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[1] A new secondary organic aerosol (SOA) parameterization based on the volatility basis
set is implemented in a regional air quality model WRF-CHEM. Full meteorological and
chemistry simulations are carried out for the United States for August–September 2006.
Predicted organic aerosol (OA) concentrations are compared against surface measurements
made by several networks and aircraft data from the TexAQS-2006 field campaign.
Elemental carbon simulations are also evaluated in order to evaluate the model’s ability to
capture their emissions, transport, and removal. Certain measurement limitations, such as
daily averaged OA concentrations, impose some difficulties on the model evaluation,
and hourly averaged OA measurements provide more informative constraints compared to
daily concentrations. The updated model demonstrates a significant improvement in
simulating the OA concentrations compared to the standard WRF-CHEM, which predicts
very little SOA. The improvement in organic carbon (OC) predictions is noticeable in
correlations and model bias. The correlations of OC exceed that of the persistence forecasts
for hourly concentrations in the southeast United States during daytime. The updated
traditional SOA yields still lead to an underestimation of observed OA, while addition of
the multigenerational volatile organic compound (VOC) oxidation drastically improves
model performance. However, several key uncertainties remain in SOA formation and loss
mechanisms, which are characterized through several perturbation simulations. Dry
deposition of VOC oxidation products is an important factor in the atmospheric SOA
budget. The combination of the biogenic VOC emissions, updated SOA yields, and aging
mechanism result in biogenic SOA being the dominant OA component for much of the
nonurban United States.

Citation: Ahmadov, R., et al. (2012), A volatility basis set model for summertime secondary organic aerosols over the eastern
United States in 2006, J. Geophys. Res., 117, D06301, doi:10.1029/2011JD016831.

1. Introduction

[2] Atmospheric aerosols have a strong impact on climate,
air quality and visibility. Organic matter makes up the sig-
nificant fraction of the submicron aerosol composition [Zhang
et al., 2007]. OA consists of thousands of very complex
molecules, thus making it very hard to identify their sources
and transformation processes in the atmosphere, and their
effects on human health and climate [Hallquist et al., 2009].
OA is emitted directly to the atmosphere by sources, such as
diesel engines, cooking and fires. In addition a significant

portion of OA is formed in the atmosphere by the photo-
chemical oxidation of VOCs. SOA has been detected in the
atmosphere and laboratory experiments as oxidized OA with
a wide range of volatility, hygroscopicity and reactivity
[Jimenez et al., 2009]. Since the formation and evolution of
the SOA species are quite complicated, it is challenging to
represent those processes in air quality and climate models.
[3] Atmospheric chemistry models have traditionally under-

predicted observed OA concentrations, possibly due to missing
key precursors and processes involved in SOA production
and evolution, especially in summer months [Bhave et al.,
2007; Carlton et al., 2010; Yu et al., 2007]. The rapid and
significant formation of SOA downwind of the concentrated
VOC sources is well established from a number of field
campaigns [de Gouw et al., 2008; Volkamer et al., 2006]. An
evaluation study based on a field campaign over East Texas
in September of 2006 revealed that the rapid SOA formation
occurring within 1–3 h downwind of Dallas and Houston
is not captured by several regional air quality forecast
models [McKeen et al., 2009]. Heald et al. [2005] showed
that global atmospheric chemistry models systematically
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underpredict the OA concentrations in the free troposphere.
These systematic low biases in OA predictions by atmo-
spheric chemistry models have led the aerosol research
community to an intensive search for additional SOA pre-
cursors and formation mechanisms.
[4] In recent years significant progress has been achieved

in modeling OA mass concentrations in the atmosphere. The
progress is due to several key improvements in the under-
standing and quantification of different SOA formation
mechanisms. First of all, recent SOA mass yields obtained
from smog chamber measurements proved to be much
higher than previously reported [Hildebrandt et al., 2009;
Ng et al., 2007]. Furthermore, the model treatment of SOA
formation from some abundant precursors, such as isoprene,
has advanced greatly [Carlton et al., 2009; Carlton et al.,
2010]. The possible formation of a considerable amount of
SOA within clouds has been reported [Hallquist et al.,
2009], and in-cloud SOA generation pathways have been
implemented in several atmospheric chemistry models
[Ervens et al., 2008; Fu et al., 2009].
[5] Another significant SOA source missing in traditional

aerosol models was proposed by Robinson et al. [2007].
Based on laboratory studies, this work demonstrated three
important features of SOA formation from combustion
sources: (1) “primary” organic aerosol (POA) depends
strongly on the partitioning of semivolatile organic com-
pounds; (2) a large pool of organic compounds with inter-
mediate volatilities is missing from traditional emission
inventories; and (3) the photochemical aging of compounds
with higher volatility to compounds with lower volatility can
be a significant source of SOA. Conceptually, these results
are best explained by treating the gas/aerosol system within
a spectrum of volatilities using saturation vapor concentra-
tion as the surrogate for volatility [Donahue et al., 2006].
For modeling applications this volatility spectrum is divided
into a manageable number of bins, or basis sets, where each
bin represents a factor of 10 increase in saturation vapor
concentration from the previous bin. This approach allows
lumping organic mass to different volatility bins, circum-
vents the detailed kinetics leading to SOA from various
precursors, and makes it easier to describe the effects of
oxidation (aging) processes of complex mixtures on gas/
aerosol partitioning within atmospheric models.
[6] Different variations of the VBS approach and pro-

posed SOA precursors have been included in a number of
regional and global modeling frameworks [Farina et al.,
2010; Hodzic et al., 2010; Lane et al., 2008a; Murphy and
Pandis, 2009; Pye and Seinfeld, 2010; Shrivastava et al.,
2011; Tsimpidi et al., 2010]. These modeling studies sig-
nificantly reduced the gap between the simulations and the
observations of OA concentrations. In addition, hydrocarbon-
like OA (HOA) and oxygenated OA (OOA) fractions of
the measured OA mass (HOA:OOA) have been compared
with the models assuming they are primary and secondary
components of OA, respectively. Some authors [e.g., Hodzic
et al., 2010; Shrivastava et al., 2011] have also evaluated
oxygen to carbon ratios as an additional constraint for the
SOA mechanisms.
[7] Despite these achievements, different model results

reveal significant differences in the SOA parameterizations.
Three model studies of SOA in Mexico City during the 2006
MILAGRO study illustrate this point. According to Tsimpidi

et al. [2010], the major improvement in SOA simulations is
due to aging of the organic condensable vapors (OCV)
formed during VOC oxidation over Mexico City. Hodzic
et al. [2010] compared and evaluated two recently pro-
posed SOA mechanisms based on VBS (but without OCV
aging) within one modeling framework, and concluded that
semivolatile and intermediate precursor emissions are the
major missing SOA source in megacity environments.
Shrivastava et al. [2011] showed that the inclusion of non-
traditional SOA precursor emissions improves OA predic-
tions over Mexico city, however overpredicts downwind
of the city. Their simulations underpredicted the oxygen
to carbon ratios downwind as compared to measurements,
suggesting a need to further improve chemistry param-
eterizations of SOA formation.
[8] An essential question related to SOA modeling arises:

Are the models getting the right answer for the right rea-
sons? It should be noted that the new SOA mechanisms
are usually implemented in atmospheric models with dif-
ferent volatility bins, oxidation/aging reactions (and their
rates), and emissions of nontraditional SOA precursors.
Other uncertainties include different mass yields used for
traditional SOA formation pathways, their multigenerational
aging, and oligomerization. Undoubtedly, common uncer-
tainties in atmospheric chemistry models related to the
emissions from anthropogenic and biogenic sources, gas and
aerosol chemistry mechanisms, removal processes, bound-
ary conditions for chemical species and meteorological
simulations further contribute to the disparities between
the models. Some of these uncertainties were investigated
by Murphy and Pandis [2010] and Farina et al. [2010]
by perturbing some parameters and processes driving the
atmospheric SOA. The oxidized OCVs are soluble, thus
becoming more susceptible to dry and wet removal pro-
cesses, which imposes a large uncertainty in SOA simula-
tions since the removal of the OCVs is not well constrained
by observations. Bessagnet et al. [2010] found that neglect-
ing dry deposition of these species may lead to over-
estimations of SOA concentrations by as much as 50%.
[9] Another remaining question in atmospheric SOA is the

quantification of the role of anthropogenic versus biogenic
sources on atmospheric SOA formation. Weber et al. [2007]
found that fine particle organic compounds in water spatially
correlate with vehicle emission tracers over some urban
regions in the United States. In contrast, their radiocarbon
analysis showed that ≈70–80% of carbon in the samples was
modern, suggesting a strong contribution to SOA formation
from biogenic sources. de Gouw et al. [2009] used carbonyl
sulfide as a tracer for biogenic emissions but found a poor
correlation with water soluble organic carbon. Kleindienst
et al. [2007] examined the contributions of SOA formed
by different VOCs at a southeastern United States site during
2003 using an organic tracer-based method. The analysis
found significant SOA production from biogenic VOCs such
as isoprene and terpenes during summer months, when
observed OC at the station was high. Schichtel et al. [2008]
analyzed fossil and contemporary carbon fractions of fine
particles in a number of locations during winter and summer.
Similar to Weber at al. [2007], the analysis showed that,
on average, modern carbon composed about half of the
carbon at the urban, �70–97% at near-urban, and 82–100%
at remote sites throughout the United States. Hoyle et al.
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[2011] give a broad overview of different observations and
methods that study anthropogenic and biogenic OC compo-
nents, and discusses the mechanisms through which anthro-
pogenic emissions may affect biogenic SOA formation.
[10] In this study we use the WRF-CHEM model for the

following purposes: (1) to implement a new SOA parame-
terization with updated yields, the multigenerational oxida-
tion mechanism for VOCs and the VBS mechanism within
the WRF-CHEM model framework in order to improve OA
predictions; (2) to perform sensitivity analysis to address key
uncertainties affecting the SOA predictions; (3) to evaluate
the WRF-CHEM sensitivity runs for the U.S. region using
the measurements from the surface particulate matter
(PM2.5) composition networks and aircraft measurements
made over Houston and Dallas cities and their downwind;
and (4) to quantify the contribution of different emissions
categories (primary OA, anthropogenic VOCs and biogenic
VOCs) to OA concentrations.
[11] The WRF-CHEM model is a fully coupled meteo-

rology-chemistry model suitable for applications ranging
from regional air quality to global atmospheric chemistry
modeling. The model allows a user to select between
numerous physics and chemistry options, different dynamics
and other settings. The meteorological core of the model, WRF
(http://www.wrf-model.org), simulates various meteorological
processes such as advection, vertical mixing, convection, land-
atmosphere interactions, microphysics and radiation.
[12] The traditional WRF-CHEM model [Grell et al.,

2005] uses the SORGAM parameterization [Schell et al.,
2001], which is based on a two-product approach [Odum

et al., 1996] of VOC oxidation with older SOA yield esti-
mates. This parameterization predicts very little SOA for-
mation, with OA predictions dominated by model POA
emissions. It also substantially underestimates OA con-
centrations in rural areas, especially within urban plumes
[McKeen et al., 2007]. In this study WRF-CHEM is updated
with the VBS approach as described in section 2. The for-
malism is confined to traditional SOA precursors taking into
account multigenerational oxidation.
[13] The paper consists of the following sections: 2, Model

and Surface Observations; 2.1, WRF-CHEM Settings and
the SOA Parameterization; 2.2, Different Model Scenarios;
2.3, Surface Observations; 3, Discussion of the Results;
3.1, Evaluation of the Model Using the Surface Data: Hourly
Concentrations; 3.2, Evaluation of the Model Using the
Surface Data: Daily Concentrations; 3.3, Evaluation of OA
Aloft: TexAQS-2006 Field Campaign; and 4, Conclusions.
Table 1 lists all the acronyms used in the paper.

2. Model and Surface Observations

2.1. WRF-CHEM Settings and the SOA
Parameterization

[14] WRF-CHEM was configured to simulate atmospheric
conditions over the continental United States (Figure 1). The
model was run with full tropospheric chemistry for the time
period of August–September 2006. The main settings of
the model configuration are given in Table 2. No feedback
mechanism between the chemistry and the meteorological
simulations is included in the model. Numerous WRF-CHEM
runs were undertaken to identify the optimal physics and
chemistry options for our domain. In this section we discuss
the gas chemistry and aerosol configurations used in our
model runs.
[15] The simulations were performed with the Regional

Atmospheric Chemistry Mechanism (RACM). Table 3
shows the list of primary VOC species included in the
mechanism that contribute to SOA formation. The RACM
chemistry mechanism has a full range of photolysis and gas
phase reactions, inorganic and organic species to perform air
pollution studies [Stockwell et al., 1997] and we used the
updated version (RACM_ESRL option) in WRF-CHEM.
Reaction rates with hydroxyl radical for the VOCs are pre-
sented in Table 3 as well.
[16] Anthropogenic emissions are based on the U.S. EPA

National Emission Inventory version 2005 (NEI2005) [U.S.
Environmental Protection Agency, 2010]. Processing for
the four major components; point, mobile on-road, mobile
nonroad, and area, were done according to EPA recom-
mendations with emissions data available through the U.S.
EPA as of October of 2008. The gridded (4 km resolution)
and point source hourly emission files used in this study are
available electronically at ftp://aftp.fsl.noaa.gov/divisions/
taq/emissions_data_2005/. Specific details of the anthropo-
genic inventory are available in the readme.txt file that
comes with the emissions. Year-specific wildfire and pre-
scribed burning sources are missing from the inventory,
though other fire sources, such as agricultural burning, are
included as area sources. Biogenic emissions are based on
the Biogenic Emissions Inventory System version 3.14
(BEIS 3.14), which is an update to BEIS version 3.12 (U.S.

Table 1. Acronyms Used in the Text

Acronyms Description

PM2.5 Particulate matter with diameter
less than 2.5 mm

OA Organic aerosols (total mass
including oxygen and other elements)

OCV Organic condensable vapor
(VOC oxidation product, which
condenses on particles)

OC Organic carbon (only carbon mass)
EC Elemental carbon
VOC Volatile organic compound
POA Primary organic aerosols
SOA Secondary organic aerosols
ASOA Anthropogenic secondary organic

aerosols
BSOA Biogenic secondary organic aerosols
HOA Hydrocarbon-like organic aerosol
OOA Oxygenated organic aerosol
PBL Planetary boundary layer
VBS Volatility basis set
AMS Aerodyne aerosol mass spectrometer
WRF-CHEM Weather Research and Forecasting

Model Coupled to Chemistry
RACM Regional Atmospheric Chemistry

Mechanism
MB Mean bias
MMO Median of model over observation
IMPROVE Interagency Monitoring of Protected

Visual Environments
STN Speciation Trends Network
SEARCH Southeastern Aerosol Research

and Characterization
LST Local standard time

AHMADOV ET AL.: A VOLATILITY BASIS SET MODEL FOR SOA D06301D06301

3 of 19



EPA, http://www.epa.gov/ttn/chief/emch/biogenic/) and BEIS
version 3.13 [Schwede et al., 2005] to include emissions of
sesquiterpenes. The total U.S. anthropogenic and biogenic
emissions of the SOA precursors east of 104°W longitude
used in the model can be found in Table 3.
[17] For particle parameterizations the Modal Aerosol

Dynamics for Europe (MADE) [Ackermann et al., 1998]
scheme is selected. MADE is a computationally efficient
module that deploys two overlapping lognormal modes to
simulate aerosol size distribution. We completely updated
the SOA module within WRF-CHEM by introducing a four-
bin volatility basis set with the updated SOA yields based on
the smog chamber studies (Table 4) [Murphy and Pandis,
2009]. The Clausius-Clapeyron equation is used to calcu-
late the saturation concentrations for different temperatures.
Pseudoideal partitioning theory [Pankow, 1994] is used to

partition between the gas phase OCVs and particulate phase
OA for each volatility bin, n:

caern ¼ ctotn

1þ c∗n=M
� � ð1Þ

cn
aer is organic aerosol concentration at a given volatility
bin n, cn

tot is sum of OCV and SOA mass concentrations
for bin n, cn

∗ is saturation concentration for bin n, M is total
OA mass comprising POA and SOA. Therefore, SOA is
assumed to form a pseudoideal solutionwith all organic aerosol

Figure 1. Entire modeling domain with 20 km resolution and OA concentrations near surface averaged
from 4 August to 28 September 2006. OA from the HR6 sensitivity run is shown.

Table 2. Settings and Parameterizations Used for the WRF-
CHEM3.1.1 Modela

Category Selected Options and Parameters

Land surface Noah Land Surface Model
PBL scheme Mellor-Yamada Nakanishi and Niino
Microphysics Purdue Lin scheme
Cumulus Grell 3-D ensemble
Shortwave and longwave radiation RRTMG shortwave and longwave
Global meteorological fields Global Forecast System, 6 hourly
Gas chemistry RACM_ESRL
Aerosol MADE
Aerosol feedback No
Photolysis Madronich
Anthropogenic emissions NEI2005
Biogenic emissions BEIS 3.14
Horizontal resolution 60 and 20 km
Number of vertical layers 40

aAvailable at http://www.wrf-model.org.

Table 3. VOC Classes in the RACM Gas Chemistry Contributing
to SOA Formation, Their OH Rate Constants, and Simulated
Averaged Summer Weekday Emissions for the United States East
of 104°W Longitude

RACM
Species Description

OH Reactivity
at 298°K

(cm3 molecule�1 s�1)
Emissions
(kmole h�1)

HC5 Alkanes with medium OH
reactivity (e.g., pentanes)

4.77 � 10�12 3,200

HC8 Alkanes with high OH
reactivity (e.g., octanes)

1.08 � 10�11 2,060

OLT Terminal alkenes 3.06 � 10�11 710
OLI Internal alkenes 7.12 � 10�11 970
TOL Toluene 5.96 � 10�12 1,230
XYL Xylene and more reactive

aromatics
2.40 � 10�11 960

CSL Cresol and other hydroxy
substituted aromatics

6.00 � 10�11 50

ISO Isoprene 1.01 � 10�10 22,800
SESQ Sesquiterpene 2.52 � 10�10 680
API Alpha-pinene and other

cyclic terpenes
5.37 � 10�11 3,300

LIM d-limonene and other
cyclic diene-terpenes

1.71 � 10�10 830
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(POA, SOA, anthropogenic and biogenic) [Hildebrandt et al.,
2011]. Our model does not consider any effect of the acidity
of inorganic aerosols on the SOA concentrations [Hallquist
et al., 2009]. Equation (1) is solved by the Newton iteration
method. In order to calculate the SOA yield for each bin we
deploy the following formula:

VOCi�→
oxidation X4

n¼1

ai
nP

i
n ð2Þ

where the an
i yields are

ai
n ¼ Bai; high

n þ ð1� BÞai; low
n ð3Þ

and VOCi is VOCs from different classes (Table 4). The VOCs
are oxidized by reacting with hydroxyl radical (OH), ozone
(O3) or nitrate radical (NO3) and the reactions produce organic
mass (Pn

i ) for all bins (dependent on the yields, equation (3)),
which are subsequently partitioned into aerosol and gas phase
using equation (1). The mass-based stoichiometric yields are
different for two regimes, high and low NOx conditions
(Table 4). The model calculates the final yield by using (3),
where B, branching ratio, is defined as in the work by Lane
et al. [2008b]. This parameter determines the fraction of orga-
noperoxy radicals that react with NO as opposed to HO2 and
other organoperoxy radicals.
[18] The VOCs forming SOA are divided into two groups,

anthropogenic and biogenic. Isoprene, monoterpenes and
sesquiterpenes (last four rows in Table 3) are emitted by
biogenic sources, while other VOCs by anthropogenic
sources. Correspondingly, the aerosols formed by oxidation
products of these two classes are named anthropogenic
(ASOA) and biogenic SOA (BSOA). Although isoprene has
a small anthropogenic contribution, the anthropogenic
emissions of isoprene are orders of magnitude lower than its
biogenic counterpart, thus it is considered biogenic within
our classification. 2-Methyl-3-Buten-2-ol (MBO) was sepa-
rated from the terminal alkenes class (Table 3), since it is
biogenic and has high fluxes in the western United States. As
laboratory measurements indicate, the SOA yield from MBO
is very low compared to anthropogenic terminal alkenes
[Chan et al., 2009]. Therefore, MBO is treated as a separate
species in the gas phase chemistry and atmospheric transport.
[19] Since the RACM [Stockwell et al., 1997] mechanism

within WRF-CHEM does not include sesquiterpenes, this
class was added in order to take into account its contribution
to SOA production. The chemical reactions for sesquiterpenes

are implemented as in the work by Papiez et al. [2009] within
the RACM mechanism of WRF-CHEM.
[20] The new SOA mechanism contains four volatility

bins for each SOA class, and their organic vapors that can
condense on aerosol phase. Equilibrium between gas and
particle phase matter for each bin is assumed in the model.
The SOA species are added within the MADE aerosol mod-
ule, which considers composition within the Aitken and the
accumulation modes separately. The updated WRF-CHEM
model therefore requires a minimum of 8 SOA and 8 OCVs,
which are fully advected and mixed by boundary layer
and cumulus convection parameterizations during the model
run. This compares with 16 SOA species and 8 OCVs in
the original Schell et al. [2001] formalism within standard
WRF-CHEM. For diagnostic purposes the ASOA and BSOA
species are separated within the simulations, advecting them
as separate substances, therefore requiring 16 SOA species
for this study.
[21] In our model the dry deposition velocity of the OCVs

is parameterized as proportional to the model calculated
deposition velocity of a very soluble gas, nitric acid (HNO3).
The parameter which determines the fraction (denoted as
“depo_fact”) of HNO3 is assumed in the model since no
observation constraints are available. The dry deposition
velocity of HNO3 is calculated by the model during runtime.
The dry deposition of gas phase species in WRF-CHEM is
parameterized according to Erisman et al. [1994], while for
particles the Wesely approach [Wesely and Hicks, 2000] is
used. The version of the WRF-CHEM model used here
(version 3.1.1) does not have a wet deposition scheme
appropriate to our study. Therefore this work does not con-
sider wet removal processes.
[22] Laboratory studies [Kroll et al., 2007; Ng et al., 2006]

indicate that the OCVs from the first generation VOC oxi-
dation products may undergo further oxidation processes by
reacting with the hydroxyl radical. Such oxidation generally
reduces the vapor pressure of those species, thus shifting
mass from high volatility bins to lower ones [Tsimpidi et al.,
2010]. For example for anthropogenic OCV species such
photochemical aging occurs as follows:

VASOAn þ OH→1:075 VASOAn�1 ð4Þ

Here VASOAn denotes anthropogenic OCV for bin n. These
reactions are implemented within the model’s gas chemistry
scheme by using the oxidation rate of 1 � 10�11 cm3

molec.�1 s�1 [Murphy and Pandis, 2009], and the 7.5%

Table 4. SOA Mass Yields [Murphy and Pandis, 2009] for the VOC Precursors and Volatility Bins Used in WRF-CHEMa

VOC

High NOx Conditions Low NOx Conditions

1 10 100 1000 1 10 100 1000

HC5 0.0000 0.0375 0.0000 0.0000 0.0000 0.0750 0.0000 0.0000
HC8 0.0000 0.1500 0.0000 0.0000 0.0000 0.3000 0.0000 0.0000
OLT 0.0008 0.0450 0.0375 0.1500 0.0045 0.0090 0.0600 0.2250
OLI 0.0030 0.0255 0.0825 0.2700 0.0225 0.0435 0.1290 0.3750
TOL 0.0030 0.1650 0.3000 0.4350 0.0750 0.2250 0.3750 0.5250
XYL, CSL 0.0015 0.1950 0.3000 0.4350 0.0750 0.3000 0.3750 0.5250
ISO 0.0003 0.0225 0.0150 0.0000 0.0090 0.0300 0.0150 0.0000
SESQ 0.0750 0.1500 0.7500 0.9000 0.0750 0.1500 0.7500 0.9000
API, LIM 0.0120 0.1215 0.2010 0.5070 0.1073 0.0918 0.3587 0.6075

aYields are for four volatility bins with saturation concentrations of 1, 10, 100, and 1000 mg/m3 at 300 K and depend on RO2/NOx conditions as described
in the text.
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increase is due to addition of oxygen atoms. We apply
similar aging reactions for biogenic OCVs. To be con-
sistent with other authors doing VBS modeling, we also
use here the “aging” term for homogeneous oxidation of
OCV by OH radical, although in the traditional literature this
term is usually applied to the heterogeneous reactions of
aerosol particles.
[23] There are several key differences between our mod-

eling settings and previous modeling studies based on the
VBS approach. First, most of the aforementioned SOA
model developments were focused on Mexico City [Hodzic
et al., 2010; Shrivastava et al., 2011; Tsimpidi et al., 2010]
or global scale using course model resolution [Farina et al.,
2010; Pye and Seinfeld, 2010]. Second, the studies for the
eastern United States using the PMCAMx model [Murphy
and Pandis, 2009, 2010] included emissions of intermedi-
ate volatility organic compounds as additional SOA pre-
cursors that are believed to be missing from current emission
inventories. In our model we consider only traditional SOA
precursors; VOCs listed in Table 3. Third, we use the WRF-
CHEM model, which performs simultaneous meteorological
and chemical simulations during the integration time.
Advantages of using WRF-CHEM compared to offline
models such as PMCAMx [Murphy and Pandis, 2009]
include the tight coupling between meteorology and con-
stituent transport, also the consistency between physical
parameterizations used in radiation, PBL dynamics, mixing,
convection and photolysis simulations. Fourth, our modeling
domain covers the entire continental United States
(Figure 1), which considers the influence of the western part
of the continent to the eastern region. Also, we do not impose
any lateral boundary conditions for OA, since the east and
west boundaries are over open-ocean and transboundary
flows of OA are highly uncertain. In our model setup all OA
is either emitted within the simulated domain as nonvolatile
POA or formed by secondary oxidation processes.
[24] The vertically stretched WRF-CHEM grid extends to

the tropopause. Though the upper troposphere does not play
a significant role in OA formation, it allows accounting for
convective mixing of the tracers to upper layers. The vertical
resolution is �10 m near the surface, where about 20 layers
are located within the lowest 2 km. The PM2.5 composition
measurements made at the surface stations usually are
taken few meters above ground. Concentrations of chemical
species are assigned at the center of each vertical layer by the
model. Consequently contrasting the simulated concentrations

with the near surface measurements make a high vertical
resolution necessary. This is especially crucial for the com-
parison using the nighttime data, since nocturnal PBL is
usually very shallow. Moreover the finer vertical resolu-
tion in higher altitudes is important to capture the PBL
structure and for better comparison with the aircraft data
from TexAQS-2006.

2.2. Different Model Scenarios

[25] We simulated meteorological and chemical species
for the continental United States using the WRF-CHEM
model with different configurations (see Table 5). The first
10 model runs are for 60 km resolution, and the remaining
three are for the 20 km resolution domain. All of the runs
have the same base model configurations as listed in
Table 2, except a few differences outlined in Table 5. The
simulation scenarios may be grouped as follows: (1) base
case without aging of the OCVs, named as “R1”; (2) aging
of the OCVs, R2, R3 and R4 runs; (3) enhanced dry depo-
sition for the OCVs, R6, R7 and R8 runs; (4) reduced SOA
yields, R5; (5) slower aging rate, R9; (6) parameterization of
vertical mixing, R10; and (7) 20 km resolution domain,
HR1, HR4 and HR6.
[26] The model runs are constructed so the influence of

some key uncertainties in the SOA mechanism can be exam-
ined. We do the R10 run with a different Planetary Boundary
Layer (PBL) scheme Mellor-Yamada-Janjic [Mellor and
Yamada, 1982] to examine the difference in SOA fields due
to the uncertainties in the vertical mixing parameterization.
[27] Three model runs (denoted as HR*) use the same

settings as their 60 km counterpart (e.g., HR1 and R1),
but are done at 20 km resolution for the same time period.
The purpose of these high-resolution runs is to study the
sensitivity of the different SOA mechanisms to the model
resolution. Though 60 and 20 km resolution domains are
somewhat different in size, the comparisons and analysis
of the results are made for the same area and observations.
The capability of doing 20 km resolution simulations is
limited due to higher computational cost (machine time and
memory storage).
[28] For evaluation we select the time period from 4

August to 28 September (56 days) 2006, where the model
outputs for 1 through 3 August are used for spin-up. The
model runs are performed for each day by initialization
of the meteorology at 00 UTC by using the GFS analysis,
while all the chemical species are passed from the previous
day’s WRF-CHEM run output. Idealized vertical profiles
for some chemical species are used for initialization at the
beginning of the simulation period, and continuously for
their lateral boundary conditions.
[29] In Figure 1 we show the surface OA distribution

for the 20 km resolution WRF grid, averaged over the study
period. The results are based on the HR6 run, which,
as shown below, agrees reasonably well with most of the
observations. We see high OA concentrations (≈7 mg/m3) in
the southeast United States mostly due to high SOA forma-
tion in this area. Increase in OA concentrations over water in
the vicinity of the east and in the southeast coastal regions is
attributed to the aging mechanism and also shallow mixing
over water. Enhanced OA concentrations associated with
populated northeast and west coast cities are apparent as
well. OA levels are less over the Great Plains, and northern

Table 5. Settings for the Different WRF-CHEM Runs

Sensitivity
Runs Description

R1 no aging, depo_fact = 0.25
R2 aging of biogenic OCVs only, depo_fact = 0.25
R3 aging of anthropogenic OCVs only, depo_fact = 0.25
R4 aging of anthropogenic and biogenic OCVs, depo_fact = 0.25
R5 as R4, but SOA yields are reduced by 50%
R6 as R4, but depo_fact = 0.5
R7 as R4, but depo_fact = 0.75
R8 as R4, but depo_fact = 1.0
R9 as R4, but aging rate for OCVs is reduced by 50%
R10 as R4, but MYJ PBL scheme
HR1 as R1, but the 20 km resolution domain
HR4 as R4, but the 20 km resolution domain
HR6 as R6, but the 20 km resolution domain
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U.S. states. It should be emphasized that predicted sum-
mertime OA distribution in the forested western United
States does not include the effects of wildfires that were
active during the summer of 2006.
[30] A nested grid shown in blue is embedded in Figure 1,

which encompasses a region with high OA concentrations in
the eastern United States. To analyze the WRF-CHEM pre-
dicted OA components within that nested grid, we present
the averaged near surface concentrations of POA, ASOA
and BSOA species from all the model runs in Figure 2.
The diagrams in Figure 2 demonstrate the magnitude of
the modeled OA and contribution of different OA sources
(primary, secondary anthropogenic and biogenic) to the total
concentrations during local afternoon, when SOA pro-
duction is high. The plot reveals major differences in the
SOA species from different simulations. The spatially and
temporally averaged POA concentrations, which are on
average ≈0.4 mg/m3 are almost same among all runs, even
those with different resolution and PBL scheme. Unlike
POA, mean ASOA and BSOA concentrations vary signifi-
cantly between the runs depending on aging and other set-
tings. The differences in SOA between the 60 and 20 km
runs with the same settings are small, indicating over this
range the grid size do not matter. Although the strong
emission sources are better resolved in 20 km domain, this
does not lead to significant enhancements in large-scale
POA and SOA distributions within the region of interest.
Interestingly, the SOA concentrations are smaller in the R10
run compared to R4, though the runs use the same settings
but different PBL schemes. There is a slight increase in
BSOA when anthropogenic OCVs only are aged (R3 versus
R1) due to the nonlinear partitioning within equation (1).
Also we find that in the base cases (R1 or HR1) the role of
BSOA in SOA is dominant. This feature is opposite if
anthropogenic OCVs only are aged (the R3 run). Otherwise

the total fraction of BSOA within the eastern United States is
somewhat higher than ASOA if we assume the multigener-
ational oxidation for biogenic VOCs (Figure 2).

2.3. Surface Observations

[31] We evaluate the model runs using available long-term
aerosol speciation measurements in the United States.
Though our model domain encompasses the western United
States (west of longitude 104°W), in our evaluations we
neglect that region for two reasons. First, there were signif-
icant forest fires in the Northwest United States in the
summer of 2006, which is obvious in the network observa-
tions (figure not shown), and are frequent in the northwest
United States during summer [Spracklen et al., 2007]. Sec-
ond, the SOA dominant region in the United States is
believed to be the eastern part of the country, especially the
southeastern region [Goldstein et al., 2009], where air
quality models traditionally have difficulties in simulating
observed values of OA and PM2.5.
[32] Data from three surface aerosol speciation networks

were used for model evaluation. All three networks measure
OC and EC in the PM2.5 size range using continuous
analyzers or filter-based samplers. These are the EPA’s
Speciation Trends Network (STN) (http://www.epa.gov),
the Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) (http://vista.cira.colostate.edu/improve)
and the Southeastern Aerosol Research and Characterization
(SEARCH) (http://www.atmospheric-research.com/studies/
SEARCH/index. html) networks.
[33] The IMPROVE monitoring program is used primarily

to track long-term temporal changes in visibility at national
parks, consistent with the needs of the Regional Haze Rule
[Malm et al., 2011]. The PM2.5 speciation target analytes for
IMPROVE and STN monitoring networks are similar and
consist of an array of 74 ions, carbon species, and trace
elements. Each series of analytes requires sample collection
on an appropriate filter medium to allow chemical analysis
with methods of adequate sensitivity. The methods used for
analysis of these filter media include controlled combustion
thermal optical transmittance and reflectance for carbon
analysis of particulate matter. Most of the IMPROVE sur-
face sites are located in rural areas, while the STN sites
are mainly located in urban areas. Both networks cover the
entire country. The STN and IMPROVE networks provide
24 h averages of various components of the aerosol mass.
The filter samples usually are taken every third day.
[34] The third network, SEARCH, consists of eight

research sites located in the southeastern United States. The
SEARCH network has been in operation since 1998 and was
designed to collect long-term data on trace gases (e.g., O3,
SO2, NOy), particle mass and composition (PM2.5 and PM10)
and surface meteorology at paired urban-rural sites in and
around the cities of Atlanta, GA; Birmingham, AL; Pensacola,
FL and Gulfport, MS [Hansen et al., 2003]. The great
advantage of the SEARCH network is the availability of
hourly measurements, allowing evaluation of the diurnal
cycles for simulated OC and EC [Hansen et al., 2006].
A detailed description of all three networks, deployed
measurement standards and techniques can be found in the
work by Chow et al. [2010].
[35] The IMPROVE data provided to the research com-

munity is blank corrected to take into account positive

Figure 2. OA composition from all the model scenarios.
The numbers are concentrations of the species at 20 UTC
but averaged for all days during the evaluation time period
and within the space encompassed by the nested grid in
Figure 1.
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artifacts related to sample handling and analysis. Neverthe-
less a recent study byMalm et al. [2011] suggests that due to
the flow rate of the samplers the IMPROVE technique may
underestimate ambient OC concentrations by ≈20%. Com-
parisons between the IMPROVE and STN reported OC data
have revealed that the STN OC data needs to be blank cor-
rected in order to be consistent with the IMPROVE OC data
[Chow et al., 2010]. Therefore, we applied blank corrections
for all the STN sites following the approach of Chow et al.
[2010]. These artifacts are ≈1 mgC/m3 for each station for
the modeling time period.
[36] For the IMPROVE and STN networks we applied the

following data selection criteria: a minimum of 8 days of
valid measurements must be available within the time period
of 4 August to 28 September for the IMPROVE and STN
data. The SEARCH sites provide measurements almost
every day and hour, and we have chosen data selection cri-
teria requiring at least 20 h a day to calculate a diurnal
average for a given site and minimum 35 of valid daily

points for a given site. Due to insufficient OC data the
SEARCH site in downtown Atlanta, GA is not included in
this study.
[37] Figure 3 shows medians of daily averages of OC

(after filtering is applied) in the eastern United States
observed at all three networks. The spatial coverage, the
range of observed OC concentrations, and the spatial vari-
ability of the reported OC from all the networks can be
inferred from the plot. We also present medians of the daily
averages for OC and EC for three networks separately in
Table 6, since these species are used in the model evaluation
below. In addition we provide the total number of the sites
and days (Table 6) for each network, for which the valid
measurements are available. The STN network reports
higher OC values (after blank corrections) than IMPROVE
sites despite the fact that both networks cover a similar size
of the domain. One reason for this is that IMPROVE sites
are predominantly in rural locations versus STN sites in
urban areas; different measurement approaches may also

Figure 3. Observed daily OC concentrations (medians) at the IMPROVE, STN, and SEARCH sites
from 4 August to 28 September 2006. There are 37 IMPROVE, 134 STN, and 7 SEARCH sites with
valid OC data. The IMPROVE, STN, and SEARCH sites are depicted using square, circle, and diamond
shapes, respectively.

Table 6. Median Concentrations of OC and EC for the Three Surface Networks During the Period From 4 August to 28 September 2006
for Network Sites East of 104°W Longitude Meeting the Data Criteria Described in the Texta

Network OC (mgC/m3) EC (mg/m3)

Number of Sites
Meeting Criteria Number of Valid Points

OC EC OC EC

IMPROVE 1.09 0.29 37 37 621 619
STN 2.48 0.53 134 132 1508 1493
SEARCH 3.39 0.34 7 7 338 340

aDaily values for the SEARCH sites are 24 h averages of the hourly concentrations.
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play a role, as noted earlier. The SEARCH network covers
both rural and urban areas in the southeast United States,
a region relatively “rich” with OC, showing high (median
OC ≈3.4 mgC/m3) concentrations. Here three of the SEARCH
sites are located in urban areas and others are in rural and
suburban areas. The highest daily OC concentrations (median
OC ≈5 mgC/m3) are reported at the SEARCH site located
3 km north of Birmingham, AL (Figure 3). A rural site,
Yorkville, located west northwest of Atlanta, GA, also is also
prominent in terms of high OC (median OC ≈3.8 mgC/m3)
despite its classification as rural.

3. Discussion of the Results

3.1. Evaluation of the Model Using the Surface Data:
Hourly Concentrations

[38] We evaluate the model performance by comparing
EC and OC individually for each network. As mentioned
earlier the networks cover different regions and target
different sources, therefore the evaluation for all three
networks is reported separately. It is important to first

quantify the model’s skill in resolving the diurnal cycle of
the species, since this has implications for using daily
averages in the model evaluation. Unfortunately, only the
SEARCH network provides the possibility of evaluating the
simulated hourly OC and EC values.
[39] In order to evaluate the model OA species we here-

after use total mass to total carbon mass ratios (so-called
OM:OC ratios) of 1.4 and 2.0 (mg/mgC) to convert model
POA, and SOA components, respectively [Murphy and
Pandis, 2009]. These OM:OC ratios are also consistent
with the recent study of Simon et al. [2011], who estimate a
summertime mean OM:OC ratio of 1.85 for the eastern
United States using data from the IMPROVE network.
Nevertheless there are uncertainties in using a constant
ratio, since this ratio for SOA depends on its oxidation level
and type.
[40] We first compare EC simulations from the model and

the observations, since EC is a passive tracer, it is generally
coemitted with POA, and it coexists with OC within fine
particles (Figures 4a and 4b). We show only three runs,

Figure 4. Model-observation comparison of the hourly EC concentrations at the SEARCH sites.
(a) Correlations, “pers” stands for persistence forecast. The correlations are calculated by lumping
together the concentrations from all sites and days for every hour. (b) The diurnal cycles are medians
of the EC values for all stations from 4 August to 28 September 2006.
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since the EC fields are the same for other runs, R2–9 are the
same as R1, while HR4 and HR6 the same as HR1. Simu-
lated EC concentrations can vary due to the PBL scheme and
the model resolution. As an objective benchmark for forecast
performance, correlations for the persistence forecast of EC
are also shown in Figure 4a, which is calculated by com-
paring the previous day’s hourly EC values for a given day
at the same hour. The purpose of including persistence is to
verify the model’s skill in prediction. As Figure 4a shows
the overall correlations of the persistence or the model are
small for hourly EC. The 20 km resolution domain captures
day-to-day variability of EC much better than the 60 km
runs. Figure 4b shows the median diurnal cycle for EC at the
SEARCH sites and three model runs. All the model runs
simulate the diurnal variability in EC reasonably well except
for a 4 h period in the early morning. The 20 km resolution
simulation (HR1 case) overestimates EC values slightly
compared to the 60 km runs, but does a better job of simu-
lating the strong early morning increase in EC. These results
underline the advantage of the higher resolution, which
should enable better resolved transport, mixing and the

emission sources. Since EC is only influenced by emissions,
transport and deposition, the agreement between model and
observations shown in Figures 4a and 4b suggests the model
is representing the interaction of these three processes rea-
sonably well, and diurnal averages are not significantly
compromised by possible model deficiencies within these
three processes.
[41] Figures 5a and 5b show similar hourly correlation and

diurnal cycle for model POA versus observed OC. This is an
important comparison, since the standard WRF-CHEM with
MADE/SORGAM aerosol module predicts OA almost
entirely as POA due to very little SOA formation from the
Schell et al. [2001] formulation. It is clear that the default
model without proper inclusion of SOA formation severely
underestimates the OC concentrations in the southeastern
United States throughout the day regardless the model res-
olution or the PBL scheme. Also, the correlations are quite
low compared to persistence for most hours of the day.
[42] Figures 6a and 6b show the analogous hourly corre-

lation and diurnal cycle for model OC versus observed OC,
and for all model cases listed in Table 5. Figure 6a shows

Figure 5. Model-observation comparison of the hourly model POA and OC concentrations at the
SEARCH sites. (a) Correlation, “pers” stands for persistence forecast. (b) Concentrations, which are
medians of the values for all stations from 4 August to 28 September 2006.
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relatively low correlations in the night with sharp increases
after sunrise for persistence and the model runs. All model
cases exhibit good correlations (≈0.6–0.7) and exceed the
persistence correlation between 9:00 and 13:00 local
standard time (LST), with larger correlation discrepancies
between the runs apparent between 13:00 and 23:00 LST.
A possible factor affecting diurnal correlations may be the
location of the SEARCH sites. Three of them are located
in close proximity to the Gulf of Mexico and their accu-
rate representation may require much finer model hori-
zontal resolution �2 km to resolve the land-water contrast
interface. Though the overall correlations for hourly OC
are not high, the majority of the model runs beat persis-
tence in correlation, especially in the morning and evening
hours. Comparison with the POA only case in Figure 5a
highlights the increased skill of the model in capturing
the variability in atmospheric OC when the SOA forma-
tion mechanism is included. Note also that afternoon to
evening correlation statistics are degraded with the use of
the MYJ PBL scheme. The 20 km resolution OC corre-
lations are also degraded relative to the 60 km resolution
runs during this time period, contrary to EC correlation

coefficients significantly increasing with the finer resolution
(Figure 4a). This suggests that finer-scale (�20 km) SOA
phenomena may be missing in the formalism. As discussed
further below, biogenic sources dominate the OA predic-
tions at the SEARCH sites, which suggests refinements in
the treatment and sources of biogenic SOA may still be
needed.
[43] Figure 6b shows much larger variability among the

model median concentrations compared to the correlations
in Figure 6a. While a few runs are able to simulate the
observed medians of OC reasonably well, some model
scenarios considerably underestimate the magnitude of OC
throughout the day. The R1 and HR1 runs can explain
only ≈ 30% of the observed OC concentrations during
midday, showing the impact of neglecting the OCV aging
process. Comparison of Figure 6b with Figure 5b reveals
how much model SOA contributes to total OC for different
runs. The R2, R4, R9–10 and HR4 runs simulate the OC
concentrations with little bias for most of the day. HR6
and HR4 show similar diurnal cycles, but the increased
deposition rate in HR6 yields better agreement with the
observations, especially during the daytime.

Figure 6. Model-observation comparison of the hourly OC concentrations at the SEARCH sites.
(a) Correlations, “pers.” stands for persistence forecast. (b) Concentrations, which are medians of the
values for all stations from 4 August to 28 September 2006.
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[44] We picked one model case, HR6, to illustrate how
different OA components contribute to the modeled hourly
OC at the SEARCH sites. Figure 7 shows median of the
diurnal cycle for the hourly SEARCH data together with
simulated OA, POA, ASOA and BSOA. The diurnal cycle
of OC shows concentrations reaching a maximum in the
night and early morning. In the model this is mainly caused
by nighttime SOA production and accumulation of the par-
ticles in the shallow nocturnal boundary layer. At the urban
sites nighttime accumulation of POA emitted by nearby
sources (mainly traffic) contributes to nocturnal OA buildup
too. The POA concentrations are small, and they vary from
highest values during early morning to the lowest in the
afternoon. The total OC from the model agrees well during
daytime, however it underestimates OC in the night and
early morning hours by ≈ 15–20%. Model ASOA con-
centrations are close to POA in the night, but increase during
the daytime. BSOA is the dominant contributor to the
modeled OC throughout the day, and BSOA enhances dur-
ing night due to BSOA formation from terpene reactions
with O3 and NO3 and their accumulation in the shallow
PBL. This buildup of nighttime BSOA from terpenes is a
large-scale model feature associated with coniferous forests
throughout the model domain.

3.2. Evaluation of the Model Using the Surface Data:
Daily Concentrations

[45] The PM2.5 National Ambient Air Quality Standards
established by the EPA are based on 24 h and annual aver-
age concentrations. It is therefore important to compare
model and observed diurnally averaged OA, since organic
matter comprises a significant fraction of PM2.5. The spatial
coverage of the IMPROVE and STN networks provides an
opportunity to assess model capability in SOA simulations
over a large region. In this section the model scenarios are
evaluated using the daily EC and OC from the IMPROVE
and STN networks for the eastern United States with the
SEARCH statistics included for completeness.

[46] Table 7 provides detailed quantitative statistics for
daily EC comparisons for all of the model scenarios. The r
values vary from low for the IMPROVE network to a little
higher for the SEARCH sites. The model underestimates EC
concentrations somewhat except for the SEARCH network.
For the STN sites higher resolution seems to help improve
the EC model bias slightly. The impact of the MYJ PBL
scheme (R10 run) is small for IMPROVE and STN sites,
while for the SEARCH network it results in lower correla-
tion and more underestimation. Comparisons for EC show a
small but statistically significant improvement due to the
increased horizontal resolution in the 20 km case, and like-
wise for the hourly EC comparisons at the SEARCH sites.
[47] Tables 8a, 8b, and 8c provide statistics of the OC

comparisons for all the 13 model cases versus all 3 networks
similar to EC. From Table 8a it indicates that most model
runs overestimate on average the OA concentrations at the
IMPROVE sites, though the runs without aging (R1, HR1)
show large negative bias at all sites, emphasizing that with-
out aging of OCVs we cannot simulate the OC concentra-
tions properly. In general the STN and SEARCH sites show

Figure 7. Median of the diurnal cycle of the observed OC at the SEARCH sites and the simulated
(the HR6 run) OA, POA, ASOA, and BSOA (all are in carbon mass) from 4 August to 28 September 2006.

Table 7. Statistics of 24 h-Averaged EC Comparison for the Three
Networks for Monitors East of 104°W Longitude Meeting the Data
Criteria Described in the Texta

Networks Model Runs r MB (mg/m3) MMO

IMPROVE R1 0.47 �0.09 0.71
R10 0.46 �0.09 0.65
HR1 0.50 �0.10 0.65

STN R1 0.54 �0.16 0.77
R10 0.49 �0.14 0.79
HR1 0.62 �0.09 0.85

SEARCH R1 0.58 �0.04 0.87
R10 0.57 �0.05 0.82
HR1 0.65 �0.03 0.89

aHere r, correlation coefficient; MB, mean bias; MMO, median of model
over observation. Medians of MMO and MB are given.
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stronger temporal and spatial variability of OC than the
IMPROVE sites, likely due to their proximity to the urban
areas (Figure 3). For some model runs (e.g., R5, R6, HR4
and HR6) the median model to observed ratios (MMOs)
show that the model predicts the observed values within
�25% for median conditions for the STN and SEARCH
sites. Since the spatial coverage of the SEARCH sites is
much smaller than other two surface networks, generally this
network shows different characteristics than other two. The
predominant feature in Table 8a is the overprediction of OC
for the IMPROVE network relative to other two surface
networks. As noted earlier the IMPROVE network may
underestimate the OC concentrations by ≈ 20%, which could
lead to the model overestimation for OC. As Table 7 shows
the EC comparison for IMPROVE network does not exhibit
such model-observation bias, suggesting that the transport of
the particles is reasonably well simulated by the model.
[48] All the sensitivity runs exhibit similar correlations

with the ambient data with values, ranging from 0.54 to 0.75
for the different networks. The runs with aging of OCVs
slightly improve the correlations. This improvement is
almost the same for the IMPROVE and STN networks,
while not as much for the SEARCH sites. The correlations
increase when the VBS mechanism includes aging of bio-
genic OCVs (R2 versus R1), with almost half of the variance

explained by the model in this case. When anthropogenic
OCVs only are aged (R3), the correlation slightly drops
for IMPROVE and STN, while there is a little improvement
for SEARCH. Since OA concentrations are largely influ-
enced by chemical processes involved in SOA formation,
the increased resolution may not always result in better
correlations (HR* runs versus R*) and this could also be due
to the representation of spatial variability of the biogenic
VOC fluxes.
[49] The MB and MMO values from the Tables 8a, 8b,

and 8c illustrate how the simulated SOA fields are sensitive
to the various settings of the SOA mechanism and removal
of OCVs, since the largest variability between the model
results appear in the biases rather than correlations. The runs
R4, R6, R7 and R8 are the same model scenarios but with
increased deposition rates for OCVs. Though the depo_fact
is increased by a factor of 4 from the R4 case to R8, the
model observation bias changes only by ≈50%. This sug-
gests a nonlinear dependence of the modeled SOA con-
centrations on the deposition rate of the OCVs (see also
Figure 2). When the SOA yields are reduced by 50%
(R5 versus R4), we see ≈30% change in the model bias for
all the networks. The reduced aging rate by 50% decreases
the SOA concentrations by ≈20% for the daily averages
(R4 versus R9).
[50] In order to demonstrate the model-observation com-

parison in space for the STN network we present Figures 8a
and 8b for the HR4 run, which captures the observed
OA quite well for this network. The mapped correlation
scores show that at some eastern U.S. sites the day to day
variability (primarily driven by synoptic variability) of OC
is explained quite well by the model (Figure 8a), cover-
ing mainly urban Washington-Boston corridor and North
Carolina regions. However, the correlations drop for the
sites located in the central part of the domain. The 20 km
resolution may not be sufficient to capture the temporal
variability of OC at several coastal sites located around the
Great Lakes and Gulf of Mexico. Stroud et al. [2011] found
that while the domain-wide average OA concentrations are
slightly different between 15 and 2.5 km resolution domains,
the high OA levels in urban plumes in the Great Lakes
region are better captured in the high-resolution model.
Median model OC biases are within �20% at most of the
sites (Figure 8b), even though the spatial variability in the

Table 8a. Statistics of 24 h-Averaged OC Comparison for the
IMPROVE Network for Monitors East of 104°W Longitude Meet-
ing the Data Criteria Described in the Text

Model Runs r MB (mgC/m3) MMO

R1 0.55 �0.45 0.64
R2 0.64 0.64 1.53
R3 0.59 0.29 1.27
R4 0.62 1.30 2.03
R5 0.60 0.48 1.40
R6 0.61 0.56 1.46
R7 0.61 0.20 1.16
R8 0.59 �0.09 0.89
R9 0.62 0.77 1.66
R10 0.65 1.01 1.91
HR1 0.58 �0.44 0.67
HR4 0.63 1.25 1.90
HR6 0.61 0.52 1.39

Table 8b. Statistics of 24 h-Averaged OC Comparison for the
STN Network for Monitors East of 104°W Longitude Meeting
the Data Criteria Described in the Text

Model Runs r MB (mgC/m3) MMO

R1 0.61 �1.44 0.42
R2 0.72 �0.31 0.86
R3 0.65 �0.62 0.73
R4 0.68 0.27 1.10
R5 0.67 �0.45 0.80
R6 0.68 �0.40 0.81
R7 0.67 �0.74 0.67
R8 0.65 �1.01 0.58
R9 0.67 �0.18 0.91
R10 0.67 0.15 1.03
HR1 0.63 �1.28 0.49
HR4 0.65 0.33 1.11
HR6 0.66 �0.29 0.86

Table 8c. Statistics of 24 h-Averaged OC Comparison for the
SEARCH Network for Monitors Meeting the Data Criteria
Described in the Text

Model Runs r MB, mgC/m3 MMO

R1 0.73 �1.77 0.53
R2 0.75 �0.20 0.91
R3 0.76 �0.88 0.77
R4 0.76 0.57 1.08
R5 0.76 �0.91 0.75
R6 0.74 �0.46 0.83
R7 0.73 �1.04 0.69
R8 0.71 �1.47 0.59
R9 0.76 �0.12 0.93
R10 0.75 0.19 1.03
HR1 0.68 �1.76 0.52
HR4 0.73 0.48 1.05
HR6 0.72 �0.55 0.79
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Figure 8. Comparison of the simulated OC from the 20 km resolution WRF-CHEM run (HR4) with the
daily averaged OC measurements from the STN network. (a) Correlations and (b) MMOs. Medians of the
statistical scores calculated for each site separately (“med. (all sites)”) and when all data (“all data”) are
lumped together are also reported. The first number presents how the model is able to capture the temporal
variability of OC. The second number characterizes the model’s ability of representing the spatiotemporal
variability of OC.
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observed OC is much higher (Figure 3). Highest model
values show up in a broad region of the southeast United
States and in isolated urban areas like Houston, Chicago and
New York.
[51] In order to emphasize the impact of SOA on the OA

predictions in the eastern United States we present similar
statistics of model-observation comparison for POA versus
the measured OC in Table 9, with the mean bias values
excluded for brevity. Again the statistics for the modeled
POA in Table 9 are given only for the R1, R10 and HR1
runs. It is clear that POA alone can only explain <25%
(in carbon mass) of the observed surface OC values within
the domain. Using a different PBL scheme (R10) or higher
resolution (HR1) does not significantly change this con-
clusion. Additionally, the low correlation coefficients for
predicted POA compared to measured OC (see Tables 8a,
8b, and 8c) imply that most of the temporal variability of
the OC concentrations is explained by secondary particle
mass formation.
[52] Concerning the correlations, it should be noted the

model does not include day-to-day variability in anthropo-
genic VOC and POA emissions, which may also depend on
weather and economic activity. Though the weekend versus
workday difference in the anthropogenic emissions is taken
into account, we did not find any noticeable effect of this on
SOA simulations. The study by Murphy et al. [2008] has
found a marginal weekend/weekday contrast for daily OC
concentrations measured by the IMPROVE network.
[53] Figures 9a and 9b show the spatial distributions of the

averaged SOA/OA and BSOA/OA fractions, respectively,
over the simulation time period for the HR6 run near the
surface. For the same model case the averaged OA concen-
tration field is shown in Figure 1. According to Figure 9a the
SOA fraction of total OA mass is ≈80–90% for the eastern
United States with highest SOA contributions over the
southeastern region. There are a number of “spots” where
SOA fractions are lower, corresponding to urban and
industrial areas with high POA emissions (e.g., Chicago).
Aerosol mass spectrometer (AMS) measurements have been
used to estimate HOA versus OOA in total OA mass. If we
assume HOA in our model would be represented as POA,
and SOA as OOA then our modeling results are consistent
with different reports [see, e.g., Zhang et al., 2005], where in
urban areas POA emissions are strong, and HOA and OOA
fractions are ≈30% and ≈70%, respectively.
[54] Figure 9b highlights the contribution of biogenic

VOCs to the total OA mass. As noted earlier this contribu-
tion is high (≈60%) in the southeastern United States, and
the fraction of BSOA decreases to less than 50% toward the
northeast part of the country. Also, the BSOA fraction

decreases over some big cities. As different field campaigns
[e.g., Bahreini et al., 2009; de Gouw et al., 2008] show,
there is a strong enhancement of OC over urban areas
and downwind. But over large spatial scales biogenic SOA
formation likely is the dominant fraction of OA, which is
implied from our simulations. Radiocarbon analysis of
fine particles taken at some surface locations within the
United States found a significant fraction of modern carbon,

Table 9. Statistics of 24 h-Averaged POA (in Carbon Mass) Com-
parison With Observed Daily OC at the Surface Networksa

Model Runs

IMPROVE
Network STN Network

SEARCH
Network

r MMO r MMO r MMO

R1 0.39 0.25 0.34 0.21 0.73 0.11
R10 0.34 0.25 0.27 0.21 0.70 0.12
HR1 0.45 0.24 0.43 0.25 0.59 0.15

aOnly runs that are different for POA are shown.

Figure 9. (a) Average SOA over average OA concentration
ratios and (b) average BSOA over average OA concentration
ratios, near surface, 4 August to 28 September 2006, HR6
sensitivity run.
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especially at remote sites [Schichtel et al., 2008]. Schichtel
et al. [2008] reported decrease in modern carbon fraction
toward northeastern United States and southeast of the Great
Lakes compared to the other regions in the eastern United
States during summer months. It should be noted that it is
not straightforward to attribute the model anthropogenic
POA to the fossil carbon solely, since the emission inventory
used by our model contains POA from wood burning,
cooking, waste treatment and so on. The same is true for EC
as well.

3.3. Evaluation of OA Aloft: TexAQS-2006
Field Campaign

[55] In September 2006, the Texas Air Quality Study
intensive field campaign took place in southeast Texas.
During the campaign the NOAA P3 aircraft performed 10
daytime flights between 11 September and 29 September
over Houston, Dallas and surrounding areas. The P3 aircraft
sampled upwind and downwind areas of the cities, measur-
ing a large variety of the atmospheric constituents including
OA by AMS. The detailed description of the flights, mete-
orological conditions and OA measurements can be found in
the work byMcKeen et al. [2009] and Bahreini et al. [2009].
The AMS reports total nonrefractory OA mass, thus allow-
ing a direct comparison to the modeled OA with the obser-
vations without assuming an OM:OC conversion factor. We
compare all the WRF-CHEM runs with the OA measure-
ments taken 400–670 m above the ground, which allows an
evaluation of the SOA scheme’s ability to characterize the
enhancement of OA downwind of the strong urban sources.
The aircraft is “flown” through the model grid and then
measurements are averaged within each grid cell in order to
compare against the model results. The results of this eval-
uation are given in Figure 10. Similar to the comparison for
the surface sites, the R1 and HR1 runs underestimate OA by
about 50%. Other runs (R7–R8) show less underestimation.
The runs R4, R9, R10 and HR4 result in some overestima-
tion. The median biases for five runs, R2, R3, R5, R6 and

HR6 are very close to unity, while their lower and upper
percentiles exhibit �50% spread. The spread of the model
error is a rough indication for overall correlation, and the
runs with “good” median values tend to show less spread.
The errors for the R4, R10 and HR4 model runs are skewed
toward overestimation. It should be emphasized that the
model’s ability to simulate the aircraft measurements also
depends strongly on its skill to capture the direction and
width of urban plumes. Certainly this is very hard to achieve
given the model’s resolution of 60 or 20 km. Future model
studies with higher spatial resolution should be performed to
analyze these aircraft flights individually in more detail.

4. Conclusions

[56] Inclusion of the VBS formulation for SOA produc-
tion, updated SOA yields, and multigenerational VOC oxi-
dation within the WRF-CHEM model results in a significant
improvement of the OA predictions compared to its standard
version. The implementation of the new SOA scheme within
the MADE aerosol module makes it possible to apply the
WRF-CHEM model for air quality applications requiring
better OA predictions with reasonable computational cost.
The code will be available to the modeling community via
the upcoming official release of the WRF-CHEM model
(http://www.wrf-model.org). Given the broad user commu-
nity of the WRF-CHEM model the new SOA scheme could
be tested in different regions.
[57] The SOA model evaluations are complicated by

uncertainties in the meteorology, anthropogenic and biogenic
emissions, atmospheric oxidation, and removal processes.
Thirteen model test runs are used to address some of the major
uncertainties affecting the SOA simulations, and several major
conclusions result from our evaluations. Primarily, it is clear
that using recently reported traditional SOA yields still sig-
nificantly underestimate observed OA concentrations with-
out the inclusion of the OCV aging mechanism or so-called
multigenerational oxidation of VOCs. The modeled POA

Figure 10. The model-aircraft bias statistics for OA measurements at 400–670 m altitude range during
TexAQS-2006 campaign, over east Texas. The 25%, 50%, and 75% of the model-observation ratios for
each model case are shown. For the R* and HR* runs 1978 and 2415 points from the model grids are used,
respectively. The median of the observations is 3.68 mg/m3.
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simulations alone exhibit less correlation compared to the
measured OC, indicating the model’s capability in capturing
the spatiotemporal variability in the OC fields requires rea-
sonable SOA simulations. The combination of the biogenic
VOC emissions, their reported SOA yields, and the biogenic
OCV aging result in biogenic SOA being the dominant OA
component for much of the nonurban United States. Also,
the diurnal cycle of OC at the southeastern SEARCH sites is
mainly driven by biogenic SOA.
[58] Our sensitivity analysis has shown that the PBL

scheme alters the results somewhat (≈10%), suggesting that
there is a noticeable uncertainty in OC simulations due to
the meteorological simulations. The model resolution does
not affect the results very much. It should be noted that in
some cases, such as simulating urban plumes or sites located
in complex terrain or near the coast, higher spatial resolu-
tion may be necessary. We have found the positive impact
of increasing resolution on simulating EC, especially the
hourly concentrations. However, we do not see a clear
improvement in hourly and daily OA simulations across the
networks in higher-resolution cases. Future modeling studies
in high resolution are required targeting individual mea-
surement sites.
[59] On average the modeled POA comprise ≈10–20%

(in carbon mass) of the measured OC concentrations at
the urban and remote sites. The fraction of POA for the
IMPROVE may be overestimated due to the possible
underestimation of OC by the measurements [Malm et al.,
2011]. It should be noted that there are some uncertainties
in the POA emissions as well. There is a discussion in the
literature about overestimation of POA emissions in the
anthropogenic inventories [de Gouw and Jimenez, 2009],
and some part of the POA may be required to be treated as
semivolatile in the models [Robinson et al., 2007].
[60] Other uncertainties in the underlying SOA mecha-

nism basically may be divided in two categories, SOA for-
mation pathways, and removal processes. For instance, the
SOA yields are very NOx sensitive for some species such
as aromatics, isoprene and monoterpenes (Table 4). The
large range of SOA yields imposes another constraint on
model performance. Our simulations that include the aging
mechanism show that a reduced SOA yields may give sim-
ilar results as default yields with a higher dry deposition of
OCVs.
[61] Another key uncertainty in SOA formation is the

aging mechanism. It is uncertain how much aging takes
place after the first generation SOA product is formed and
whether reverse process, fragmentation, may occur. Second,
an important question is how aging is different for anthro-
pogenic and biogenic OCVs. Some authors consider aging
of anthropogenic OCVs only as a more realistic approach,
since they report large overestimation of SOA in south-
east United States when the biogenic OCVs are also aged
[Murphy and Pandis, 2009, 2010]. From our study it
becomes clear that the aging of both anthropogenic and
biogenic OCVs result in a good agreement with the obser-
vations, with an adjustable bias that depends on the assumed
dry deposition rate of the OCVs or aging rate. The model
comparisons of OA with the aircraft AMS measurements
show similar results as the surface network. Assuming both
anthropogenic and biogenic OCVs are aged with an OH

reaction rate of 1 � 10�11 cm3 molec�1 s�1, our evaluations
for both surface and aircraft observations yield a recom-
mended optimum value for the dry deposition rate of OCVs
to be in a range of 0.25–0.5 that of HNO3. This recom-
mendation may change when reliable wet deposition and
aqueous phase SOA parameterizations are included in
the model.
[62] In addition the aging mechanism has an implication

for fraction of ASOA and BSOA in OA. The radiocarbon
analysis indicates significant modern carbon in ambient OA
[Hoyle et al., 2011; Schichtel et al., 2008]. Our simulations
(Figures 2 and 9b) show only multigenerational oxidation of
biogenic VOCs may result in BSOA fractions comprising
half or more OA mass. Undoubtedly the aging mechanism
could be improved in future by involving more laboratory
and field measurements.
[63] Our results suggest that the dry deposition of OCVs

could have a significant impact on the SOA concentrations.
Moreover, the dry deposition is an inevitable removal pro-
cess within the boundary layer affecting the SOA con-
centrations in all the cases. As Farina et al. [2010] showed
the wet deposition of OCVs can also play an important role
in determining the SOA budget in the atmosphere. However,
this removal mechanism is highly sensitive to the Henry’s
law constant assumed for the OCVs in their model. The
inclusion of cloud phase processes for SOA has some
implications. First of all this would reduce atmospheric SOA
concentrations by wet deposition, but on the other hand the
aqueous phase chemistry could be another significant SOA
formation source [Ervens et al., 2008; Fu et al., 2009],
which is not included in our model. We think that unlike dry
deposition the role of wet deposition is possible to minimize
when precipitation does not occur, for example in the case of
the TexAQS-2006 flights (Figure 10), which were per-
formed during periods without precipitation. Nevertheless
the wet removal and aqueous phase SOA formation pro-
cesses should be addressed in future model studies of rele-
vant field experiments.
[64] Observations are indispensable in the model evalua-

tion, especially the long-term ones. However, as our com-
parisons show, the daily averaged OC concentrations have
some limitations in the model evaluations. As the time series
from the SEARCH network show the highest OC con-
centrations occur during nighttime or early morning. Due to
the difficulties in simulating the nocturnal shallow PBL,
the models may have a strong bias in simulating the high
nighttime OC concentrations, and consequently the model
biases for daily averages could be mistakenly attributed to
the SOA mechanism rather than vertical mixing. The results
suggest that using hourly or at least daytime averaged OC
measurements reported from different regions would be
more beneficial rather than the daily averages for model
evaluation and analysis of data.
[65] Uncertainties and inconsistencies between different

OC and EC measurement techniques and standards [Chow
et al., 2010] also complicate the model evaluations. For
example the median of the OC observations for the same
time period and region for the STN network (after blank
correction) data is 2.27 times higher than for the IMPROVE
network (Table 6). Due to this large difference in the
observed OC concentrations, we find that most of the model
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runs with aging demonstrate significant overestimation for
the IMPROVE network comparisons, but not for the STN,
SEARCH and the aircraft comparisons. As noted earlier
the possible underestimation of OC at the IMPROVE sites
[Malm et al., 2011] may partially explain this discrepancy
between the networks. A model overestimation for IMPROVE
and underestimation for the STN sites have been reported in
other studies as well [e.g., Murphy and Pandis, 2009].
[66] The AMS measurements are advantageous since they

measure total OA mass with high frequency, which makes
the model-observation comparison for OA easy without the
need to assume OM:OC ratios. However, the overall AMS
data coverage is very limited in time and space, and OA
measurements have an uncertainty of ≈38% [Bahreini et al.,
2009; Middlebrook et al., 2012].
[67] One may conclude that the SOA models with recently

proposed VBS-based formalisms solve the persistent under-
estimation problem of several regional-scale air quality
models including WRF-CHEM. However, several related
questions arise: how to prove or disprove these mechanisms,
and how to determine key parameters driving SOA forma-
tion and removal processes using available or future mea-
surements. Our study concludes that total OC concentrations
may not be sufficient to address these questions even when
aircraft OA data or hourly OC measurements are used.
[68] Consequently, future studies should focus on regions

and time periods where information on meteorological vari-
ables, different types of OA, their surface fluxes, as well as
advanced chemical measurements are available from inten-
sive field campaigns. Studies combining high-resolution
WRF-CHEM modeling with proposed SOA mechanisms
will allow us to address some uncertainties outlined here and
by other authors. Such modeling approaches can reduce
existing uncertainties by treating additional OA character-
istics, such as its oxidation state, which is possible by
extending the current SOA modeling framework to a 2-D
VBS as outlined by Jimenez et al. [2009] and [Donahue
et al., 2011].
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