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[1] We develop a stream temperature model within the Soil and Water Assessment Tool
(SWAT) that reflects the combined influence of meteorological (air temperature) and
hydrological conditions (streamflow, snowmelt, groundwater, surface runoff, and lateral soil
flow) on water temperature within a watershed. SWAT currently uses a linear air-stream
temperature relationship to determine stream temperature, without consideration of
watershed hydrology. As SWAT uses stream temperature to model various in-stream
biological and water quality processes, an improvement of the stream temperature model will
result in improved accuracy in modeling these processes. The new stream temperature model
is tested on seven coastal and mountainous streams throughout the western United States for
which high quality flow and water temperature data were available. The new routine does not
require input data beyond that already supplied to the model, can be calibrated with a limited
number of calibration parameters, and achieves improved representation of observed daily
stream temperature. For the watersheds modeled, the Nash-Sutcliffe (NS) coefficient and
mean error (ME) for the new stream temperature model averaged 0.81 and �0.69�C,
respectively, for the calibration period and 0.82 and �0.63�C for the validation period. The
original SWAT stream temperature model averaged a NS of �0.27 and ME of 3.21�C for the
calibration period and a NS of �0.26 and ME of 3.02�C for the validation period. Sensitivity
analyses suggest that the new stream temperature model calibration parameters are
physically reasonable and the model is better able to capture stream temperature changes
resulting from changes in hydroclimatological conditions.
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1. Introduction
[2] As a primary driver of aquatic ecosystems, stream

temperature has direct (species distribution, juvenile sur-
vival) and indirect (e.g., concentrations of dissolved oxygen,
chemical reaction kinetics) effects on the health and produc-
tivity of aquatic biota. Additionally, stream temperatures
are often regulated for industry and power plant water dis-
charge, as well as drinking water production. Consequently,
there has been considerable research on stream temperature
in natural and altered settings, with the goal of predicting
stream temperatures for forecasting under varying hydrocli-
matological conditions [e.g., Webb et al., 2008].

[3] Stream temperatures reflect the combined influence
of both meteorological and hydrological factors at all time
scales and watershed sizes [Smith and Lavis, 1975]. The
heat balance, which is closely tied to meteorological condi-
tions such as air temperature, has a large influence on

stream temperatures, as shown by the strong correlations of
air and water temperature [e.g., Stefan and Preud’homme,
1993]. Variations in streamflow are also important because
lower discharges mean lower thermal capacity of streamflow
[van Vliet et al., 2011]. Additionally, stream temperature is
greatly influenced by the source characteristics of the water,
where snowmelt, surface runoff, or groundwater inflow enter-
ing the stream have different temperature signatures [Webb
and Zhang, 1997; Mohseni and Stefan, 1999]. As a result, the
relative influence of meteorological and hydrologic factors on
stream temperature can vary greatly with watershed and/or
season. For example, Webb and Zhang [1997] found that radi-
ative fluxes accounted for more than 70% of the heat inputs
for 17 sites in southwest England, while Bogan et al. [2003]
determined that for 596 sites in the eastern and central United
States 20% of the sites had temperatures dominated by atmos-
pheric forcing, while the remaining were influenced by local
hydrology or impacted by human activities. Storey et al.
[2003] showed that groundwater inflow was responsible for
40% of a 3�C cooling effect in the daily maximum tempera-
ture of a small stream in British Columbia, Canada. Kobayashi
[1984] used stream temperatures to separate a hydrograph into
hydrologic components and found that in times of high snow-
melt discharge, the heat from the soil column and water
increased the stream temperature by 3 to 4�C.

[4] Due to the often complex and sparse data availabil-
ity, several previous studies have successfully modeled
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stream temperature based solely on a relationship with air
temperature [Stefan and Preud’homme, 1993; Mohseni
et al., 1998; Mohseni and Stefan, 1999; Webb et al., 2003,
2008]. These linear and nonlinear regression models, where
air temperature is the independent variable and stream tem-
perature is the dependent variable, have been effectively
used at daily, weekly, and monthly time steps [Stefan and
Preud’homme, 1993; Webb and Nobilis, 1997; Pilgrim
et al., 1998; Erickson and Stefan, 2000; Mohseni et al.,
1998, 1999; Webb et al., 2003, 2008]. The strength of the
air-water temperature correlation has been shown to improve
as the length of the data aggregation period increases from
subdaily to monthly [Stefan and Preud’homme, 1993; Cais-
sie, 2006]. The nonlinear regression models use an S-shaped
logistic function, where the stream-air temperature relation-
ships deviate from linearity when air temperature is below
0�C and above approximately 20�C [Mohseni et al., 1998;
Mohseni and Stefan, 1999]. These deviations occur largely
due to the influence of snowmelt and groundwater at low
temperatures and evaporative cooling and enhanced back
radiation at high temperatures [Mohseni and Stefan, 1999].

[5] While the linear and nonlinear regression models
successfully model stream temperature using only air tem-
perature, they do not include the influence of the watershed
hydrology (e.g., snowmelt, groundwater inflow, surface
runoff, stream discharge) and thus lack the capability to
project the effects of hydrologic changes on stream temper-
ature. Thus, recent studies have incorporated river dis-
charge as an additional variable into stream temperature
regression models to improve stream temperature predic-
tions [Lowney, 2000; Webb et al., 2003; van Vliet et al.,
2011]. Using a nonlinear stream temperature model with a
discharge variable, van Vliet et al. [2011] reported an aver-
age increase of the Nash-Sutcliffe coefficient [Nash and
Sutcliffe, 1970] by 0.02 and a decrease in root mean square
error by 0.17�C on 13 large rivers throughout the world.
The influence of groundwater inflow on stream temperature
is often ignored when modeling large rivers, but may be
significant for smaller streams under low flow conditions
[Brown, 1969; Smith and Lavis, 1975; Constantz and
Essaid, 2004; Sridhar et al., 2004]. Thus, while linear and
nonlinear regression models simulate stream temperature
using only air temperature with reasonable success, there is
evidence that modeling predictions can be improved when
watershed hydrology is incorporated into the model. Fur-
thermore, models that include the watershed hydrology
(e.g., snowmelt, groundwater inflow, surface runoff, stream
discharge) possess the capability to project the effects of
hydrologic changes such as those expected from climatic
changes on stream temperature.

[6] Numeric physically based hydrologic and stand-
alone stream temperature models have been effectively
used to simulate stream temperature and develop manage-
ment plans for aquatic ecosystems and resources. Reach-
and basin-scale stream temperature models are often used
to examine the effects of localized environmental changes,
such as alterations in the riparian shading or cold and warm
water discharges, on stream temperature. A number of mech-
anistic stream temperature models exist (Table 1). These
models vary in their methods to estimate stream tempera-
ture, with some requiring hydrology as an input, while
others dynamically model hydrology and streamflow. Other

simplified stream temperature models attempt to be parsi-
monious with input requirements employing solely air tem-
perature (e.g., Soil and Water Assessment Tool (SWAT)
model; Arnold et al. [1998]) or air temperature and water-
shed characteristics (multiple regression stream tempera-
ture model; Issak et al. [2009]). The approach of modeling
hydrology and stream temperature together is especially
useful where varying inflow components drive differences
in stream temperatures, such as small mountain basins,
where snowmelt runoff is important. As can be seen from
Table 1, even those models that incorporate hydrology con-
sider surface runoff from rain and that from snowmelt as
one flow contribution. However, these two components of
runoff may have very different temperatures, with surface
runoff close to the ambient air temperature and snowmelt
just above freezing. Thus to the best of the authors’ knowl-
edge, the influence of all hydrologic sources has yet to be
explicitly incorporated into stream temperature models and
the effect of snowmelt and variations in the snowmelt run-
off component on stream temperature is not estimated in
any current hydrologic model with a stream temperature
component.

[7] SWAT is a hydrologic/water quality model devel-
oped by the United States Department of Agriculture–Agri-
cultural Research Service (USDA-ARS) to predict the
impact of agricultural or land management on water, sedi-
ment and agricultural chemical yields in watersheds [Arnold
et al., 1998]. SWAT has been successfully employed for
many different types of hydrologic, stream temperature,
and stream quality applications [Gassmann et al., 2007].
However, due to the linear air-water relationship used to
estimate stream temperature in SWAT, climatic, and their
associated hydrologic and stream temperature changes, are
not well represented. The contribution of the current work
then is to develop a stream temperature model that includes
the effects of air temperature, discharge, snowmelt, surface
runoff, and groundwater inflow on stream temperature
within a watershed using simple calibration parameters.
The SWAT model is used here to demonstrate the validity
of the new approach; however, the new stream temperature
model could be used in any hydrologic model where the
needed hydrologic components are available. The new rou-
tine can be solely based on quantities that the SWAT
hydrologic model already provides as well as four addi-
tional calibration parameters. We then further test the
updated model at several sites with high quality stream
temperature data throughout the western United States for
which the different flow components, and especially snow-
melt, play an important role.

2. Materials and Methods
2.1. The Current SWAT Hydrologic Model

[8] The SWAT model simulates the entire hydrologic
cycle, including surface flow, lateral soil flow, evapotrans-
piration, infiltration, deep percolation, and groundwater
return flows. A temperature index-based approach is used
to estimate snow accumulation and snowmelt processes.
Input data for SWAT include spatially distributed informa-
tion basin topography, soil properties, land use/cover, and
climate time series data. A detailed description of SWAT
can be found by Neitsch et al. [2005].
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[9] The SWAT model uses an air-water temperature lin-
ear relationship developed by Stefan and Preud’homme
[1993] to calculate average daily stream temperature of a
well-mixed stream. Stefan and Preud’homme [1993] devel-
oped an air-water regression model based on daily and
weekly water temperature data from 11 streams in the cen-
tral United States. The resulting regression model is:

Twater ¼ 5:0þ 0:75Tair; (1)

where Tair is the average daily air temperature for the day
(�C) and Twater is the temperature of the water (�C). Due to
the thermal inertia of the water, the response of water tem-
perature is dampened and delayed, which are depicted in
coefficients in equation (1). As shown in equation (1), the
water will be warmer than air temperature if the air tempera-
ture is below 20�C. This may be consistent with most rivers,
but may not be the case when the stream temperature might

be influenced by snowmelt, surface runoff, and groundwater
inflow volumes that decrease stream temperature.

2.2. The New SWAT Stream Temperature Model
[10] The new stream temperature model incorporated

into SWAT determines in-stream water temperature by
three components: (1) temperature and amount of local
water contribution within the subbasin; (2) temperature
and inflow volume from upstream subbasin(s) ; and (3) heat
transfer at the air-water interface during the streamflow
travel time in the subbasin. Accordingly, the new stream
temperature model estimates stream temperature by calcu-
lating each of these components in three steps. A schematic
of the approach can be found in Figure 1. For the first step,
stream temperature of the local water contribution (Tw,local
(�C)) is estimated using a basic mixing model, by the vol-
umes and temperatures of snowmelt, groundwater, surface,
and lateral inflow volumes to the stream reach from within
the local basin by

Tw:local ¼
ðTsnowsub�snowÞ þ ðTgwsub�gwÞ þ ð�Tair:lagÞðsub�surqþ sub�latqÞ

sub�wyld
: (2)

Table 1. Comparison of Selected Stream Temperature Models [Adapted From Norton and Bradford, 2009]

Reference Model Model Heat Fluxes Minimum Time Step Additional Information

Allen et al. [2007] BasinTEMP Surface, groundwater Daily Physically-based; accounts for
topographic and riparian shade,
GIS output

Arnold et al. [1998] SWAT Daily Empirical; accounts for air temper-
ature only; effect of hydrology
not included

Beschta and Weatherred
[1984]

TEMP-84 Surface, groundwater, bed
conduction

Equal to travel time Accounts for topographic and
riparian shade

Bicknell et al. [1997],
Chen et al. [1998]

HSPF, SHADE-HSPF Surface, groundwater, bed
conduction

Hourly Physically-based; accounts for
topographic and riparian shade,
interflow and overland runoff
temperature

Boyd and Casper [2003] HEAT SOURCE Surface, groundwater, bed
conduction

Hourly Physically-based; Accounts for
topographic and riparian shade

Chapra et al. [2006] QUAL2K Surface, groundwater, bed
conduction

Less than hourly
(output in daily
mean, maximum,
and minimum)

Physically-based; accounts for
topographic and riparian shade

Cole and Wells [2003] CE-QUAL-W2 Surface, groundwater, bed
conduction

1 second Physically-based; accounts for
topographic and riparian shade,
two-dimensional model (longitu-
dinal and vertical)

Issak et al. [2009] MRSTM Stream network, geomor-
phology, climate, land-
scape features, fire
effects

Empirical; multiple regression
model where landscape features
and fire effects are categorical
predictors

LeBlanc et al. [1997] CrUSTe Surface, groundwater Hourly Physically-based; Accounts for
riparian shade and impact of
urbanization on stream width and
baseflows

Morin and Couillard [1986],
St-Hilaire et al. [2000]

CEQUEAU Surface, groundwater Daily Physically-based; accounts for
riparian shade, interflow, and
overland runoff temperature

Rutherford et al. [1997] Streamline Surface, groundwater, bed
conduction

15 min Physically-based

Theurer et al. [1984] SNTEMP Surface, groundwater, bed
conduction, friction

Daily Physically-based; mean and
maximum daily output only
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Here, sub_snow is the snowmelt contribution to streamflow
within the subbasin (m3 d�1), sub_gw is the groundwater
contribution to streamflow within the subbasin (m3 d�1),
sub_surq is the surface water runoff contribution to stream-
flow within the subbasin (m3 d�1), sub_latq is the soil water
lateral flow contribution to streamflow within the subbasin
(m3 d�1), sub_wyld is the total water yield (all hydrologic
components) contribution to streamflow within in the sub-
basin (m3 d�1), Tsnow is the snowmelt temperature (�C),
Tgw is the groundwater temperature (�C), Tair,lag is the aver-
age daily air temperature with a lag (�C), and � (–) is a cali-
bration coefficient relating the relationship between Tair,lag
and sub_surq and sub_latq. The volumes of sub_snow,
sub_gw, sub_surq, and sub_latq are simulated from SWAT.
The lag (days) is a calibration parameter incorporated to
allow the effects of delayed surface runoff and soil water
flow into the stream. For example, if the lag is 3 the air
temperature used is the average air temperature of the pre-
vious 3 days. Lag can be estimated by examining the day-
to-day variation in observed stream temperatures. If Tair,lag
is � 0�C, then Tair,lag is set to 0.1�C. Tgw is an annual time
series that must be input by the user. Each year can have a
different Tgw. Groundwater temperature is often 1–2�C
higher than mean annual air temperature of a region [Todd,
1980] and can be estimated from climatic input data. Exam-
ining the influence of snowmelt on stream temperature,

Kobayashi [1984] found that snowmelt temperature is
approximately 0�C, and therefore we assume a snowmelt
temperature value of Tsnow ¼ 0.1�C.

[11] For the second step, the stream temperature before
the effects of air temperature is then calculated as a weighted
average of the contributions within the subbasin and the con-
tribution from the upstream subbasin(s). It is given by

Twinitial ¼
Tw:upstreamðQoutlet � sub�wyldÞ þ Tw:localsub�wyld

Qoutlet
;

(3)

where Tw,upstream is the water temperature of the streamflow
entering the subbasin (�C) and Qoutlet is the streamflow dis-
charge at the outlet of the subbasin (m3 d�1). In the case of
headwater streams, Twinitial ¼ Tw;local. As noted by Moore
et al. [2005], a mixing model such as this assumes com-
plete mixing of densities and may not be valid until some
distance downstream of the point of mixing, which for this
model is implicitly assumed to be at every stream segment
throughout the watershed. This assumption is valid in cases
where the streamflow is turbulent, which is applicable for
all natural streams [Jarrett, 1990].

[12] In a third step, final stream temperature is calculated
by adding a change to the initial stream temperature in the

Figure 1. Schematic of new stream temperature model The following parameters are passed to the
temperature module from the SWAT hydrologic model: sub_surq, sub_latq, sub_gw, and sub_snow.
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subbasin. This change is based on the difference between
stream and air temperature, a transfer parameter, and the
travel time of water through the subbasin. It is given by the
following equations, depending on Tair :

Tw ¼ Twinitial þ ðTair � TinitialÞKðTTÞ if Tair > 0; (4)

Tw ¼ Twinitial þ ½ðTair þ "Þ � Twinitial�KðTTÞ if Tair � 0; (5)

where Tair is the average daily temperature, K (1/h) is a
bulk coefficient of heat transfer and ranges from 0 to 1, TT
is the travel time of water through the subbasin (hour) and
is calculated from the SWAT simulations, and " is an air
temperature addition coefficient, which was included to
account for water temperature pulses when Tair is below
0�C. When Tair is below but close to 0�C, the maximum air
temperature can reach above-freezing temperatures during
part of the time step, thus resulting in a surface and soil
water snowmelt pulse in the observed data, which the
model cannot reproduce without the use of ". Therefore, "
allows the modeled water temperature to rise above 0�C
when Tair is below 0�C. The value of K is dependent on the
relationship between stream and air temperature within a
subbasin. For example, if stream temperature is approxi-
mately the same as air temperature, then K is 1. If there is a
short travel time or extensive tree shading, then K will be
less than 1. For the case when the effects of Tair and the
hydrologic contributions are such that the final is Tw < 0�C,
the stream temperature model sets Tw to 0.1�C. Tw is also
assumed to be the temperature of water discharge to down-
stream subbasin, and is further routed along the stream net-
work. If the SWAT hydrologic model predicts periods of
‘‘no flow,’’ the stream temperature model returns the value
‘‘NaN,’’ informing the user that the stream temperature value
is ‘‘not a number.’’ Using air temperature as a proxy for the
radiative forcing within a stream reach is conceptually analo-
gous to the temperature index snowmelt model in SWAT as
well as some of the basic formulations for potential evapo-
transpiration available to SWAT users [Hargreaves and
Samani, 1985]. The calibration parameter K acts as a proxy
for reach-specific adjustment of the radiative forcing, such
as shading due to a vegetation canopy or geomorphic
changes resulting in differing geometry. It should be noted
that a calibration of this parameter for a river reach would
not necessarily be applicable under future conditions where
stream shading or river geometry change dramatically.

[13] It is important to note that the satisfactory results of
SWAT hydrology based on the guidelines established by
Moriasi et al. [2007] are a prerequisite for good water tem-
perature simulations. Inaccurate simulation of streamflow
may lead to incorrect mixing of snowmelt, surface runoff,
lateral soil flow, and groundwater inflow, which would
strongly affect simulated water temperatures. Conversely,
inaccurate stream temperature simulations that cannot be
matched to observed data may imply an incorrect represen-
tation of the relative hydrologic contributions.

2.3. Implementation of the New Stream Temperature
Model

[14] The new stream temperature model is implemented at
two spatial scales, using quantities that the SWAT hydrologic

model provides as well as the previously mentioned cali-
bration parameters. The spatial scales are the (1) subbasin
level and (2) watershed level. Including model parameters
at the subbasin spatial scale allows the user to simulate
stream temperature differently based on spatial location
within the watershed, which could find applications in the
modeling of watersheds that span both mountainous and
valley terrain. For smaller watersheds, simulating stream
temperature at the watershed level may be most appropriate
in terms of data availability and stream temperature model
calibration. If both subbasin and watershed level stream
temperature parameters are input to the model, the stream
level parameters overwrite the watershed level parameters.

[15] The new stream temperature model can also be
implemented at different temporal scales. Because the rela-
tionship of hydrology and air temperature to stream temper-
ature can vary throughout the year, the user has the option
of including different stream temperature model parameters
for each season. An example of shifts in stream temperature
can be found in Figure 2, where the seasonal boundaries are
placed near the stream temperature rising and falling limb
inflection points. Seasonally varying parameters allow more
accurate temporal simulations, but increase the complexity
of the calibration. The user includes seasonal simulations by
delineating the modeling time periods by Julian calendar
dates. Additionally, a time series of annual groundwater
temperatures are input by the user in the file.

2.4. Study Sites
[16] We test the new stream temperature model on seven

watersheds throughout the western United States (Figure 3).
The sites were selected based on watershed size and type,
data availability, and climate (Tables 2 and 3). All stream
temperature simulations in this study are done at the water-
shed level, where the same stream temperature model pa-
rameters are used throughout the watershed.

3. Results and Discussion
3.1. SWAT Hydrologic Model Calibration and
Validation

[17] An automated calibration technique using the pro-
gram Sequential Uncertainty Fitting Version 2 [SUFI-2;
Abbaspour et al. 2007] was used to calibrate daily stream-
flow for all SWAT models. Five model evaluation criteria
were used to assess hydrologic model performance: (1) the
Nash-Sutcliffe coefficient [NS; Nash and Sutcliffe, 1970],
(2) ratio of root mean square error to the standard deviation
of observed data (RSR), (3) percent bias (PBIAS), which is
the sum of the residual errors between the observed and
simulated data divided by the sum of the observed data, (4)
a modified efficiency criterion (�), (5) the mean error
(ME), and (6) standard deviation of the errors. � is a
slightly modified version of the efficiency criterion defined
by Krause et al. [2005] where the coefficient of determina-
tion R2 is multiplied by the slope of the regression line b.
This function allows accounting for the discrepancy in the
magnitude of two signals (captured by b) as well as their
dynamics (captured by R2). For �, a perfect simulation is
represented by a value of 1. A split-sample approach was
used for calibration and validation, with the time periods
varying for each watershed (Table 3).
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[18] The SWAT hydrologic simulation generated good
results in comparison with the observed streamflow data
(Table 3 and Figure 4). The average NS coefficient of the
seven watersheds for the calibration time period was 0.68,
ranging from 0.59 for the North Santium River watershed

to 0.78 for the Mill Creek watershed. The average NS coef-
ficient for the validation time period was 0.61, ranging
from 0.53 for Mill Creek watershed to 0.69 for the North
Fork Clearwater River watershed. The calibration and vali-
dation results indicate satisfactory simulations based on the

Figure 2. Example of a seasonal shift for selection of seasonal modeling boundaries. The boundaries
represent the change in stream temperature model parameters.

Figure 3. Location of the watershed sites across the western U.S. where the stream temperature model
was tested.
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guidelines established by Moriasi et al. [2007], where a NS
>0.50, RSR <0.70, and PBIAS 625% are considered ‘‘sat-
isfactory.’’ Therefore, the models were deemed suitable for
testing the new stream temperature model.

3.2. New Stream Temperature Model
3.2.1. Calibration and Simulation Results

[19] The new stream temperature model was manually
calibrated for each of the seven watersheds used for model
testing. The final calibration parameters can be found in
Table 4. K was the most sensitive parameter and was gener-
ally the only parameter that was manipulated. � was gener-
ally left at 1; however, in a few cases, � was decreased. "
was increased if small stream temperature increases were
found during the winter in the observed stream temperature
that were not captured by the model. Lag was changed
from the default value of 7 days if the day-to-day variation
of the simulated stream temperature values did not match
the day-to-day variation of the observed stream tempera-
ture data. The Julian dates for the seasonal modeling was
based on shifts in observed stream temperature data.

[20] To assess the performance of the new stream temper-
ature model, the new stream temperature modeling results
are compared to the observed data along with the original
SWAT temperature model. For all watershed sites, the new
stream temperature model greatly improved stream temper-
ature simulations as compared to the original SWAT stream
temperature model. The results for the seven watersheds are
given in Table 5 and Figure 5. The original SWAT tempera-
ture model had an average NS coefficient and ME of �0.27

and 3.21�C for the calibration period and �0.26 and 3.01�C
for the validation period, respectively. For the new stream
temperature model, the average NS coefficient and ME was
0.81 and �0.69�C for the calibration period and 0.82 and
�0.63�C for the validation period. While there is no strict
definition of acceptable stream temperature model perform-
ance statistics, van Vliet et al. [2011] report average NS and
RMSE values of 0.85 and 2.26�C, while Mohseni et al.
[1998] report average NS and RMSE values of 0.93 and
1.64�C, respectively. Therefore, our new stream tempera-
ture model that uses hydrology and air temperature to pre-
dict stream temperature produced stream temperature model
performance statistics that were comparable to other pub-
lished regression stream temperature models. PBIAS statis-
tics also indicate satisfactory stream temperature model
performance, with an average PBIAS of 7.1% for the cali-
bration period and 6.4% for the validation period. The satis-
factory model performance parameters with the new
temperature model including hydrology also indicate a good
performance of the underlying water balance simulations.

[21] Despite some discrepancies during the winter where
the stream temperature model does not capture small pulses
in water temperature, Figures 5 and 6 illustrate a generally
good agreement between observed and simulated water
temperatures with respect to magnitude and timing of the
temperature variations. The incorporation of " allows the
modeling of temperature surges during negative air temper-
atures for some but not all cases, as shown in the Entiat
River watershed (Figure 6). Not being able to capture the
small winter pulses in stream temperature may also be a

Table 2. Environmental Characteristics of the Study Sites

River

Average
Annual

Temperature (�C)

Average
Annual

Precipitation (cm)

Average
Daily

Discharge (m3 s�1)

Upstream
Drainage

Area (km2)

Average
Elevation

(m)
Snowmelt

Impact

Number of Water
Temperature

Measurements

Entiat River 3.4 155.6 6.5 192 1373 Yes 713
Nookachamps Creek 9.4 153.1 1.8 27 409 Yes 1,870
North Fork Tolt River 8.1 233.1 10.0 105 677 Yes 2,860
Fir Creek 9.4 231.1 1.0 14 883 Yes 11,787
North Fork Clearwater River 3.2 133.6 96.9 3354 1269 Yes 11,106
North Santium River 3.1 212.5 29.3 557 1173 Yes 16,663
Mill Creek 6.9 198.8 8.9 337 1129 Yes 2,625

Table 3. Daily Streamflow Calibration and Validation Statistics of the SWAT Hydrology Modeling for the Study Sites

Site Years NS RSR PBIAS bR2 Mean Error (m3 s�1) Std. Dev. of Error (m3 s�1)

Calibration
Entiat River 2003–2004 0.71 0.56 �24.5 0.69 1.8 4.1
Nookachamps Creek 2000–2003 0.68 0.63 �12.6 0.47 �0.2 1.2
North Fork Tolt River 1990–1998 0.65 0.58 16.64 0.48 �1.8 6.0
Fir Creek 1980–1993 0.69 0.55 16.69 0.54 �0.2 0.7
North Fork Clearwater River 1970–1990 0.72 0.53 7.59 0.47 �32.1 63.0
North Santium River 1950–1980 0.59 0.65 11.27 0.42 �3.3 15.6
Mill Creek 1990–1998 0.78 0.57 �3 0.78 0.2 6.0

Validation
Entiat River 2005 0.6 0.61 �25 0.65 0.9 2.4
Nookachamps Creek 2004–2005 0.64 0.55 7.6 0.46 �0.1 1.4
North Fork Tolt River 1999–2005 0.57 0.65 17.4 0.37 �1.5 6.4
Fir Creek 1994–2003 0.61 0.63 8.53 0.56 �0.1 0.8
North Fork Clearwater River 1991–2005 0.71 0.53 �4.8 0.54 �24.3 53.9
North Santium River 1981–2005 0.64 0.59 4.97 0.45 �1.7 13.8
Mill Creek 1999–2005 0.53 0.53 4.9 0.53 �0.6 7.0
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Figure 4. Daily SWAT hydrologic model streamflow simulations for the calibration and validation
time periods in the seven study sites.
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result of the hydrologic simulation not capturing small
peaks in groundwater, surface runoff, or lateral soil flow.

[22] Errors in hydrologic modeling led to errors in stream
temperature simulations. A Pearson correlation analysis was
performed between the mean errors of the observed and
simulated streamflow and stream temperature for all water-
sheds. A significant correlation (p < 0.05) of 0.54 was found
between the streamflow and stream temperature mean
errors, indicating a relationship. Therefore, a well-calibrated
model is imperative to accurately simulate stream tempera-
ture. This is further illustrated in Figure 6 and Table 5,
where the larger streamflow errors are associated with larger
stream temperature errors.

3.2.2. New Stream Temperature Model Parameter
Sensitivity Analysis

[23] Mathematically, the dependence of an output vari-
able y on an input parameter x can be expressed as the par-
tial derivative @y/@x. This can be numerically approximated
by finite difference, where y0 is the model output with the
initial parameter value of x0. This initial value is varied by
6Dx yielding x1 ¼ x0 � Dx and x2 ¼ x0 þ Dx with corre-
sponding values of y1 and y2. The finite approximation of
@y/@x is then

I 0 ¼ y2 � y1

2�x
: (6)

To get a dimensionless sensitivity index, I 0 must be nor-
malized:

I ¼ ðy2 � y1Þ=y0

2�x=x0
: (7)

I is used to represent the change in the output variable
(mean and variance of stream temperature output) resulting
from a change in new stream temperature model input pa-
rameters. This is the simplest way to carry out a sensitivity
analysis that is frequently found in the literature [Hamby,
2004] and a value of Dx/x0 ¼ 10% is often used [Lenhart
et al., 2002; Luo et al., 2008]. The sensitivity index gives a
measure of the range in error in the stream temperature out-
put to a range in error in the new stream temperature model
input parameters. The larger the absolute value of I, the
more sensitive the parameter is for model prediction. A
negative sensitivity indicates that the parameter has an
inverse effect on the prediction as compared to the original
model value. In equation (7) y0, y1, and y2 must be calcu-
lated from a single statistical value that describes the
stream temperature time series (mean, max, min, variance,
etc.). For this study, we used mean and variance from
610% changes of input parameters as the indicator values
to compare the shift in mean response as well as changes in

Table 4. Calibration Parameters of the New Stream Temperature
Model for the Study Sites

River

Julian Day

From To � (–) K (1/h) " (�C) Lag (Days)

Entiat River 1 65 1 0.1 4.5 7
66 125 1 0.03 4.5 14
126 285 0.7 0.03 0 14
286 366 1 0.05 3 14

Nookachamps Creek 1 181 1 0.1 0 7
182 273 1 0.5 0 7
274 366 1 0.1 0 7

North Fork Tolt River 1 90 1 0.85 0 4
91 306 0.55 0.065 0 7
307 366 1 0.85 0 4

Fir Creek 1 81 0.8 0.99 0.2 4
82 333 0.8 0.3 0 7
334 366 0.8 0.99 0.2 4

North Fork Clearwater
River

1 180 1 0.009 3 7
181 280 0.8 0.1 0 5
281 366 1 0.009 3 7

North Santium River 1 90 1 0.1 3.5 7
91 325 1 0.15 0 7
326 366 1 0.1 3.5 7

Mill Creek 1 120 1 0.05 2 7
121 325 1 0.015 2 7
326 366 1 0.05 2 7

Table 5. Calibration and Validation Statistics for the Original and New SWAT Stream Temperature Model for the Study Sites

River

Calibration Validation

Years NS
PBIAS

(%)
Mean Error

(�C)
Std. Dev. of
Error (�C) Years NS

PBIAS
(%)

Mean Error
(�C)

Std. Dev. of
Error (�C)

Original SWAT Stream Temperature Model
Entiat River 2003–2004 �0.08 �62.2 3.43 2.13 2005 �0.16 �73.6 2.91 2.44
Nookachamps Creek 2000–2003 0.24 �44.4 3.68 1.74 2004–2005 0.31 �37.6 3.37 1.74
North Fork Tolt River 1995–2000 �1.6 �43.4 3.41 2.34 2001–2003 �1.54 �43.4 3.22 2.34
Fir Creek 1980–1992 �2.27 �73.6 4.99 2.34 1993–2003 �2.23 �70.4 4.98 2.21
North Fork Clearwater River 1970–1990 0.8 �16.1 1.23 2.43 1991–2005 0.83 �14.9 1.16 2.26
North Santium River 1951–1980 0.49 �27.7 2.19 2.06 1981–2005 0.59 �22.1 1.88 1.8
Mill Creek 1998–2002 0.54 �27.6 3.52 1.67 2003–2005 0.4 �26.1 3.61 1.68

New SWAT Stream Temperature Model
Entiat River 2003–2004 0.89 9.4 �0.52 1.17 2005 0.89 3.3 �0.14 1.04
Nookachamps Creek 2000–2003 0.86 �6.5 �0.53 1.63 2004–2005 0.91 �4.8 �0.43 1.29
North Fork Tolt River 1995–2000 0.7 7.6 �0.59 1.29 2001–2003 0.77 6.1 �0.47 1.13
Fir Creek 1980–1992 0.75 4.2 �0.29 1.43 1993–2003 0.76 6.1 �0.43 1.46
North Fork Clearwater River 1970–1990 0.87 14.1 �1.07 1.91 1991–2005 0.84 14.8 �1.16 1.71
North Santium River 1951–1980 0.73 14.9 �1.17 1.75 1981–2005 0.7 16.6 �1.42 1.75
Mill Creek 1998–2002 0.85 5.7 �0.72 2.1 2003–2005 0.87 2.5 �0.35 1.92
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Figure 5. Scatterplots of daily stream temperature for the original and new SWAT stream temperature
model for the seven study sites.

W01511 FICKLIN ET AL.: STREAM TEMPERATURE MODEL W01511

10 of 16



the entire range of simulated stream temperatures. For
assessment and comparison purposes, sensitivity indices
can be ranked into the four classes found in Table 6 as
defined by Lenhart et al. [2002]. The means and variances
were compared between the calibrated new stream temper-
ature model and the same model with one-at-a-time param-
eter change, as listed in Table 7. The sensitivity analyses
were performed on the seven watersheds in this study for
the parameters K, Lag, �, and ".

[24] Table 7 lists the normalized sensitivity indices of
the new stream temperature model parameters. " was deter-
mined to be 0�C for many watersheds and therefore " was
set to 2.5�C for all watersheds before assessing the sensitiv-
ity. Using mean as a statistical indicator, � and K were
found to be of ‘‘high’’ and ‘‘medium’’ sensitivity, with �

Figure 6. Observed and predicted daily streamflow and stream temperature results for the Entiat River
watershed using the new stream temperature model. The circle highlights a situation where modeling
problems can be encountered when average daily air temperature is near 0�C. The figure shows the
improved modeling results using the epislon parameter.

Table 6. Sensitivity Index Categories [From Lenhart et al., 2002]

Index Sensitivity

0.00 � j I j < 0.05 Small to negligible
0.05 � j I j < 0.20 Medium
0.20 � j I j < 1.00 High
j I j � 1.00 Very high

Table 7. Normalized Sensitivity Indices for Stream Temperature
Model Inputs for the Seven Watershed Outlets

Mean K � Lag "

North Fork Clearwater River 0.02 0.18 0.01 0.21
Fir Creek 0.17 0.23 0.00 0.04
Mill Creek 0.21 0.20 0.00 0.00
Nookachamps Creek 0.04 0.18 0.00 0.02
North Santium River 0.09 0.07 0.00 0.20
Entiat River 0.14 0.58 0.00 0.34
Tolt River 0.14 0.25 0.00 0.03
Average 0.12 0.24 0.00 0.12
SD 0.08 0.16 0.00 0.13

Variance K � Lag "

North Fork Clearwater River 0.06 0.17 �0.03 �0.05
Fir Creek 1.25 0.23 �0.03 �0.04
Mill Creek 0.30 0.09 �0.04 0.00
Nookachamps Creek 0.24 0.12 �0.04 �0.02
North Santium River 0.36 0.04 �0.05 �0.10
Entiat River 0.19 1.36 �0.02 �0.04
Tolt River 0.43 0.62 �0.09 �0.03
Average 0.40 0.38 �0.04 �0.04
SD 0.41 0.48 0.02 0.03
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generally the most sensitive parameter. Lag was found to
be insensitive, while " was found to be of medium sensitiv-
ity using mean as a statistical indicator. Using variance as a
statistical indicator, stream temperature showed a high sen-
sitivity to perturbations in K and �. Lag and " were within
the ‘‘small to negligible’’ sensitivity range. Thus, using the
mean and variance as statistical indicators resulted in dif-
ferent I values depending on the input parameter. In physi-
cal terms, increasing or decreasing � shifts the effect of air
temperature onto stream temperature toward surface runoff
and lateral soil flow. Thus the temperature of the local
hydrological inputs is being increased or decreased by 10%
before being affected by travel time, Tair, and K, which are
held constant for a sensitivity analysis. Adjusting K had a
larger effect on the variance than �. These results are rea-
sonable as K is defined as the bulk heat transfer coefficient,
defining the relationship between the stream temperature
and air temperature, while also determining the effect of
travel time on the final stream temperature value. Therefore,
K has a large affect on the relationship between initial stream
temperature, air temperature, and travel time, which can
have large variation from day-to-day. Furthermore, K is in
the final step of the new stream temperature model and thus
has a large effect on the final printed stream temperature.

[25] Lag was found to be more sensitive using variance
as a statistical indicator. This is physically reasonable, as a
modified Lag will result in changes in day-to-day stream

temperature variation, where an increase in Lag will
‘‘smooth’’ stream temperature variation. Increasing " led to
an increase in I using mean as a statistical indicator, while I
decreased using variance as a statistical indicator. Increas-
ing " will lead to an increase in the minimum stream tem-
peratures when Tair < 0�C, thus increasing the mean while
also decreasing the stream temperature range. As shown in
Figure 6 " can increase model performance, even when
remaining inactive for most of the model simulation. The
results from the sensitivity analysis indicate that the model
parameters drive model output in ways that can be physi-
cally explained.

3.2.3. New Stream Temperature Model Response to
Changes in Climate and Hydrology

[26] Variations in climate and hydrology were conducted
to examine the hydroclimatological sensitivities of the
stream temperature model (Figure 7). All sensitivity analy-
ses were performed on the calibrated Mill Creek watershed
SWAT model in northern California with a calibrated
stream temperature model and presented on a monthly time
scale unless noted otherwise. The Mill Creek watershed
was chosen because its climate and environmental charac-
teristics are the approximate median of all watersheds, thus
representing a typical watershed for this study. It is impor-
tant to note that the sensitivities may vary with each water-
shed and may be potentially dependent on the calibration. T

Figure 7. Stream temperature sensitivity plots for (a) an increase in air temperature, (b) increase in
precipitation, (c) change in snowmelt parameters, and (d) an increase in groundwater flow.
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tests for dependent samples were performed to compare all
sensitivity and baseline scenarios. The target level of sig-
nificance was � ¼ 0.05.

3.2.3.1. Effects of Increased Air Temperature on
Stream Temperature Output

[27] To examine the behavior of the new model under
warmer climates, daily maximum and minimum air temper-
atures were increased by 2 and 4�C for all months. The air
temperature increases led to statistically significant (p <
0.05) increases in simulated stream temperatures for all
months (Figure 7a). With an increase in temperature, the
largest stream temperature increase was found during the
summer months, where simulated stream temperature
increased higher than the air temperature increase. The av-
erage summer stream temperature increase for the time pe-
riod was 2.4�C for a 2�C air temperature increase and
4.6�C for a 4�C air temperature increase. During the winter

months, the 2 and 4�C air temperature increase resulted in a
1.76 and 3.6�C increase in stream temperature. This poten-
tially shows the effects of a shift in snowmelt to earlier in the
year, where a lack of snowmelt would increase stream temper-
ature. Furthermore, an increase in air temperature would result
in less snowfall and more rain. Several prior studies have
examined the effects of increased air temperatures on stream
temperatures [Mohseni et al., 1998, 2003; Mantua et al.,
2010; van Vliet et al., 2011] and have found similar responses.

[28] We further illustrate the sensitivity of increased
temperature on the new stream temperature model in the
snowmelt-dominated Entiat River watershed for February
2005 through July 2005. With a 4�C increase in average
daily air temperature (Figure 8a), the hydrology in the ba-
sin is altered such that snowmelt is shifted earlier in the
year, and in some cases, converted to soil water lateral flow
or surface runoff (Figure 8b). It can be seen in Figure 8c

Figure 8. Panel plots showing the effects of (a) increased air temperature of 4�C, (b) on the Entiat
River watershed hydrology, and (c) stream temperature simulations for the entire watershed.
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that the original SWAT stream temperature already greatly
over predicts stream temperature for the present-day sce-
nario. When raising the temperature, the original SWAT
stream temperature model cannot take the hydrologic shifts
into account and simply raises stream temperature by an
additional 4�C. By contrast the new stream temperature
model produces more physically plausible results under
warming scenarios than the original SWAT stream temper-
ature model. For example, in March 2005 a period of
warmer temperatures resulted in some early snowmelt and
soil water lateral flow/surface runoff (Figure 8b). The origi-
nal SWAT stream temperature model predicts that stream
temperature will rise to approximately 10�C during this
time, even though air temperature does not rise this high
and the snowmelt pulse is contributing a volume of cold
water (Figure 8c). The new stream temperature model gives
colder estimates of stream temperature during this time,
based on the inflow volumes of snowmelt and soil water
flow/surface runoff, as well as warmer air temperatures.
Similar observations can be made for the end of April 2005
and beginning of May 2005.

3.2.3.2. Effects of Increased Precipitation on Stream
Temperature Output

[29] With air temperature held constant, an increase in
precipitation should result in a decrease in stream tempera-
ture due to the increase in streamflow discharge (or decrease
in streamflow travel time) [Webb et al., 2003; van Vliet
et al., 2011]. However, one must consider the multiple sour-
ces of the hydrology (snowmelt, lateral soil flow, and
groundwater) that are causing an increase in streamflow.
For example, an increase in streamflow may be due to an
increase in snowmelt, resulting in a lowering of stream tem-
perature. On the other hand, an increase in streamflow may
be due to an increase in groundwater flow, which may result
in an increase or decrease in stream temperature depending
on the time of year. Several studies have tried to quantify
the effect of precipitation on stream temperature with no
overall conclusion, as the overall effect differs for each
watershed [Brown and Hannah, 2007].

[30] For the Mill Creek watershed, increasing precipita-
tion by 30% had a statistically insignificant (p > 0.05)
effect on simulated stream temperature (Figure 7b). This
may be potentially due to the Mill Creek watershed’s Medi-
terranean climate, where most of the annual rainfall occurs
during the winter time period. Analysis of the individual
hydrologic outputs indicates that increasing precipitation
had an overall cancelling out effect on stream temperature
because of source water mixing. The only discernable
change in stream temperature was during the summer when
streamflow is fed by small amounts of lateral soil water
flow, thus slightly decreasing the stream temperature.

[31] This cancelling out effect was also seen during the
winter time period, when increasing precipitation caused a
higher snowmelt and lateral soil flow volumes. As previ-
ously stated, snowmelt in the new model enters the stream
at a temperature of 0.1�C, while lateral soil flow is set to
the average daily temperature. During the winter time pe-
riod, the amount of snowmelt and lateral soil flow entering
the stream is approximately equal, with the snowmelt hav-
ing larger daily variability. Therefore, while there are day-
to-day stream temperature simulation differences when

precipitation is increased, the overall effect at the monthly
time scale is negligible (Figure 7b).

3.2.3.3. Effects of Varying Snowmelt Parameters on
Stream Temperature Output

[32] To determine the effect of an increase in the snow-
melt component, the SWAT snowmelt parameters SFTEMP
(temperature threshold for snowfall/precipitation to occur)
and SMTMP (temperature at which snowmelt will occur)
were increased by 2�C (from 3.9 to 5.9�C for SFTEMP and
1.9 to 3.9�C for SMTEMP). The temperature increase in
these parameters will result in (1) an increase in the total
amount of snowfall in the watershed and (2) an increase in
the base temperature for snowmelt to occur, which will
result in more snowmelt later in the year because the snow-
pack must reach a higher temperature before snowmelt
occurs. It is important to note that streamflow shifted in
both peak and magnitude with an increase in SFTEMP and
SMTMP. The peak streamflow shifted from March to April
and the peak magnitude increased from 9.3 to 11.1 m3 s�1.
This produced the changes in stream temperature, resulting
in an overall increase in stream temperature in March and a
decrease in June and July with SFTEMP and SMTMP
increased by 2�C. The new stream temperature model cor-
rectly represents the changes in the snowmelt parameters
(Figure 7c). Figure 7c displays an increase in simulated
stream temperature by approximately 0.5�C during the win-
ter (December through March) when there is less snowmelt
occurring. Additionally, Figure 7c also shows a decrease in
simulated stream temperature by approximately 0.75�C dur-
ing the spring and summer (May through September) when
more snowmelt is occurring. These differences, however,
were statistically insignificant (p > 0.05). Snowmelt, and its
influence on stream temperature, is an important component
of the hydrologic cycle for the western United States not
only for water resources, but also aquatic species survival.

3.2.3.4. Effects of Increased Groundwater Inflow on
Stream Temperature Output

[33] To test the effects of an increased groundwater contri-
bution on stream temperature, the SWAT parameter GWQMN
(threshold depth of water in the shallow aquifer for ground-
water flow into the stream to occur) was decreased from the
calibrated value by 1/2 (GWQMN decreased from 1500 to
750 mm). Decreasing GWQMN will allow for more ground-
water inflow to occur. Increasing groundwater inflow led to
a statistically significant (p < 0.05) decrease in stream tem-
perature by approximately 3�C during the summer months
(Figure 7d). While it was not explicitly tested in this study,
decreasing groundwater inflow would likely result in an
increase in simulated stream temperature. The decrease in
simulated stream temperature found in this study has been
found for many studies [e.g., Constantz et al., 1995; Storey
et al., 2003; Constantz and Essaid, 2004].

4. Conclusions
[34] A new hydroclimatological stream temperature rou-

tine was developed for SWAT to account for the effects
of variation in air temperature and hydrologic inflows on
stream temperature within a stream reach. The original
SWAT stream temperature model uses a linear relationship
between air and stream temperature, which is not appropriate

W01511 FICKLIN ET AL.: STREAM TEMPERATURE MODEL W01511

14 of 16



for all climatic and geographic settings, and does not repre-
sent associated hydrologic and stream temperature changes.
In the new model, stream temperature is determined as a
function of the hydrologic inflows, namely inflow from the
upper basins, snowmelt, surface runoff, lateral soil flow,
and groundwater flow, which are subsequently modified by
air temperature. The model allows season specific modeling
on the subbasin to watershed scale. An additional advantage
of the new SWAT temperature routine is the possibility of
calibration using few parameters. The model assumes that
radiative forcings are represented through air temperature and
a transfer parameter and that perfect mixing occurs in the
stream reach [Moore et al., 2005]. While other established
hydrologic models account for radiative transfers and at least
some of the flows, our contribution is unique in that it is for
SWAT, it does not require more information beyond what is
already provided by the user or calculated by the model, and
it works with a very limited set of calibration parameters.

[35] The new stream temperature model is tested on
seven coastal and mountainous streams and rivers through-
out the western United States for which high quality stream
temperature data were available. The results of the new
stream temperature model suggest a great improvement
over the original SWAT stream temperature model as meas-
ured by several model performance parameters. Parameter
sensitivity analyses indicate that the calibration parameters
are physically reasonable. Additionally, our analyses sug-
gest that the new stream temperature model can respond to
changes in hydroclimatological conditions in ways that are
consistent with the changes in flow contributions to stream-
flow. Improved simulations of stream temperature result in
improved estimates of water quality parameters, such as dis-
solved oxygen and can help water resource planners as well
as aquatic ecosystem biologists to construct management
plans to preserve sustainable aquatic habitats, especially
under warmer climates.
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support for this work from the U.S. Environmental Protection Agency
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