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[1] A suite of eighteen simulations over theU.S. andMexico,
representing combinations of two mesoscale regional
climate models (RCMs), two driving global general
circulation models (GCMs), and the historical and four
future anthropogenic forcings were intercompared. The
RCMs’ downscaling reduces significantly driving GCMs’
present-climate biases and narrows inter-model differences
in representing climate sensitivity and hence in simulating
the present and future climates. Very high spatial pattern
correlations of the RCM minus GCM differences in
precipitation and surface temperature between the present
and future climates indicate that major model present-
climate biases are systematically propagated into future-
climate projections at regional scales. The total impacts of
the biases on trend projections also depend strongly on
regions and cannot be linearly removed. The result suggests
that the nested RCM-GCM approach that offers skill
enhancement in representing the present climate also likely
provides higher credibility in downscaling the future climate
projection. Citation: Liang, X.-Z., K. E. Kunkel, G. A. Meehl,

R. G. Jones, and J. X. L. Wang (2008), Regional climate models

downscaling analysis of general circulation models present

climate biases propagation into future change projections,

Geophys. Res. Lett., 35, L08709, doi:10.1029/2007GL032849.

1. Introduction

[2] Current global general circulation models (GCMs)
contain substantial biases in simulating the present climate
and produce important inter-model differences in projecting
future changes, especially at regional scales [Intergovern-
mental Panel on Climate Change (IPCC), 2007]. It is,
however, not understood how these present-day climate
biases propagate into future projections, posing a great
challenge to identify potential climate change signals from
uncertainties generated by model deficiencies. Recent
progress in such signal detection using ensemble simula-
tions has been based on the notion that a model better
reproducing the observed climate variation would project a
more accurate future trend and thus carry a larger weight in

the ensemble. This ensemble approach constrained by model
fidelity in simulating observations has been used as an
attempt to narrow the uncertainty in climate sensitivity across
GCMs [Giorgi and Mearns, 2003; Murphy et al., 2004;
Knutti et al., 2006; Hall and Qu, 2006; Shukla et al., 2006].
[3] The notion implies that the model ability in represent-

ing the present and future climates is strongly correlated and
accountable. The simplest and most-frequently adopted
form of this assumption is that the future-minus-present
simulation difference effectively removes the bias influence
and thus correctly captures the climate change signal. By
that assumption, each GCM projection is an equally plau-
sible estimate of the future trend and the large spread of
projected trends among the existing GCMs is purely attrib-
uted to the uncertainty of the real climate sensitivity. The
signal detection issue is then simplified as the determination
of the true climate sensitivity from observations, against
which the most realistic GCM and its projection can be
identified. More likely, however, the deficiency of a GCM
in simulating the present climate has a non-negligible
impact on its projecting the future trend and the real climate
sensitivity may also vary under large forcing changes,
substantially complicating the issue. In both circumstances,
the notion can not be tested directly since there exists no
observable period with forcing changes exactly analogous
to future expectations and nor a single GCM that perfectly
represents the observed climate system. As such, it is
impossible to separate fully the actual climate sensitivity,
and thus the future change signal, from the GCM formula-
tion deficiency. For the same reason, the reliability of the
recent ensemble approach to establish the future change
projection by use of weighting according to a model’s
fidelity in simulating the present climate, although physically
intuitive, has yet to be justified, especially at regional scales.
[4] On the other hand, it has been well established that

the regional climate model (RCM) downscaling reduces
significantly present climate biases and projects quite dif-
ferent future changes at regional scales from the driving
GCMs; Such downscaling effects result mainly not from the
spatial resolution enhancement but rather from the more
realistic or complete physics representation in RCMs
[Giorgi et al., 1998; Leung and Ghan, 1999; Pan et al.,
2001; Han and Roads, 2004; Duffy et al., 2006; Liang et al.,
2006]. By design, the contributing influxes of mass, energy
and momentum from remote sources to the RCM domain is
kept approximately the same as the GCM forcing through
dynamic assimilation of lateral boundary conditions (LBCs)
[e.g., Liang et al., 2001]. The difference between the nesting
RCM and GCM is thus caused by the regional redistribution
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of mass, energy and momentum within the RCM domain as
the direct consequence of differentiating representation of
key physical processes, especially land-atmosphere-ocean
and convection-cloud-radiation interactions [e.g., Liang et
al., 2004a, 2004b]. This provides a great opportunity to
explore quantitative relationships, if any, between present
climate biases and future change projections by comparing
directly the simulations from the downscaling RCMs and
their driving GCMs. Here we demonstrate how GCM and
RCM regional biases with respect to historical observations
are consistently propagated into future projections, linking
the ability of a model to accurately reproduce the present
climate to the credibility of the future change it may predict.

2. GCM and RCM Simulations

[5] This study compares nested simulations from two
RCMs (differing in cumulus parameterization) as driven by
two GCMs (contrasting in climate sensitivity) under the
historical and four anthropogenic emissions (low to high)
scenarios to identify the systematic link between present
climate biases and future change projections. Both GCMs
are well-established global modeling systems: the equilib-
rium climate sensitivity, defined as the surface warming in
response to CO2 doubling, is 2.1�C for the Parallel Climate
Model (PCM) [Washington et al., 2000] and 3.3�C for the
Hadley Centre Coupled Model version 3 (HAD) [Johns et
al., 2003], respectively at the low end and in the upper half
of the range (2.1–4.4�C) across all available GCMs [IPCC,
2007, Table 8.2]. The future scenarios correspond to the
IPCC SRES B1 (low), B2 (moderately low), A2 (moder-
ately high) and A1Fi (high) emissions storylines, with the
CO2 concentrations of approximately 550, 620, 860, and
970 ppm by 2100.
[6] Three PCM simulations were available at the T42

(�2.8�) grid for the present (1991–2000) and the future
(2090–2099) under B1 and A1Fi. Three HAD simulations
were also available at the (1.25� � 1.875�) grid for the
present (1980–1989) and the future (2090–2099) under A2
and B2. They were produced from an improved version of
the atmosphere-only component with double the horizontal
resolution forced by global sea surface temperature (SST)
and sea ice distributions as observed for the present run and
as observed plus the trends projected by the fully-coupled
model for the future runs (see Rowell [2005] for details).
Although not for identical scenarios at the RCM-required
6-hr time resolution, the available driving GCMs’ data
nevertheless permit exploration of a large range of potential
future projections from low emissions with a low climate-
sensitivity model to moderately high emissions with a high
climate-sensitivity model.
[7] The RCM is a climate extension of the fifth-generation

Pennsylvania State University-National Center for Atmo-
spheric Research Mesoscale Model, hereafter referred to as
CMM5. The model formulation and computational domain
were described by Liang et al. [2004b]. It has been
demonstrated that CMM5, with a horizontal grid spacing
of 30 km, has considerable downscaling skill over the U.S.,
producing more realistic regional details and overall smaller
biases than the driving reanalyses or GCM simulations
[Liang et al., 2004a, 2004b, 2006]. The actual CMM5
performance, however, is region-dependent and sensitive

to cumulus parameterization. A CMM5 ensemble based on
the Grell [1993] and Kain and Fritsch [1993] parameter-
izations provides superior performance in downscaling
U.S.-Mexico precipitation seasonal-interannual variations
because distinct regions exist where each scheme comple-
mentarily captures certain observed signals [Liang et al.,
2007]. This motivates an explicit comparison of the CMM5-
simulated climate changes using the two cumulus schemes.
The differences provide a measure of uncertainty in RCM
downscaling of GCM climate simulations. For convenience,
the CMM5 simulations driven by PCM (HAD) using the
Grell and Kain-Fritsch schemes are denoted as PGR and
PKF (HGR and HKF), respectively.
[8] The GCM-RCM nesting procedure was presented by

Liang et al. [2006]. Each RCM downscaling experiment is
integrated for 10 years of summer segments, from April 1 to
August 31. Using the initial 2 months as a model spin-up,
the analysis focuses on precipitation and surface air tem-
perature averaged during the 10 summers (June-July-
August). Given their coarse resolutions, both precipitation
and temperature outputs from the driving PCM and HAD
were mapped onto the RCM grid using bilinear spatial
interpolation. The respective observations were composite
of several analysis sources, all based on station measure-
ments; the data source and processing procedures were
described by Liang et al. [2004b, 2006]. They are concur-
rent with the GCM present climate simulation period, i.e.,
1991–2000 for PCM and 1980–1989 for HAD. Observa-
tions showed small differences between the two periods,
inconsistency of which does not affect our results. These
spatial and temporal correspondences facilitate quantitative
comparisons among observations, the driving GCM simu-
lations and the RCM downscaling integrations.

3. Bias Propagation

[9] Figures 1a, 1b, 1e, and 1f compare the present-
climate precipitation biases (departures from observations)
simulated by the driving GCMs and the differences that
result from the RCM downscaling. The PKF and HKF
results are shown in Figured S1e and S1f (supplementary
material)1. Clearly, the PCM simulation is very poor, with a
rainfall maximum centered in the Great Plains, which is
further west and much stronger than the observed center in
Iowa. Significant improvement is made by PGR, where the
intense Great Plains maximum is removed and the maxi-
mum over the central U.S. is in good agreement with
observations. The observed large rainfall over the southeast
U.S. and Gulf coast is not captured by either PCM or PGR,
but much improved by PKF with somewhat of an overes-
timation. On the other hand, the HAD-simulated precipita-
tion is generally more realistic than PCM and the correction
made by the RCM downscaling using both cumulus
schemes is relatively small. One exception is that the
HAD underestimation along the Gulf coast becomes an
overestimation by PGR and more so by PKF, which
expands to the Atlantic coast. For both the PCM- and
HAD-driving cases, the RCM precipitation downscaling
skill sensitivity to cumulus parameterization is consistent

1Auxiliary materials are available in the HTML. doi:10.1029/
2007GL032849.
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and explained by the difference in the principal physics that
the Grell and Kain-Fritsch schemes were developed to
represent [Liang et al., 2004a, 2004b, 2006, 2007].
[10] Figures 1c, 1d, 1g, and 1h compare the present-

climate surface air (2-m) temperature biases (departures
from observations) simulated by the driving GCMs and
the differences that result from the RCM downscaling.
Again, the PKF and HKF results are shown in Figures
S1g and S1h (supplementary material). The main PCM
deficiencies are the smoothed pattern in the West and
overall cold biases, especially (<�3�C) along the Great
Plains where excessive rainfall amounts are simulated. On
the contrary, HAD produces warm biases almost every-

where, especially (>3�C) over the Great Plains and central
U.S. Both RCMs capture the main topographically-induced
variations in the West, in better agreement with observations
than their driving GCMs. The severe cold biases in PCM
along the Great Plains and substantial warm biases in HAD
over the Great Plains and central U.S. are mostly removed
by the RCM downscaling. The PCM cold biases over Texas
and Mexico along the Gulf coast, albeit reduced, are still
sizable in both PGR and PKF. The counterpart in HAD is
relatively small and enhanced somewhat by PKF. In gener-
al, PKF and HKF simulate higher surface temperature than
PGR and HGR, and thus warm biases, over most areas east
of the Rockies, especially over the central U.S. (>3�C). This

Figure 1. The precipitation (PR, mm day�1) and surface 2-m air temperature (TA, �C) biases (from observations, left
panels, a–d) of the driving GCMs (PCM, HAD) and differences (from the respective GCM) due to the RCM downscaling
(PGR, HGR) in the present (1990s, middle panels, e–h) and future (2090s, right panels, i– l). Shown are summer averages
of 10 years: 1991–2000 and A1Fi 2090–2099 for PCM, PGR, and 1980–1989 and A2 2090–2099 for HAD, HGR.
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strong temperature sensitivity to cumulus parameterization
occurs in conjunction with the large precipitation difference
discussed above. The Kain-Fritch scheme tends to produce
a vertical heating profile that warms and dries too much
near the cloud base; this can ultimately affect surface
temperature through turbulent mixing at the top of the
planetary boundary layer and other nonlinear processes
[Liang et al., 2006]. Note that the warm biases are greater
and more widespread in HKF than PKF, as the driving HAD
is significantly warmer than PCM. Like precipitation, the
regions with large GCM temperature biases tend to be
identified with greater corrections by the RCM downscaling.
[11] A key question is whether GCM present climate

biases propagate into future climate projections. This can be
determined by comparing the RCMs downscaling results
with the driving GCMs simulations of the present climate
and future projections under various emissions scenarios.
For the stated purpose, the comparison is here focused on
the RCM minus GCM differences in the present climate and
future climate. Figures 1e, 1f, 1i, and 1j and Figures 1g, 1h,
1k, and 1l compare, respectively, the precipitation and
temperature differences. The results for PKF, HKF are
illustrated in Figures S1e, S1f, S1g, S1h, S1i, S1j, S1k,
and S1l (supplementary material) and those for B1, B2 are
not shown. The spatial patterns of the differences in
precipitation or temperature of the present and future
climates between each downscaling RCM and its driving
GCM are remarkably similar for all combinations of the two
RCMs and two GCMs under two respective emissions
scenarios. The spatial pattern correlations, calculated using
values at the RCM 30-km grid over the U.S.-Mexico lands
where observational data are available, are all very high,
ranging from 0.86 to 0.99. As such, the regional impacts
caused by the RCM downscaling are mostly retained from
the present to future climate simulations. In addition, the
contrasts between the two RCMs and between the two
GCMs are also well preserved from the present climate to
the projected future climate in both precipitation and tem-
perature. Given the substantial climate sensitivity differ-
ences between the two GCMs, the wide spreads across the
emissions scenarios, the complementary downscaling skill
enhancement by the two RCMs, and the dramatic contrasts
between precipitation and temperature responses, the great
similarity among all combinations strongly suggests that
principal biases in simulating the present climate is system-
atically propagated into the projected future climate at
regional scales.
[12] Another issue is whether the GCM projected climate

changes depend on its present climate biases. The spatial
pattern correlations of the RCM minus GCM differences
between the present biases and future changes are generally
small: only precipitation fields for HGR or HKF minus
HAD under B2 and A2 and for PGR minus PCM under
A1Fi have coefficients in 0.42–0.69, whereas all other
cases, including those of temperature, are below 0.30. Thus,
the impacts of climate biases can not be simply removed
from future trends by the same model, but rather depend
strongly on regions. Figure S2 (supplementary material)
illustrates the RCM minus GCM differences in precipitation
and temperature, for the present and future climates, as
averaged over the lands of the U.S.-Mexico and three key
regions (outlined in Figure 1a). There exists a general

tendency for the major regional differences being amplified
from the PCM present to B1 to A1Fi and from HAD present
to B2 to A2. For example, the PCM precipitation reduction
by PGR along the Great Plains enhances from 4.0 to 4.3 to
5.1 mm day�1, while the HAD temperature reduction by
HGR over the central U.S. intensifies from 3.7 to 5.9 to
6.3�C. Such a tendency is also depicted in the overall
average over the entire U.S.-Mexico lands, especially for
temperature. As a result, the RCM downscaling reduces the
climate sensitivity of HAD but increases that of PCM,
projecting respectively smaller and larger domain-wise sur-
face warming. This is in correspondence with the improve-
ment in the present climate simulation, where the U.S.-
Mexico temperature biases (�C) in PCM (�1.9) and HAD
(+1.9) are reduced by PGR (�0.4), PKF (+0.2), HGR (+0.6)
and HKF (+1.0). For both the present and future climates, the
RCM downscaling reduces the differences between the two
driving GCMs with opposite biases and sensitivities.

4. Conclusion and Discussion

[13] This study compares nested simulations over the
U.S.-Mexico from two RCMs (differing in cumulus param-
eterization) as driven by two GCMs (contrasting in climate
sensitivity) under the historical and four anthropogenic
emissions (low to high) scenarios. It demonstrates that the
RCM downscaling decreases significantly the driving
GCMs’ present-climate biases, which are overall opposite
between PCM (cold, wet) and HAD (warm, dry) with a
similar magnitude. Consequently, the RCM downscaling
reduces the HAD but enhances the PCM overall climate
sensitivity, and thus narrows inter-model differences in
simulating the present and future climates. Very high spatial
pattern correlations of the RCM minus GCM differences in
both precipitation and surface air temperature are found
between the present and future climates, indicating that a
major portion of the model biases in simulating the present
climate are systematically propagated into its projection of
the future climate at regional scales. There exists, however,
no obvious linear relationship between present climate
biases and future climate trends, implying that the impacts
of biases also depend on regions and are not simply
removable by subtracting future from present simulations
of the same model.
[14] A model with poor skill in reproducing the observed

climate likely misrepresents certain physical or dynamic
processes. The better a model simulates the detail of the
present climate, the more confidence it has in capturing
adequately all fundamental processes and projecting credi-
bly future climate changes. Our result indicates that it is
highly questionable to directly apply a biased GCM pro-
jection of future climate changes for impact studies at
regional scales. In this regard, the RCM downscaling with
a finer resolution and more complete physics representation
can significantly reduce the driving GCM biases in the
present climate and thus enhances the credibility of future
climate change projection. Note that PCM and HAD depict
respectively low and high climate sensitivity among the
major GCMs used in the IPCC climate change assessment,
while the 4 scenarios vary from low (B1), medium low (B2),
medium high (A2) to high (A1Fi) emissions. Thus their
combinations define a reasonable range of future climate
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change projections, suggesting certain robustness of our
finding.
[15] Our result lends support to the use of the model

fidelity in representing observations as a constraint on the
reliability in projecting future climate changes. This and
other previous studies have shown promise of developing
quantitative metrics for the likelihood of model projections.
The development of such robust metrics, however, is still
challenging and must emphasize the incorporation of local-
ized characteristics. Depending on the formulation of such
metrics, conclusion may be totally different. Coquard et al.
[2004] analyzed results of 15 GCMs over the western U.S.
and found no evidence that the models better reproducing
aspects of the present climate predict systematically differ-
ent or a narrower range of temperature and precipitation
responses to increased atmospheric CO2 as compared to
other models with larger biases. On the other hand, Hall and
Qu [2006] suggested that eliminating model errors in the
surface temperature seasonal cycle could directly reduce the
spread of feedback strength in climate change. Knutti et al.
[2006] also showed that most models overestimating the
observed seasonal cycle tend to have high climate sensitiv-
ities. Shukla et al. [2006], using a global measure of relative
entropy with 13 GCMs, revealed that the models with small
20th Century errors produce relatively large surface tem-
perature increases in the 21st Century; from this relation-
ship, they further speculated that the actual changes in
global warming would be closer to the highest projected
estimates among the current IPCC GCMs. However, our
regional assessment over the U.S. and Mexico demonstrates
that the RCM downscaling significantly improves the
present climate simulation, whereas the resulting RCM
trends fall between those projected by the two driving
GCMs (PCM, HAD). These contrasts indicate the necessity
of developing the model fidelity metrics based on distinct
characteristics at regional scales.
[16] In conclusion, the uncertainty of future climate

projections by a GCM or RCM is very sensitive to the
existence of its present climate biases; the model behavior
in climate sensitivity tends to be systematic, carrying on
from the present to future conditions at regional scales, and
likely becomes enhanced under warmer scenarios. This
finding has important bearings on the uncertainty reduction
using the nested RCM-GCM approach: if the driving GCM
reasonably simulates the circulation governing the regional
present climate, the nested RCM that offers skill enhance-
ment also implies higher credibility in downscaling the
future climate projection.
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