the methodology given by Chin et al.
[2002]. The 3-hour values were first interpolated to 10 a.m.
local time values (MISR measurement time window), sam-
pled on the dates when MISR had valid AOT retrievals,
then integrated into seasonal averages in order to be
compared with seasonal mean MISR AOT values.
[9] Monthly mean dust and sea salt concentrations for

2001 from the Georgia Tech/Goddard Global Ozone Chem-
istry Aerosol Radiation and Transport (GOCART) model
were used to complement GEOS-CHEM aerosol fields.
General descriptions of the GOCART model simulation of
dust and sea salt are provided elsewhere [Chin et al., 2002;
Ginoux et al., 2001]. Particle concentrations and the asso-
ciated AOT values for fine sea salt (effective radius of
0.80 mm), and fine dust (sum of effective radius ranges 0.1–
0.18 mm, 0.18–0.30 mm, 0.3–0.6 mm, 0.6–1 mm, and part of
1–1.8 mm) provided by the GOCART model were com-
bined with the particle concentrations for SO4

2�, NO3
�, NH4

+,
EC, and OC and their associated AOT values provided by
GEOS-CHEM. From this point on, we refer to the total
aerosol AOT and total surface aerosol concentration pre-
dicted by combining GEOS-CHEM and GOCART outputs
as simulated AOT and simulated PM2.5 concentration.

2.2. EPA 24-Hour Average PM2.5 Mass Concentration
and Speciation Data

[10] The EPA’s PM2.5 compliance network was initiated in
1997 and designed to measure compliance of both the annual
and 24-hour PM2.5 National Ambient Air Quality Standard
(NAAQS). Daily average PM2.5 concentrations measured by
gravimetric methods (Federal Register 40 CFR part 50,
5 Feb. 1998) in 2001 from 1137 sites of EPA’s compliance
network, primarily located in urban areas and surrounding
suburbs, were collected and integrated into seasonal averages
in each GEOS-CHEM model grid cell (Figure 1). Validated
daily average mass concentrations of SO4

2�, EC, OC, and
mineral dust were collected from 131 sites of EPA’s PM2.5

speciation trends network (STN) and integrated into seasonal
averages in 2� � 2.5� model grid in order to analyze the
difference between simulated PM2.5 concentrations and EPA
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PM2.5 measurements for individual aerosol components [Rao
et al., 2002] (Figure 1). To reduce the influence of potential
outliers, only the grid cells with more than 30 EPA measure-
ments per season were included in the analysis.

2.3. MISR AOT Retrievals

[11] MISR AOT data have a spatial resolution of 17.6 km
and achieve global coverage in nine days [Diner et al., 1998;
Martonchik et al., 2002]. It is most sensitive to particles in the
diameter range from 0.05 to 2.0 mm [Kahn et al., 1998],
corresponding to the size range of PM2.5. All MISR AOT
data (mostly version 12) that covered the contiguous United
States for 2001 were obtained from the NASA Langley
Research Center Atmospheric Sciences Data Center (http://
edg.larc.nasa.gov/�imswww/imswelcome/index.html), and
then integrated into seasonal averages in 2� � 2.5� model
grid cells. We excluded AOT values greater than 1.5 from
our analysis because they are probably contaminated by
clouds (D. Diner, personal communication, 2003). In
addition, the data from North Dakota, South Dakota and
Minnesota in the winter and spring is excluded because of
a potential cloud contamination in MISR AOT. This issue
will be further discussed in the following analysis. We
previously showed that the overall retrieval error of MISR
AOT is DAOT = ±0.04 ± 0.18 � AOT over the contig-
uous United States [Liu et al., 2004]. The seasonal and
geographical variability of MISR AOT errors was partly
corrected in this analysis by applying linear regressions
between MISR and AERONET AOT values presented by
Liu et al. [2004]. Finally, only those grid cells with more
than 30 AOT measurements per season were included in
the analysis in order to reduce the influence of potential
outliers.

2.4. Coupling of the Global Models With MISR

[12] We previously showed that an empirical regression
model is able to predict surface PM2.5 concentrations by

using MISR AOT data and simple meteorological and
geographical predictors with a relative error of approxi-
mately 45% (r � 0.7) and with no significant biases
compared to observations (Liu et al., submitted manuscript,
2004). However, half of the variability in PM2.5 concen-
trations cannot be explained probably because of the lack of
information on aerosol vertical profile and long-range
aerosol transport events. In addition, empirical models must
be calibrated before transferring to other regions. We here
use the simulated AOT and PM2.5 concentrations from
GEOS-CHEM and GOCART model to define a physically
consistent relationship between AOT and surface-level
PM2.5 concentration:

MISR PM2:5 Concentration

¼ Simulated Surface Level PM2:5 Concentration

Simulated Column AOT

�MISR AOT ð1Þ

This relationship, as defined in equation (1), is then applied
to MISR AOTs to infer PM2.5 distributions. We refer to the
PM2.5 concentrations derived from this simple model as
MISR PM2.5 concentrations hereinafter. The terms of
particle mass concentrations and optical properties used in
this analysis is summarized in Table 1.
[13] The MISR PM2.5 concentrations differ from the

simulated PM2.5 concentrations in three ways. First, the
MISR PM2.5 concentrations are less likely to be affected by
possible biases in the aerosol vertical distribution estimated
by the global models because the biases are attenuated by
the ratio of simulated PM2.5 concentrations over simulated
AOTs. For example, if both simulated PM2.5 concentrations
and AOT have consistent biases (i.e., both high or both
low), the uncertainty of MISR AOT measurements will be
more influential in determining the uncertainty in MISR
PM2.5 than either simulated PM2.5 concentration or simu-

Figure 1. Spatial distribution of the EPA PM2.5 compliance monitoring sites (FRM sites, circles) and
speciation and trend sites (STN sites, triangles) in the contiguous United States. Data in this study are
collected from 1137 FRM sites and 131 STN sites for the year 2001.
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lated AOT. Therefore the MISR PM2.5 is likely to have less
discrepancy in spatial and seasonal patterns than simulated
PM2.5 concentrations when compared with EPA measure-
ments. Second, because MISR AOT has a much higher
spatial resolution than the global model simulations, MISR
PM2.5 concentrations would be able to reflect the impact of
subgrid variation of particle properties. Finally, it has been
shown that the discrepancy between gravimetric PM2.5

concentrations and the sum of all measured particle com-
ponents can be as large as 28–42% [Andrews et al., 2000;
Turpin and Lim, 2001]. This discrepancy is likely due to
uncertainties in organic carbon and dust measurements.
These differences between global model predictions and
EPA PM2.5 measurements are likely to be reduced with the
calibration of MISR AOT. It should be noted that equation
(1) assumes that the atmospheric column is dominated by
one aerosol component. When two or more important
aerosol components with different optical properties and
vertical distributions are present, AOT and PM2.5 concen-
trations are likely to have a nonlinear relationship. Under
such circumstances, MISR PM2.5 derived from equation (1)
would only be a first-order approximation of EPA PM2.5

measurements.

3. Results and Discussion

[14] The final data set consists of totally 577 seasonal
data records, each containing the seasonal average EPA
PM2.5 measurement, simulated PM2.5 concentration and
AOT, MISR AOT, and MISR PM2.5 concentrations in each
GEOS-CHEM model grid cell, and 159 annual data records
after averaging all seasonal records. The relationships
among three PM2.5 concentration parameters and two AOT
parameters are studied using scatterplots, and Spearman’s
correlation coefficients. In addition, reduced major axis
lines are used to characterize the overall relationship
between simulated PM2.5 concentrations and EPA PM2.5

measurements, as well as the agreement between simulated
AOT and MISR AOT retrievals [Hirsch and Gilroy, 1984].
When comparing the MISR PM2.5 concentrations with EPA
PM2.5 concentrations, simple linear regression is used
because we are interested in examining the capability of
equation (1) in estimating individual PM2.5 concentration
over a given grid cell.

3.1. Comparison Between Simulated PM2.5 and
EPA PM2.5 Measurements

[15] The annual average simulated PM2.5 concentration
(8.36 (mean) ± 3.28 (standard deviation) mg/m3) is approx-
imately 20% lower than EPA PM2.5 concentrations (10.76 ±

3.14 mg/m3) with a similar dynamic range (Table 2). Figure 2
compares annual average simulated PM2.5 and observed
PM2.5 concentrations in the contiguous United States. The
EPA PM2.5 measurements are plotted on a 0.5� � 0.5� grid.
The annual mean simulated PM2.5 concentrations capture
the geographic characteristics of EPA PM2.5 measurements
very well nationwide with the exception of the San Joaquin
Valley and Southern California where the models substan-
tially underestimate PM2.5 concentrations. A scatterplot
shows that annual average simulated PM2.5 concentrations
have a good linear relationship with EPA measurements (r =
0.74, reduced major axis line slope = 1.04) but with a
negative offset of 2.88 mg/m3 (Figure 3). The three data
points that apparently deviate from the general pattern of the
data set are all from Southern California. Excluding the
three potential outliers does not have a significant impact on
the parameter estimates of the reduced major axis line.
[16] Seasonally, the difference between simulated PM2.5

concentrations and EPA measurement is the largest in the
winter (12.17 mg/m3 versus 8.26 mg/m3, 32% difference)

Table 1. Definitions of Terms Used in This Analysis

Term Unit Definition

Simulated PM2.5 concentration mg/m3 sea salt and dust mass concentrations are derived from GOCART, and mass concentrations
for SO4

2�, NO3
�, NH4

+, EC, and OC are derived from GEOS-CHEM; these two sets of
concentration data are combined to form the total simulated PM2.5 concentrations

Simulated AOT unitless AOT values for sea salt and dust are from GOCART, and AOT values for the remaining
particulate species are from GEOS-CHEM; these two sets of AOT data are combined to
form the total simulated AOT estimates

EPA PM2.5 concentration mg/m3 daily average PM2.5 mass concentrations measured by gravimetric methods collected from
the EPA PM2.5 Monitoring and Compliance Network

MISR AOT unitless total column AOT retrieved by MISR instrument aboard the Terra satellite
MISR PM2.5 concentration mg/m3 daily average PM2.5 concentrations estimated by equation (1)

Table 2. Summary Statistics of Annual and Seasonal Average

MISR PM2.5 Concentrations, EPA PM2.5 Concentrations, Model

Columnar AOT, MISR AOT, and MISR PM2.5 Concentrations in

the United States for the Year 2001

Season Variable Unit N Mean SDa Min Max

Annual EPA PM2.5 mg/m3 159 10.76 3.14 4.72 20.51
simulated PM2.5 mg/m3 159 8.36 3.28 3.70 17.17
MISR PM2.5 mg/m3 159 9.68 3.68 3.22 18.24
MISR AOT unitless 159 0.13 0.03 0.05 0.22

simulated AOT unitless 159 0.10 0.03 0.06 0.22
Winter EPA PM2.5 129 12.17 3.62 5.21 24.77

simulated PM2.5 129 8.27 3.93 2.32 19.69
MISR PM2.5 129 8.56 3.20 2.43 17.99
MISR AOT 129 0.08 0.02 0.03 0.11

simulated AOT 129 0.07 0.03 0.03 0.16
Spring EPA PM2.5 135 10.23 3.34 3.85 20.48

simulated PM2.5 135 8.50 3.46 2.90 17.29
MISR PM2.5 135 11.51 5.00 4.29 26.92
MISR AOT 135 0.16 0.04 0.08 0.32

simulated AOT 135 0.11 0.03 0.07 0.25
Summer EPA PM2.5 155 11.32 4.91 4.15 22.98

simulated PM2.5 155 8.39 3.34 2.74 17.39
MISR PM2.5 155 11.68 5.81 4.08 29.23
MISR AOT 155 0.18 0.08 0.05 0.38

simulated AOT 155 0.13 0.05 0.06 0.29
Fall EPA PM2.5 158 9.98 3.18 3.28 24.05

simulated PM2.5 158 8.32 3.18 3.79 15.05
MISR PM2.5 158 7.71 3.37 2.07 19.46
MISR AOT 158 0.09 0.03 0.04 0.19

simulated AOT 158 0.10 0.03 0.04 0.20
aSD, standard deviation.

D22206 LIU ET AL.: MAPPING SURFACE PM2.5 USING MISR AOT

4 of 10

D22206



and smallest in the fall (9.98 mg/m3 versus 8.32 mg/m3, 17%
difference). The global models underestimate PM2.5 con-
centrations by approximately 30% during the summer.
Simulated PM2.5 concentrations are significantly correlated
with EPA measurements in all seasons with the exception of
the western United States where correlation coefficients are
insignificant in the winter and summer (p > 0.05) (Table 3).
EPA measurements are substantially higher than simulated
PM2.5 concentrations in California during the winter and the
fall. In addition, during the winter, EPA measurements show
strong spatial variation in the northwest region with a
number of stations observing much higher PM2.5 concen-
trations than other stations in the same region. Scatterplots
of simulated PM2.5 concentrations versus EPA PM2.5 mea-
surements show that simulated PM2.5 concentrations agree
with observations better in the east than in the west

(Figure 4). Larger scatter is found in the west especially
in the winter and summer as compared to in the east.
[17] The overall underestimation of PM2.5 concentrations

might be attributed to the discrepancy between chemical
and gravimetric measurements found in surface-level mon-
itoring campaigns, with the sum of all component concen-
trations often smaller than the gravimetric measurements of
PM2.5 concentrations, as previously mentioned. The possi-
ble reason for the summer bias in the east is described by
Park et al. [2004]. The weak correlation found in the west
in the summer might be due to the high bias in GOCART
monthly mean dust concentrations. Along the coast from
Washington State to central California, GOCART dust
concentrations are approximately 5–7 mg/m3. However,
dust concentrations measured by STN sites are generally
below 1.5 mg/m3. In addition, in the inland northwest
region, GOCART also overestimates dust concentrations
by a factor of 2–3. This high bias and disagreement in
spatial pattern between simulated and observed dust con-
centrations likely cause the insignificant correlation. Since
in the eastern United States, PM2.5 concentrations are

Figure 3. Scatterplot of annual average simulated PM2.5

concentration versus EPA PM2.5 measurements. The
reduced major axis line is shown as the solid line in the
plot. The 1:1 line is shown as the short-dashed line for
reference. Three potential outliers pointed out by arrows are
all Southern California grid cells.

Figure 2. Two-dimensional plot of annual (left) simulated PM2.5 concentrations integrated in 2� � 2.5�
grid cells versus (right) EPA PM2.5 measurements integrated in 0.5� � 0.5� grid cells. The scale saturates
at 18 mg/m3 to best display the color contrast in the plot (99th percentile of EPA PM2.5 measurement =
17.05 mg/m3).

Table 3. Spearman’s Correlation Coefficients Between EPA

PM2.5 and MISR AOT, Simulated PM2.5 and MISR PM2.5

Concentrations in Each Season in the Eastern and Western United

States

Season Region

Correlation Coefficient (p Value)a

Simulated PM2.5 MISR AOT MISR PM2.5

Winter eastb 0.73 (<0.0001) �0.03 (0.78) 0.49 (<0.0001)
westc �0.15 (0.23) 0.26 (0.04) 0.09 (0.51)

Spring east 0.58 (<0.0001) �0.04 (0.77) 0.19 (0.10)
west 0.58 (<0.0001) 0.09 (0.51) 0.55 (<0.0001)

Summer east 0.82 (<0.0001) 0.50 (<0.0001) 0.67 (<0.0001)
west �0.02 (0.88) 0.55 (<0.0001) 0.39 (0.0007)

Fall east 0.68 (<0.0001) 0.09 (0.40) 0.38 (0.0004)
west 0.65 (<0.0001) 0.43 (<0.0001) 0.64 (<0.0001)

aThe p values reflect the significance level of the correlation coefficients.
The correlation is not significant if p is greater than 0.05.

bRefers to regions to the east of 95� longitude.
cRefers to regions to the west of 95� longitude.
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generally dominated by sulfate that are transported from
regional sources of SO2, the impact of urban excess con-
centrations is relatively small [West et al., 1999]. Therefore
good agreement between model and observations is noted.
[18] The large discrepancy and weak correlation in the

northwest region in the winter may be because there is only
a limited number of EPA monitoring sites in this region. The
EPA PM2.5 concentrations from some of the urban sites are
heavily influenced by strong carbonaceous aerosols emitted
from local sources such as automobiles and wood fires and
can be substantially higher than surrounding suburban and
rural areas [Rao et al., 2002]. Since EPA sites are relatively
sparse in the northwest, a small number of urban sites can
greatly influence the mean PM2.5 concentration in a 2� �
2.5� grid cell. Therefore it is not surprising to see that global
models substantially underestimate PM2.5 concentrations at
current spatial resolution.

3.2. Comparison Between Simulated and MISR AOTs

[19] Annual average simulated AOT (0.10 ± 0.03) is
approximately 20% lower than MISR AOT (0.13 ± 0.06)
with a similar dynamic range (Table 2). The largest seasonal
difference is found in the spring when simulated AOT
(0.11 ± 0.03) is approximately 30% lower than MISR
retrievals (0.16 ± 0.04). Annual average simulated AOT
generally captures the spatial pattern of MISR AOT mea-
surements, with higher values in the east and lower values
in the west (Figure 5). A scatterplot shows that simulated
AOT has a good linear relationship (r = 0.80) with MISR

AOT with a small offset (intercept = �0.007) although
simulated AOT shows a low bias of 17% (reduced major
axis line slope = 0.83) (Figure 6).
[20] A seasonal comparison shows that although signifi-

cant in all four seasons, the correlations between simulated
and MISR AOT values are substantially stronger during the
summer (r = 0.78) and the fall (r = 0.62) than during
the winter (r = 0.39) and the spring (r = 0.42) (Figure 7).
The overall agreement between simulated AOT and MISR
AOT retrievals does not vary significantly by geographical
region except that MISR AOT is substantially higher than
simulated AOT over coastal Washington State, North
Dakota, South Dakota and Minnesota during the spring.
[21] Current MISR AOT data includes the aerosol extinc-

tion effect in the entire atmospheric column in both the
troposphere and the stratosphere (C. Welch, personal com-
munication, 2003). Although stratospheric AOT is usually
at least an order of magnitude smaller than tropospheric
AOT [Kent et al., 1994], it likely contributes to the
difference of approximately 0.03 between the means of
MISR AOT and simulated AOT. In addition, as previously
mentioned, the sum of the known particle species concen-
trations can be significantly smaller than PM2.5 concentra-
tions measured by gravimetric methods. This deficit is also
likely reflected in the underestimation of AOT by GEOS-
CHEM and GOCART.
[22] The discrepancies in spatial and seasonal patterns

between simulated AOT and MISR AOT may be attributed
to the uncertainties associated with both the global models

Figure 4. Scatterplots of seasonal average (left) simulated PM2.5 concentrations with (right) EPA PM2.5

measurements over the United States in 2001. Data from the eastern United States are shown as circles,
and data from the western United States are shown as crosses. The total number of data points in each
season N, the correlation coefficient r, and the reduced major axis equation are presented in each plot.
The reduced major axis line is shown as the thick solid line in each plot. The 2:1, 1:1, and 1:2 lines are
shown as the thin dashed lines for reference.
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and MISR AOT retrievals. In terms of model uncertainty,
the overall weak seasonal correlation between MISR AOT
and simulated AOT might partly be due to the use of
monthly mean GOCART dust concentrations (sea salt
particles only comprise a very small fraction in AOT values
over land). Analysis of GEOS-CHEM and GOCART aero-
sol vertical profiles indicates that on average, dust particles
account for 25% of the total columnar AOT in the east and
36% in the west. Additionally, a factor of 2 difference
between MODIS AOT, which has a similar accuracy level,
and GOCART model results was previously reported in the
coastal region of Washington State for the spring of 2001
[Yu et al., 2003]. It was attributed to the active long-range
transport of Asian dust in the spring of 2001. Therefore
underestimated aerosol events might also contribute to the
differences between simulated AOT and MISR AOT.
[23] In terms of the uncertainties in MISR AOT, we

previously showed that the retrieval errors in MISR AOT
tend to be larger when a large amount of coarse particles is
present [Liu et al., 2004]. Air quality in the United States is
influenced by transported African dust in the summer
[Prospero, 1999] and transpacific dust transport from Asia
in the spring [Jaffe et al., 2003]. Consequently, the higher
noise level in MISR AOT due to higher fraction of dust in
the total AOT are likely deteriorate its correlation with
simulated AOT. In addition, the region of high AOT values
in the winter and spring in North Dakota, South Dakota and
Minnesota might be caused by insufficient cloud masking in
the MISR retrieval algorithm (R. Kahn, personal commu-
nication, 2003). Finally, considering the narrow dynamic
range and low values of AOT during the winter, the
correlation between simulated AOT and MISR AOT could
be significantly weakened by the retrieval errors in MISR
AOT.

3.3. Comparison Between MISR PM2.5 Concentrations
and EPA Measurements

[24] The annual average MISR PM2.5 concentration over
the United States (9.68 ± 3.68 mg/m3) is approximately 10%
lower than the EPA measurements with a similar dynamic
range (Table 2). As shown in Figure 8, the annual MISR
PM2.5 concentrations exhibit an improved agreement with
EPA measurements in spatial pattern as compared to sim-

ulated PM2.5 concentrations, with more comparable con-
centrations in the eastern central United States, District of
Columbia-Maryland region. The ratio of MISR PM2.5 con-
centrations over EPA measurements is on average 0.90 with
a standard deviation of 0.23. The MISR PM2.5 concentra-
tions are generally lower than the EPA measurements in the
northwest and higher in the east. A scatterplot shows that
annual average MISR PM2.5 concentrations have a good
linear relationship with EPA measurements (r = 0.78, linear
regression slope = 0.91) and the estimated intercept is
insignificant (p = 0.84) (Figure 9). The root mean square
error (RMSE) of MISR PM2.5 concentrations is 2.32 mg/m3.
Although PM2.5 concentrations in Southern California are
underestimated, the MISR PM2.5 concentrations are approx-
imately 30–50% higher than the simulated PM2.5 concen-
trations in this region. When these three points are excluded,
the relationship is further improved (r = 0.81) with an
estimated slope of 1.00 and insignificant intercept. The
RMSE is also improved to 2.20 mg/m3.
[25] Seasonally, the difference between MISR PM2.5 and

EPA PM2.5 measurements is the largest in the winter
(8.27 mg/m3 versus 12.17 mg/m3, 33% difference) and small-

Figure 5. Two-dimensional plot of annual average (left) simulated AOT integrated in 2� � 2.5� grid
cells versus (right) MISR AOT measurements integrated in 2� � 2.5� grid cells.

Figure 6. Scatterplot of annual average simulated AOT
versus MISR AOT. The reduced major axis line is shown as
the solid line in the plot. The 1:1 line is shown as the short-
dashed line for reference.
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est in the summer (11.68 mg/m3 versus 11.32 mg/m3, �3%
difference). The MISR PM2.5 concentrations are generally
higher than EPA measurements except during the fall (7%
lower). Spearman’s correlation coefficients between MISR
PM2.5 and EPA measurements are significant in all seasons
with the exception of the winter in the west and spring in the
east, which do not indicate an overall improvement over the
simulated PM2.5 concentrations (Table 3).

[26] We showed in a previous study that MISR AOT and
a few meteorological parameters are able to predict surface
PM2.5 concentrations with a 45% relative error (Liu et al.,
submitted manuscript, 2004). In this analysis, we show that
the capability of MISR AOT to predict surface-level PM2.5

concentrations can be substantially enhanced by including
simulated aerosol vertical profiles. The regression results
indicate that the annual MISR PM2.5 concentration is an

Figure 7. Scatterplots of seasonal average (left) simulated AOT and (right) MISR AOT retrievals in
2001 in the United States. Data from the eastern United States are shown as circles, and data from the
western United States are shown as crosses. The total number of data points in each season N, the
correlation coefficient r, and the reduced major axis equation are presented in each plot. The reduced
major axis line is shown as the thick solid line in each plot. The 2:1, 1:1, and 1:2 lines are shown as the
thin dashed lines for reference.

Figure 8. Two-dimensional plot of annual average (left) MISR PM2.5 concentrations integrated in 2� �
2.5� grid cells and (right) ratio of MISR PM2.5 concentrations over EPA PM2.5 concentrations integrated
in 2� � 2.5� grid cells. The scale of ratios saturates at 0.5 and 1.5 to best display the color contrast in the
plot (first percentile of ratio = 0.49, 99th percentile of ratio = 1.53).
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unbiased predictor of EPA PM2.5 measurements with an
approximately 20% relative error (RMSE over mean EPA
PM2.5 concentration). The MISR PM2.5 concentration is not
strongly influenced by the underestimation of both simulated
PM2.5 concentration and AOT in the winter in northwest,
which agrees with previous analysis of equation (1). As a
result, the difference between annual mean MISR PM2.5

concentrations and EPA measurements is smaller as com-
pared to that between simulated PM2.5 concentrations and
EPA measurements, as shown in the summary statistics and
the regression results.
[27] The uncertainty associated with seasonal MISR

PM2.5 concentrations is significantly greater as indicated
by the changing correlation coefficients between seasonal
average MISR PM2.5 concentrations and EPA measure-
ments (Table 3). The generally weaker correlation in the
west as compared to the east may be partially attributed to
the heterogeneous spatial distribution of EPA network and
the uncertainties in MISR AOT data, as discussed in the
previous sections. Higher uncertainties associated with
aerosol estimations by global CTMs under complex terrain
and climate conditions, such as in Southern California, can
also deteriorate the predictability of equation (1).

4. Conclusion

[28] A simple approach to estimating surface-level PM2.5

concentration using simulated aerosol data by GEOS-
CHEM and MISR AOT retrievals is presented using data
in 2001 in the contiguous United States. Simple linear
regression shows that the annual MISR PM2.5 concentration
is strongly correlated with EPA PM2.5 concentration (r =
0.78), with an estimated slope of 0.91 and an insignificant
intercept. When three potential outliers covering Southern
California are excluded, the regression line has a stronger

correlation efficient (r = 0.81), an estimated slope of 1.00,
and an insignificant intercept. The MISR PM2.5 concen-
trations have a relative error of approximately 20%, indi-
cating a significant improvement over using MISR AOT as
the only indicator of ground PM2.5 concentrations.
[29] The results of this analysis present a promising

application of global models and satellite retrieved aerosol
optical properties in ambient air quality monitoring. Since
the residence time of fine particles in lower troposphere
ranges from 24 hours to a few days, surface-level PM2.5

pollution likely exhibits a regional nature except near large
point sources. Therefore the current spatial resolution (2� �
2.5�) would be sufficient to evaluate the population expo-
sure to PM2.5 at national scale. Because of the global
coverage of the satellite measurements and global model
simulation results, this fully predictive approach can be
easily transferred to other regions of the world without
calibration using ground measurements. Therefore current
results are valuable for many parts of the United States
without extensive surface-level monitoring networks, and
throughout the developing countries where research on
particle pollution and related public health issues is severely
limited by available PM2.5 data. Naturally, results with a
finer resolution will improve the characterization of PM2.5

spatial variability and will, subsequently, reduce the poten-
tial for exposure misclassification in PM2.5 epidemiologic
studies. For example, simulated particle vertical profiles at a
higher spatial resolution (e.g., 10–20 km) will be needed
for PM2.5 epidemiology studies in large metropolitan sta-
tistical areas (MSAs).
[30] Future research may be conducted to improve the

approach presented in this analysis. For example, seasonal
average PM2.5 concentrations estimated by equation (1)
contain substantial uncertainties due to the noise in MISR
AOT and the difficulties that global CTMs encounter under
complex terrain and weather conditions. A mesoscale model
nested in the global CTMs is likely to preserve the impact of
global-scale aerosol events over the geographical region of
interest, such as long-range transport of dust, and mean-
while provide higher spatial resolution. Together with the
continuous improvement of MISR data quality, we can
expect that this approach will be able to estimate ground
PM2.5 concentrations with a higher level of confidence at
seasonal level or higher time resolutions. Furthermore, as
discussed previously, MISR PM2.5 might have substantial
uncertainty when more than one major aerosol species with
different optical properties and vertical distributions are
present in the atmospheric column. The relationship be-
tween MISR AOT, simulated AOT and PM2.5 concentration
similar to what has been presented in equation (1) may be
established for each aerosol component separately. There-
fore how to utilize the aerosol composition and Angstrom
exponent information provided in the latest MISR aerosol
data product will be an interesting topic for future research.
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