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[1] The Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict
the Multiphase Partitioning of Organics (MPMPO) have been updated with a detailed
treatment of the oxidation mechanisms and secondary organic aerosol (SOA) formation
potentials of a-pinene, b-pinene, and d-limonene. The updated CACM and MPMPO
modules have been incorporated into the Community Multiscale Air Quality (CMAQ)
model. The revised CMAQ model was used to simulate air quality over the eastern United
States, with a particular focus on New England (NE) for the period 3–4 August 2004,
which was part of the International Consortium for Atmospheric Research on Transport
and Transformation (ICARTT) campaign. On 3 August, 24-hour-average organic aerosol
(OA) and PM2.5 concentrations were approximately 7.0 mg m�3 and 13.0 mg m�3,
respectively, at Thompson Farm (TF), a rural site in southeastern New Hampshire. The
model results (e.g., ozone (O3), PM2.5, and individual PM2.5 chemical components) were
compared against various observational data sets (e.g., AIRMAP, IMPROVE, SEARCH,
and AIRNOW), as well as CMAQ model predictions using the CB-IV gas-phase
mechanism and the SORGAM SOA module. Both CMAQ model simulations with
CACM/MPMPO and with CB-IV/SORGAM predicted O3, PM2.5, sulfate, and ammonium
reasonably well but underestimated elemental and organic carbon aerosol. SOA
predictions from CACM/MPMPO and from CB-IV/SORGAM were very close for the
sites where OA concentrations were available on 4 August, though sensitivity of SOA
predictions at TF to domain-wide NOx emissions and temperature variations differed
significantly. Additionally, on the basis of the predicted chemical composition of OA from
CMAQ with CACM/MPMPO, 24-hour averages of the ratio of the organic mass to
organic carbon were determined to be in the range of 1.1 to 1.9, depending on the relative
abundance of SOA and primary organics.
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1. Introduction

[2] Organic mass (OM) is an important component of
atmospheric aerosols, generally accounting for 30–60% of
fine particle mass [Chow et al., 1994; Tanner et al., 2004].
A substantial fraction of OM is secondary organic aerosol
(SOA), which is formed in the atmosphere from the gas-to-
particle partitioning of the oxidation products of gas-phase
hydrocarbons. Examples of SOA formation mechanisms
include absorption into existing aerosol-phase organics
[Pankow, 1994], dissolution into aerosol-phase water
[Saxena and Hildemann, 1996; Aumont et al., 2000],
heterogeneous or particle-phase reactions [Jang et al.,
2002; Kalberer et al., 2004], and cloud-phase reactions
[Ervens et al., 2004; Lim et al., 2005].

[3] Because of the complexity of SOA formation pro-
cesses, treatment of SOA formation is a major source of
uncertainty in three-dimensional particulate matter (PM)
models [Seigneur, 2001; Pun et al., 2003]. Typical three-
dimensional air quality models use empirical approaches
based on environmental chamber data to simulate SOA
formation [Schell et al., 2001; Pun et al., 2003]. Recently,
mechanistic or semimechanistic approaches for modeling
SOA have emerged in the literature and are considered to be
the future direction of more realistic SOA modeling [Griffin
et al., 2005; Kanakidou et al., 2005; Johnson et al., 2006].
[4] An example of such a mechanistic approach that has

been used in three-dimensional air quality models is the
Caltech Atmospheric Chemistry Mechanism (CACM) and
the Model to Predict the Multiphase Partitioning of Organ-
ics (MPMPO) [Griffin et al., 2002a, 2002b, 2003; Pun et
al., 2002]. CACM predicts the products of gas-phase
oxidation of volatile organic compounds (VOCs), and
MPMPO simulates the phase partitioning of those that are
semivolatile or nonvolatile. The CACM and MPMPO were
incorporated originally into the California Institute of Tech-
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nology urban-scale air quality model and applied to the
South Coast Air Basin (SoCAB) of California [Griffin et al.,
2002b, 2003]. Griffin et al. [2005] updated the CACM and
MPMPO to mimic SOA yields from laboratory chambers.
Chen and Griffin [2005] further updated the CACM mech-
anism with a detailed treatment of chemistry for a-pinene,
b-pinene, and d-limonene.
[5] In this study, the CACM and MPMPO with the

updates of Griffin et al. [2005] and Chen and Griffin
[2005] have been incorporated into a state-of-the-science
regional air quality model, the Community Multiscale Air
Quality (CMAQ) model [Byun and Ching, 1999], and have
been applied over the eastern United States. Focus is placed
on the New England (NE) region, which is heavily influ-
enced by biogenic hydrocarbons [Lamb et al., 1993]. The
objectives of the study are: to evaluate the performance of
the updated CACM/MPMPO in simulating ambient SOA
formation; to compare the updated CACM/MPMPO with
default gas-phase chemistry and SOA modules in the
CMAQ model; to evaluate the sensitivity of the different
SOA modules to variations in temperature and emissions of
oxides of nitrogen (NOx) and VOCs; to quantify aqueous-
phase SOA concentrations relative to the total in the
MPMPO module; and to investigate the OM to organic
carbon (OC) ratio predicted by the MPMPO module. For
the first of these objectives, CACM/MPMPO output will be
compared to high-time-resolution aerosol mass spectrome-
ter (AMS) data for the first time.

2. Models and Measurement Data

2.1. CACM and MPMPO

[6] CACM is designed to characterize the formation of
O3 and products that could potentially contribute to SOA
from the oxidation of VOCs [Griffin et al., 2002a]. CACM
lumps parent VOCs into categories based on their SOA
formation potentials, reactivity, and structure. Examples of
such lumped species are aromatic low and aromatic high,
where low and high represent relative SOA formation
potentials. CACM is an intermediate approach between
the nonspecific SAPRC mechanism [Carter, 1990] and
the fully explicit Master Chemical Mechanism (MCM)
[Jenkin et al., 2003; Saunders et al., 2003]. It allows for
an increased level of detail while still maintaining reason-
able computational demands.
[7] The MPMPO calculates the partitioning of CACM-

predicted semivolatile oxidation products between the gas
and aerosol phases using ten surrogate species [Griffin et
al., 2003]. Two processes that are responsible for SOA
formation are treated simultaneously, in contrast to only one
process that is typically treated in other SOA modules. The
first is absorption into existing aerosol OM (i.e., primary
organic aerosol, POA, or preexisting SOA). This is char-
acterized by an absorption coefficient, Kom,i (m3 mg–1)
[Pankow, 1994]:

Kom;i ¼
Oi

GiMo

¼ RT

MWom106gip
o
L;i

ð1Þ

where Oi (mg m
�3) and Gi (mg m

�3) are the organic aerosol-
and gas-phase concentrations of compound i, respectively,
Mo (mg m�3) is the total aerosol-phase OM concentration

(including POA, if present), R is the ideal gas constant
(8.206 � 10�5 m3 atm mol�1 K�1), T is temperature (K),
MWom is the average molecular weight of the organic phase
(g mol�1), gi is the activity coefficient of compound i, and
poL,i is the subcooled liquid vapor pressure (atm) of
compound i at temperature T.
[8] The second process is dissolution into aerosol-phase

water, which is represented by Henry’s Law:

Ai ¼
Gi LWCð ÞHLi

gaq;i
ð2Þ

where Ai is the aqueous aerosol-phase concentration of
species i (mg m�3), HLi is its Henry’s Law coefficient
((mg mg�1 H2O)/(mg m�3 air)), LWC is the aerosol liquid
water content (mg H2O m�3 air), and gaq,i is the activity
coefficient of species i in the aqueous aerosol phase,
normalized by that at infinite dilution. Further dissolution
of the oxidation products into organic ions is also considered.
[9] Chen and Griffin [2005] updated the CACM with

detailed oxidation mechanisms for a-pinene, b-pinene, and
d-limonene and used an absorption module based on
Pankow [1994] to simulate SOA formation from oxidation
of these three compounds in laboratory experiments. For
application in three dimensions, over forty simulated oxi-
dation products for a-pinene, b-pinene, and d-limonene are
lumped into the three original biogenic surrogate species in
the MPMPO module plus a newly created surrogate species
(2,10-dinitrato-pinane).
[10] To improve the model performance for the experi-

ments with low initial VOC concentrations in the simula-
tions of Chen and Griffin [2005], a mechanism involving
dimer formation of di- and multifunctional acid species
proposed by Jenkin [2004] has also been adopted. This is
represented by inclusion of a pseudo-unimolecular reaction

acid gasð Þ ! acid aerosolð Þ ð3Þ

for each of the 15 multifunctional acid species generated
from oxidation of the monoterpenes. The reaction was
assigned a rate coefficient k = k0S[acid(gas)] [Jenkin, 2004],
where S[acid(gas)] is the sum of the gas-phase concentra-
tions of all multifunctional acids generated from a-pinene,
b-pinene, and d-limonene and k0 = 1.5e�35� exp(14770/T)
cm3 molecule�1 s�1, a value decreased by three orders of
magnitude compared to that used in Jenkin [2004], in order
to fit experimental data. Reaction (3) is treated as a gas-
phase reaction in CACM, leading to an assumed nonvolatile
dimer [Jenkin, 2004]. The mass of the dimer is added to the
SOA mass, with the corresponding monomer acid mass no
longer available for partitioning using MPMPO.
[11] Simulations based on the four MPMPO surrogate

species with the additional acid gas-to-particle transfer
process were evaluated using the photooxidation experi-
mental data from Hoffmann et al. [1997] and Griffin et al.
[1999]. Figure 1 shows the comparison of observed and
predicted final SOA for these experiments. Reasonable
agreement is achieved, indicating that use of the four
surrogate species is appropriate. After the update, five
individual monoterpene species (i.e., a-pinene, b-pinene,
d-limonene, a-terpineol, and g-terpinene) and their products
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are now treated explicitly in CACM and accounted for in
the surrogates used in MPMPO.
[12] Within CMAQ, CACM was coupled to a general

Rosenbrock ordinary differential equation solver [Sandu et
al., 1997]. Existing gas-phase chemistry mechanisms in
CMAQ include CB-IV [Gery et al., 1989], RADM [Stockwell
et al., 1990], and SAPRC99. In CMAQ, inorganic aerosol
formation is simulated with ISORROPIA [Nenes et al.,
1998], and organic aerosols are simulated using SORGAM
[Schell et al., 2001]. Because MPMPO interacts with the
inorganic aerosol module in order to treat the effects of
additional water uptake by SOA and dissociated SOA ions
on the inorganic partitioning, the ISORROPIA module from
the MADRID model that has that capability [Zhang et al.,
2004a] was used in this study.

2.2. Measurement Data

[13] Measurement data were taken from a wide range of
sources. Hourly O3, 24-hour average PM with diameters less
than 2.5 micron (PM2.5), and 24-hour average speciated
PM2.5 were taken from a variety of programs, including
the Atmospheric Investigation, Regional Modeling, and
Prediction (AIRMAP) program [Talbot et al., 2005],
EPA Air Quality System (AQS), the Southeastern Aerosol
Research Characterization Study (SEARCH) [Hansen et al.,
2003], and the Interagency Monitoring of Protected Visual
Environments (IMPROVE) [Malm et al., 1994]. Highly
time-resolved chemical mass concentrations for speciated
PM2.5 were drawn from an Aerodyne AMS [Jayne et al.,
2000] deployed at the Thompson Farm (TF), a rural site in
southeastern New Hampshire, as part of International Con-
sortium for Atmospheric Research on Transport and Trans-
formation (ICARTT). The TF site is part of the AIRMAP
network of atmospheric observatories operated by the
University of New Hampshire [Talbot et al., 2005]. Addi-
tionally, observed PM from a particle-into-liquid sampler
(PILS) measurement [Sullivan et al., 2004] on board the

NOAA P3 aircraft was used to evaluate vertical predictions
of PM.

3. Model Applications

[14] The CMAQ model implemented with CACM/
MPMPO was used to simulate air quality for the eastern
United States.While an earlier version of CACMwas applied
to a similar spatial domain previously using CMAQ [Pun et
al., 2003], this is the first application of the full MPMPO and
the updated CACM [Chen and Griffin, 2005; Griffin et al.,
2005] within this framework. For comparison purposes,
simulations were also performed using the default CB-IV/
SORGAMmodules. Themodel domain is shown in Figure 2.
It has a 62 � 66 horizontal grid with a resolution of 36 km.
Vertically, 21 layers are specified with a s-pressure coordi-
nate extending from the surface to 10,000 Pa.
[15] The MPMPO module uses the UNIFAC method to

calculate activity coefficients for the surrogate species in the
aerosol organic and aqueous phases [Fredenslund et al.,
1977], which dramatically increases the computational time.
It was found to be computationally too intensive to simulate
the entire modeling domain while including the UNIFAC
calculation. Therefore the smaller domain shown in Figure 2
was selected to evaluate whether assuming unity for all
activity coefficients yields results similar to those from the
full UNIFAC calculation. In order to focus on those areas
where SOA formation was most significant, only those cells
in which predicted SOA concentrations were greater than
0.5 mg m�3 were considered in this analysis. Simulation
within this small domain for these cells shows that SOA
predictions while assuming unity for activity coefficients
were within ±5% of the base predictions. This is largely due

Figure 1. Comparison of observed SOA during photo-
oxidation experiments with those predicted by CACM and
an absorption module based on four surrogate species
(observed data from Hoffmann et al. [1997] and Griffin et
al. [1999]).

Figure 2. Modeling domain for this study. The small
domain was used for a sensitivity analysis with activity
coefficient calculation on or off. AIRMAP sites are stars,
SEARCH sites are triangles, and IMPROVE sites are
circles.
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to the fact that the majority of simulated SOA formation
results from biogenic sources. Therefore activity coeffi-
cients do not deviate significantly from unity because of
the molecular similarity of the species. Thus, when the
MPMPO-incorporated CMAQ model was applied to the
entire modeling domain, the activity coefficients of all
organic species in the condensed phases were assumed to
be one.
[16] The episode of 3–4 August 2004 (UTC) is chosen

for simulation, as 3 August experienced one of the highest
OM concentrations measured during ICARTT using filters
at TF (L. D. Ziemba et al., Aerosol acidity in northern New
England: Temporal trends and source region analysis,
submitted to Journal of Geophysical Research, 2006).
Much of NE featured clear or partly cloudy skies with
high temperatures in the range of 27 to 32�C during the
daytime of 3 August 2004. A cold front pushed through
NE during 4 August 2004. Twenty-four-hour average OM
and PM2.5 concentrations were approximately 7.0 mg m�3

and 13.0 mg m�3, respectively, at TF on 3 August. The
maximum 1-hour O3 mixing ratio during 3 August 2004
reached 95 parts per billion (ppb) at Appledore Island (AI),
which is one of the Isles of Shoals in the Gulf of Maine
and is host to another AIRMAP observatory.
[17] Emission profiles have been processed with the

Sparse Matrix Operator Kernel Emissions (SMOKE1.0)
system, as in the work by Mao et al. [2006]. Anthropogenic
emissions are based on the U.S. National Emissions Inven-
tory 99 Version 2, while biogenic emissions are calculated
with the Biogenic Emissions Inventory System (BEIS3.09)
model. Because the VOCs emissions data processed by
SMOKE were formatted for the CB-IV mechanism, they
had to be transformed for use with CACM. This was done
using the VOC speciation profile for the SoCAB, as was
done by Pun et al. [2003]. The monoterpene speciation was
based on annual emission estimates for individual mono-
terpenes for North America from Guenther et al. [2000].
Meteorological fields were simulated with the PSU/NCAR
Mesoscale Modeling System Generation 5 version
3.4 (MM5). Additional details of model setup and config-
uration also are given by Mao et al. [2006].

4. Model Results

[18] In this study, model results are compared with
measured values for O3, PM2.5, and PM2.5 composition at
various surface locations. Vertical profiles are also consid-
ered. Only species with lifetimes in excess of a few hours
are shown because of the spatial resolution of the host
model.

4.1. O3 Predictions

[19] Figure 3 shows the simulated and observed hourly
average O3 mixing ratios at the surface at TF and AI.
Simulations with both CACM and CB-IV generally are
able to capture the temporal variations of O3 mixing ratios
at AI, but not at TF. For 3 August, 2004, at TF, CACM
accurately predicts the O3 peak, while CB-IV underpredicts
the O3 peak by 11%. For the same day at AI, CACM and
CB-IV overpredict the O3 peak by 36% and 23%, respec-
tively. The only difference between the simulations is the
gas-phase chemical mechanism used. Disparities in their

VOC aggregation scheme, reaction rate constants, product
yields, etc. likely lead to the discrepancies in modeled O3

mixing ratios.
[20] An interesting feature in the O3 profiles at TF is the

depletion of O3 at night, which occurs frequently at this site
[Talbot et al., 2005]. This was not captured by the model.
This is potentially caused by use of a minimum vertical
diffusion coefficient, Kzz, of 1.0 m2/s. If the minimum Kzz is
assigned to be 0.1 m2/s [Zhang et al., 2004b], the O3

predictions at night from the CB-IV mechanism could be
decreased to 20 ppb, still significantly higher than observed
values. The model probably underestimates dry deposition
losses, which were found to be responsible for nighttime O3

depletion at this site [Talbot et al., 2005].
[21] The modeled 1-hour average O3 mixing ratios for 3–

4 August 2004 (EST) are compared to observations for
approximately 400 EPA AQS sites across the modeling
domain. Table 1 summarizes the model performance statis-
tics for the CACM and CB-IV applications for 1-hour
average O3 mixing ratios when the observed O3 mixing
ratios exceed 60 ppb [Zhang et al., 2004b]. The model
performance in terms of mean normalized gross error
(MNGE) and mean normalized bias (MNB) for both CACM
and CB-IV is comparable to those reported in other studies
[Zhang et al., 2004b].

4.2. PM2.5 Predictions

[22] Model-simulated, 24-hour average PM2.5 concentra-
tions are evaluated against measurements at 117 EPA AQS

Figure 3. Measured and modeled O3 mixing ratios: (a) TF
and (b) AI.
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sites across the modeling domain. The model performance
statistics are summarized in Table 2 for CACM/MPMPO
and CB-IV/SORGAM. Model predictions from CACM/
MPMPO are only slightly different than those from CB-
IV/SORGAM. The differences are due solely to differences
in the gas-phase chemical mechanism and the SOA module.
The gas-phase chemical mechanism affects inorganic aero-
sol formation by providing gas-phase concentration fields
(e.g., hydroxyl radical (OH), hydrogen peroxide (H2O2),
and O3). Predictions of the concentrations of primary
species (e.g., elemental carbon (EC), POA, and other
PM2.5 species) are independent of the gas-phase chemical
mechanism and SOA modules. For both CACM/MPMPO
and CB-IV/SORGAM for 24-hour average PM2.5, the
MNGE and MNB are approximately 38% and �24%,
respectively, which are values comparable to other studies
[Zhang et al., 2004b].
[23] Model-predicted, 24-hour average compositions are

also compared to speciation measurements from the AIR-
MAP, SEARCH, and IMPROVE programs. A summary of
model performance statistics is given in Table 3. Among the
45 data pairs, 43 data points are for 4 August 2004 (EST)
because the SEARCH and IMPROVE programs did not
sample on 3 August 2004. The remaining two pairs are from
TF from AIRMAP and Jefferson Street, Atlanta, Georgia,
from SEARCH on 3 August 2004. For these sites, the
performance of total PM2.5 mass predictions is consistent
with that for the EPA AQS sites given in Table 2. Model
simulations using CACM/MPMPO and CB-IV/SORGAM
show only minor differences in percentage for sulfate,
nitrate, ammonium, EC, and OM predictions. For the
predictions of individual chemical species, MNGE is largest
for nitrate and smallest for ammonium. On the basis of
MNE, both OM and EC are underestimated significantly.
The underprediction of EC may reflect underestimation of
EC emissions because EC is purely a primary, nonreactive
species in the model. OM, however, consists of both
primary and secondary material. The slight difference in
terms of OM predictions reflects the difference in SOA
predictions, as will be discussed subsequently.
[24] Figure 4 shows the AMS-measured and model-

predicted temporal profiles for major aerosol species at

TF. The AMS is able to produce highly time-resolved
chemical mass concentrations for sulfate, ammonium, ni-
trate, and OM in aerosols with aerodynamic diameter less
than approximately 1 mm. However, a study in Mexico City
[Salcedo et al., 2005] shows that AMS-measured species
plus black carbon and soils are a good approximation for
PM2.5. For this reason, model-predicted concentrations of
PM2.5 species are compared to AMS-measured values.
[25] Model simulations with CACM/MPMPO and with

CB-IV/SORGAM produce very similar temporal profiles
for ammonium, nitrate, and sulfate because the same basic
inorganic aerosol module is used. Besides missing one
significant short-lived observed peak in both ammonium
and sulfate, observed temporal profiles for ammonium and
sulfate are followed adequately by the model output. The
model predicts a nitrate peak that is not evident from
observations.
[26] Simulations significantly underpredict the OM con-

centrations at this site. However, the correlations between
modeled hourly OM concentrations and those measured
with the AMS are 0.61 for CACM/MPMPO and 0.51 for
CB-IV/SORGAM, indicating that the temporal variations of
AMS-measured OM were characterized by the model to a
certain extent, with slightly better performance for CACM/
MPMPO. The differences in the comparisons for the high-
time resolution data indicate that comparison of model
output using 24-hour filter data should be done with
caution. Figure 4 indicates significant differences between
CACM/MPMPO and CB-IV/SORGAM despite similar pre-
dicted 24-hour average SOA concentrations.
[27] Figure 4 also shows the model predicted EC con-

centrations at this site compared to the measurement from
an aethalometer. Modeled EC shows diurnal cycles that
are not obvious from the observations. Averaged over
the 48-hour period, modeled EC is actually approximately
20% higher than observed EC at this site, in contrast to the
overall EC performance in the model domain, as indicated
in Table 3.
[28] Model predictions of vertical profiles have been

compared to observed values from a PILS measurement
on board the NOAA P3 aircraft. PILS measures water-
soluble aerosol species at a time resolution of 60–90 s. The

Table 1. Performance Summary for 1-Hour Average O3 Mixing Ratios on 3–4 August 3 2004 for CACM and CB-IVa

Date (EST) Data Points Mean Observation, ppb

Mean Prediction, ppb MNGE MNB

CACM CB-IV CACM CB-IV CACM CB-IV

3 Aug 2004 1870 69.7 70.0 58.6 0.21 0.22 0.01 �0.16
4 Aug 2004 929 69.7 75.8 60.7 0.23 0.18 0.09 �0.12

aData are from EPA AQS. MNGE, mean normalized gross error; MNB, mean normalized bias.

Table 2. Performance Summary for 24-Hour Average PM2.5 Concentrations on 3–4 August 2004 for CACM/MPMPO and CB-IV/

SORGAMa

Date (EST)
Mean Observation,

mg m–3

Mean Prediction, mg m�3 MNGE MNB

CACM/MPMPO CB-IV/SORGAM CACM/MPMPO CB-IV/SORGAM CACM/MPMPO CB-IV/SORGAM

3 Aug 2004 20.1 14.6 14.7 0.37 0.37 �0.23 �0.22
4 Aug 2004 21.0 15.1 15.3 0.38 0.39 �0.25 �0.24

aData are from EPA AQS. MNGE, mean normalized gross error; MNB, mean normalized bias.
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position of the NOAA P3 aircraft is averaged over the PILS
measurement time to yield the average position for that
measurement. The average position of the aircraft is then
mapped onto the modeling cells. To construct the vertical

profiles, the observational points and the corresponding
model predictions are averaged for every 200 m extending
from the surface to an altitude of 3 km. The modeled
vertical profiles for sulfate and ammonium follow the

Table 3. Performance Summary for 24-Hour Average Concentrations of PM2.5 and Individual PM2.5 Species for CACM/MPMPO and

CB-IV/SORGAMa

Species
Data
Points

Mean Observation,
mg m�3

Mean Prediction, mg m�3 MNGE MNB

CACM/MPMPO CB-IV/SORGAM CACM/MPMPO CB-IV/SORGAM CACM/MPMPO CB-IV/SORGAM

PM2.5 45 16.70 13.70 14.10 0.33 0.36 �0.17 �0.15
Sulfate 44 7.13 7.98 8.55 0.52 0.60 0.32 0.39
Nitrate 44 0.28 0.19 0.18 1.34 1.23 �0.06 �0.03
Ammonium 15 2.73 2.74 2.71 0.14 0.15 0.03 0.02
EC 44 0.80 0.39 0.39 0.52 0.52 �0.45 �0.45
OC 44 3.82 1.26 1.18 0.66 0.69 �0.66 �0.69

aData are from the SEARCH, IMPROVE, and AIRMAP programs. Ammonium concentrations for most sites from the IMPROVE program are missing.
MNGE, mean normalized gross error; MNB, mean normalized bias.

Figure 4. Comparisons of AMS_measured temporal profiles for (a) sulfate, (b) ammonium, (c) nitrate,
and (d) OM and (e) aethalometer-measured EC with simulations with CACM/MPMPO and CB-IV/
SORGAM at TF. Note the difference in scale between measured and modeled OM. In the case of EC,
simulations with CACM/MPMPO and CB-IV/SORGAM produce the same modeled values.
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observed ones reasonably well. Therefore only the vertical
profile for OM is discussed here. Measured water-soluble
OC is multiplied by 2.25 to yield approximate total OM
concentrations [R.J. Weber, Georgia Institute of Technology,
personal communication].
[29] Figure 5 shows the comparison between observed

and model-predicted vertical profiles for OM. As with the
AMS, the PILS collected particles with diameters smaller
than approximately one micron; model predicted PM2.5 OM
concentrations are again shown in Figure 5. The vertical
OM profile is very similar for CACM/MPMPO and CB-IV/
SORGRAM. OM concentrations are significantly under-
estimated. The relative bias is approximately �70% at the
surface and approximately �97% at the altitude of 3 km,
indicating poorer model performance at greater height.
Heald et al. [2005] found that observed OM concentrations
in the free troposphere were also 10–100 times higher than
model values computed using a standard two-product sim-
ulation of SOA formation based on chamber data. They
suggest that a large, sustained source of SOA in the free
troposphere is the oxidation of long-lived organic com-
pounds that are not captured by current SOA modules.

4.3. SOA Predictions

[30] Figure 6 shows the predicted 24-hour average SOA
on 3–4 August 2004 from CACM/MPMPO and CB-IV/
SORGAM. The modeled SOAwithin this domain is derived
mainly from monoterpenes. The spatial distributions of
SOA are coincident with biogenic VOC emissions. For
3 August 2004, CB-IV/SORGAM predicts high SOA for-
mation in the northeastern United States, particularly in
Maine, as well as in places around Lake Superior. Peak
24-hour SOA concentrations occurring in Maine and Min-
nesota reach approximately 4.1 mg m�3. For the same day,
CACM/MPMPO yields high SOA predictions in the north-
eastern United States, New Brunswick, the southeastern
United States, and places around the Great Lakes. Maximum
24-hour SOA concentrations are approximately 2.2 mg m�3.
For 4 August 2004, CB-IV/SORGAM produces high SOA
formation in the southeastern United States, with peak
values of 3.9 mg m�3 occurring in Georgia. CACM/
MPMPO also produces strong SOA formation in the south-

eastern United States, with peak values of 3.6 mg m�3 in
Georgia. The differences in predicted SOA from CACM/
MPMPO and CB-IV/SORGAM mainly reflect differences
in their predictions of biogenic SOA. Averaged over the
entire modeling domain and throughout the modeling epi-
sode, however, SOA prediction from CACM/MPMPO is
51% higher than that from CB-IV/SORGAM. This indicates
that the SOA predictions from CACM/MPMPO are spatially
more spread than predictions from CB-IV/SORGAM. This
is likely because CACM/MPMPO also tracks SOA forma-
tion from oxidation of the first and second generation
products, while CB-IV/SORGAM assumes instantaneous
SOA formation upon oxidation of parent hydrocarbons.
This again underscores why use of 24-hour filter data for
model comparison of simulated OM concentrations is not
the most appropriate technique.
[31] CACM/MPMPO and CB-IV/SORGAM both under-

estimate OM concentrations at TF. One potential reason is
the inaccuracy of fine POA emissions. The AMS-measured,
24-hour average OM concentration was 7.5 mg m�3. Fol-
lowing the approach of deGouw et al. [2005], the ratio of
the AMS signal at m/z = 44 to the total organic signal
suggests that on 3 August 2004, 35–65% of OM at TF was
secondary in nature (L. D. Cottrell et al., Submicron
particles at Thompson Farm during ICARTT measured
using aerosol mass spectrometry: Organic aerosol and
relationships to estimates of photochemical age, manuscript
in preparation, 2006). Assuming that 50% of OM at TF is
SOA on that day, the resulting POA concentration would be
3.75 mg m�3, approximately five times the modeled value
of 0.77 mg m�3. On the same day, the EC concentration
is predicted by the model reasonably well, as shown in
Figure 4. However, this does not suggest that POA should
also be reasonably predicted by the model because the
current emission inventory is not able to capture substantial
variations of the ratio of OC to EC in emissions from
various sources [McDonald et al., 2000; Shah et al., 2004].
[32] Although this factor of five under prediction is

unlikely to be applicable to the entire modeling domain, a
sensitivity analysis has been performed to investigate the
response of SOA predictions if the POA concentration is
increased by a factor of five. For TF, CB-IV/SORGAM
yields a 24-hour average SOA prediction of 2.3 mg m�3 on
3 August 2004, which is 0.61 mg m�3, or 37%, higher than
the base-case SOA prediction. This also increases the total
modeled OM concentration to 6.0 mg m�3. CACM/
MPMPO predicts a SOA concentration of 1.4 mg m�3, an
increase of 0.4 mg m�3, or 43%, compared to the base case,
and increases the total modeled OM to 5.2 mg m�3. With the
five fold increase in POA levels, SOA only increases by
approximately 40%, indicating that simulated SOA forma-
tion in this scenario is limited by the availability of
condensing material. With the increase of POA levels,
modeled OM is still smaller than that observed, indicating
that additional SOA formation is needed. Reasons for
underestimation of SOA at this site may include: uncertain-
ties associated with the gas-phase mechanism and SOA
formation module (e.g., vapor pressure values used for SOA
products); the underestimation of parent hydrocarbons that
are responsible for SOA formation; lack of a detailed
treatment of polymerization processes [Jang et al., 2002;
Kalberer et al., 2004] and potential cloud-phase SOA

Figure 5. Comparison of observed vertical profiles for
OM from a PILS measurement on board the NOAA P3
aircraft with those predicted by CACM/MPMPO and CB-
IV/SORGAM.
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formation processes [Ervens et al., 2004; Lim et al., 2005];
lack of consideration of SOA formation from isoprene and
sesquiterpenes [Vizuete et al., 2004; Kroll et al., 2005a]; and
lack of consideration of reactive uptake of carbonyl com-
pounds, such as glyoxal [Kroll et al., 2005b; Hastings et al.,
2005; Liggio et al., 2005].
4.3.1. SOA Sensitivity Study
[33] The sensitivity of SOA predictions to NOx, VOC,

and temperature variations is also studied for comparison
to recent experimental results and to recent modeling
results for the SoCAB performed using similar techniques
[Vutukuru et al., 2006]. Figure 7 shows the SOA predic-
tions at TF for 3 August 2004, for a series of sensitivity
analysis studies. Twenty-four-hour average SOA prediction
at TF from CACM/MPMPO is 17.2% lower when domain-
wide NOx emissions are increased by 40% from the base
case compared to the case when domain-wide NOx emis-
sions are decreased by 40% from the base case. However,

the simulationwith CB-IV/SORGAMexhibits a muchweaker
opposite trend. TF is located in a semirural area and is
probably NOx-limited during summer [Griffin et al., 2004].
NO and HO2 compete for the reaction with organic peroxy
radicals (RO2). When NOx increases, a smaller amount of
organic acids that participate in SOA formation is formed
from RO2 + HO2 reactions in the CACMmechanism, leading
to less SOA formation, which is consistent with a simulation
done by Jenkin et al. [2000] using MCM. Presto et al. [2005]
and Song et al. [2005] report decreased SOA formation
with increases in the NOx to VOC ratio for a-piene and
m-xylene, respectively, in chamber studies. The NOx depen-
dence of SOA formation predicted by CACM/MPMPO in the
eastern United States is much stronger than that predicted by
Vutukuru et al. [2006] for the SoCAB, probably because of
the NOx-saturated atmosphere in the SoCAB [Kelly and
Gunst, 1990].

Figure 6. Predictions of 24-hour average SOA: (a) CACM/MPMPO on 3 August 2004 (UTC), (b) CB-
IV/SORGAM on 3 August 2004 (UTC), (c) CACM/MPMPO on 4 August 2004 (UTC), and (d) CB-IV/
SORGAM on 4 August 2004 (UTC).
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[34] On the contrary, an increase of NOx emissions
increases the oxidation power of the atmosphere at TF by
leading to more O3 and increased consumption of mono-
terpenes. This explains the very slight increase of SOA
predicted by the simulation with CB-IV/SORGAM. Simu-
lations with CACM/MPMPO and with CB-IV/SORGAM
both predict higher SOA formation when domain-wide
VOC emissions are increased, as would be expected.
[35] The sensitivity of SOA predictions to the tempera-

ture was conducted by adjusting by ±5 K the temperature
that is fed into the gas-phase chemistry mechanism and the
aerosol module. In this way, the temperature dependence of
other processes such as emissions was not included. The
dependence of SOA predictions on temperature (T) is
stronger for CB-IV/SORGAM than for CACM/MPMPO.
Twenty-four-hour average SOA prediction at TF in the (T �
5 K) case is 3.4 times that in the (T + 5 K) case for CB-IV/
SORGAM, while for CACM/MPMPO, 24-hour average
SOA prediction in the (T � 5 K) case is 2.1 times that in
the (T + 5 K) case. The temperature dependence of SOA
predictions is due mainly to the value used for enthalpy
of vaporization of the SOA constituents. SORGAM uses
156.0 kJ mol�1 for all molecules, while MPMPO uses an

average of approximately 73.0 kJ mol�1 depending on indi-
vidual surrogate species. The values used in MPMPO are
based on a molecular structure prediction technique [Myrdal
and Yalkowsky, 1997]. Increases in the value of enthalpy
of vaporization typically lead to greater predicted SOA [Pun
et al., 2003]. Takekawa et al. [2003] measured SOA yields
from the photooxidation of toluene at different temperatures
and found that the SOAyield at 283 K is approximately twice
that at 303 K. Thus the temperature dependence predicted by
both CACM/MPMPO and CB-IV/SORGAM is stronger than
that measured experimentally. Temperature sensitivity in the
easternUnited States is similar to that observed for simulations
in the SoCAB performed by Vutukuru et al. [2006].
4.3.2. Aqueous SOA
[36] A unique feature of the MPMPO module is that it

simulates the simultaneous partitioning of semivolatile
organics into both the organic and the aqueous phases,
while other SOA modeling approaches typically only sim-
ulate the partitioning of semivolatile organics into one phase,
usually organic. To evaluate the significance of partitioning
of organics into the aqueous phase, the portion of SOA that
resides in the aqueous phase was quantified. Figure 8 shows
the predictions of 24-hour average aqueous-phase SOA
from CACM/MPMPO for 3–4 August 2004. The maxi-
mum 24-hour average aqueous- phase SOA concentration is
0.43 mg m�3 for 3 August 2004, and 0.76 mg m�3 for
4 August 2004. However, these maxima are not spatially
coincident with the maximum 24-hour average SOA con-
centration predictions from CACM/MPMPO shown in
Figure 6. The aqueous-phase SOA can constitute from
0% to approximately 90% of the total SOA predictions
from the MPMPO module. The relative importance of
aqueous-phase SOA formation depends on multiple factors,
among which are the LWC of aerosols, the aqueous-phase
hydrogen ion concentration, and the competition with the
partitioning to the organic phase. The MPMPO module
does not treat potential further irreversible or reversible
reactions (except ionization for carboxylic acids) for the
organics in the aqueous phase despite observations of
polymerization for certain compounds in the aqueous phase
[Hastings et al., 2005]. This suggests the current MPMPO
module underestimates the importance of aqueous-phase
SOA.
4.3.3. OM to OC Ratio
[37] Another strength of CACM/MPMPO is its ability to

simulate organic composition. This enables calculation of
the OM to OC ratio, which is used typically to convert
measured aerosol OC content to aerosol OM [Turpin
and Lim, 2001]. Figure 9 shows the spatial distributions
of 24-hour average values for the average OM to OC ratio
for the modeling domain. The average ratio varies from
1.10 to 1.90 in continental areas. In this study, the average
OM to OC ratio is 1.16 for POA. The OM to OC ratio for
surrogate species in the MPMPO module varies from
1.13 to 3.75, depending on the specific compound. The
spatial distributions of average OM to OC show the spatial
patterns of relative contributions of SOA and POA. In the
northern part of the modeling domain, the average OM to
OC ratio reaches 1.80 to 1.90 because of the dominant
contributions of SOA to total OM. For areas where SOA
formation is minor or where POA dominates over SOA
formation, the average OM to OC ratio is in the range of

Figure 7. SOA predictions on 3 August 2004 at TF. (a)
Domain-wide NOx emissions were varied by ±40% from
base case, and (b) temperature used in gas-phase chemistry
and aerosol modules was varied by ±5 K from base case.
Notation is as follows: _1 represents the base case, _2
represents the case with 40% increase of emissions for
Figure 7a or the case with increase of temperature by 5K for
Figure 7b, and _3 represents the case with 40% decrease of
emissions for Figure 7a or the case with decrease of
temperature by 5K for Figure 7b.
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1.10 to 1.30. Turpin and Lim [2001] suggested that the
average OM to OC ratio was 1.6 ± 0.2 for urban aerosols
and 2.1 ± 0.2 for nonurban aerosols. The slightly lower OM
to OC ratio from this study may be due to two reasons: a
value of the OM to OC ratio used for POA that is too low
and the potential under prediction of organic functionality
for SOA from CACM/MPMPO.

5. Conclusions

[38] CACM and MPMPO have been incorporated into the
CMAQ model and applied to the eastern United States for
an August 2004 episode. Simulations with CACM/MPMPO
were compared to simulations using CB-IV/SORGAM, as
well as a number of observational data sets. Model simu-

lations produce reasonable predictions for O3, PM2.5, sul-
fate, and ammonium but yield substantial underestimates for
EC and OM. The underestimation of EC is probably due to
the underestimation of emissions for EC. Reasons for the
underestimation of OM may include uncertainties in the
gas-phase mechanism and SOA modules used, the neglect
of SOA formation from sesquiterpenes, isoprene, and addi-
tional formation pathways, and the potential underestima-
tion of emissions of POA and parent hydrocarbons that are
responsible for SOA formation.
[39] Simulations with CACM/MPMPO and with CB-IV/

SORGAM produce similar SOA predictions for the nearly
40 sites where OM concentrations are available on 4 August
2004, based on 24-hour filter samples. Again, comparison
to 24-hour filter samples is not the best method for dis-

Figure 9. Spatial distributions for the 24-hour average values of the ratio of OM to OC from CACM/
MPMPO: (a) 3 August 2004 and (b) 4 August 2004.

Figure 8. Predictions of 24-hour average aqueous-phase SOA from CACM/MPMPO: (a) 3 August
2004 (UTC) and (b) 4 August 2004 (UTC).
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cussion of SOA model output discrepancies. However,
responses of SOA predictions at TF to NOx emissions
changes and temperature variations are different for the
two modeling approaches. This may lead to different results
if both modeling approaches are used to examine the effect
of NOx emissions reductions on SOA concentrations or to
study how climate change affects ambient SOA levels.
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