Table S1. Summary of the regression models for the PDO (L_1) and NPGO (L_2) modes from equations (1) and (2) in the main text. \{A_i, B_i, C_i\}: Regression coefficients. σ_i: Standard deviation of the residual. κ_i: Condition number of the design matrix. \{d(\epsilon_i), d(\Delta \epsilon_i)\}: Durbin-Watson statistics for the residual and residual increments for 1 m lag. $t_c(\epsilon_i)/t_c(L_i)$: noise decorrelation time relative to modal decorrelation time. √ (X) indicates external factors/interactions which were (were not) part of a given model.

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_1, P_2</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>L_3</td>
<td>X</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I_1, \ldots, I_4</td>
<td>X</td>
<td>X</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Mode L_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_1(L_1)$</td>
<td>0.9964</td>
<td>0.9972</td>
<td>X</td>
<td>0.6233</td>
<td>-0.0067</td>
</tr>
<tr>
<td>$A_1(L_2)$</td>
<td>0.0343</td>
<td>0.0330</td>
<td>X</td>
<td>-0.0624</td>
<td>-0.2148</td>
</tr>
<tr>
<td>$B_1(L_3)$</td>
<td>X</td>
<td>-0.0340</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>$B_1(P_1, I_1)$</td>
<td>X</td>
<td>X</td>
<td>0.4070</td>
<td>0.1732</td>
<td>0.4606</td>
</tr>
<tr>
<td>$B_1(P_2, I_2)$</td>
<td>X</td>
<td>X</td>
<td>0.4762</td>
<td>0.1954</td>
<td>0.5241</td>
</tr>
<tr>
<td>$B_1(P_1, I_3)$</td>
<td>X</td>
<td>X</td>
<td>0.2709</td>
<td>0.0907</td>
<td>0.2508</td>
</tr>
<tr>
<td>$B_1(P_2, I_3)$</td>
<td>X</td>
<td>X</td>
<td>-0.1778</td>
<td>-0.0180</td>
<td>-0.0598</td>
</tr>
<tr>
<td>$C_1(L_1, L_1, L_1)$</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-0.0032</td>
</tr>
<tr>
<td>$C_1(L_1, L_2, L_2)$</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0.0046</td>
</tr>
<tr>
<td>σ_1</td>
<td>0.0735</td>
<td>0.0658</td>
<td>0.1582</td>
<td>0.0696</td>
<td>0.0800</td>
</tr>
<tr>
<td>κ_1</td>
<td>1.1779</td>
<td>1.2138</td>
<td>2.1941</td>
<td>40.184</td>
<td>7.008</td>
</tr>
<tr>
<td>$d(\epsilon_1)$</td>
<td>0.5862</td>
<td>0.7428</td>
<td>0.5886</td>
<td>0.6284</td>
<td>0.6810</td>
</tr>
<tr>
<td>$d(\Delta \epsilon_1)$</td>
<td>2.0342</td>
<td>2.0190</td>
<td>1.3244</td>
<td>2.1196</td>
<td>1.9682</td>
</tr>
<tr>
<td>$t_c(\epsilon_1)/t_c(L_1)$</td>
<td>0.2307</td>
<td>0.1954</td>
<td>0.3388</td>
<td>0.1967</td>
<td>0.1621</td>
</tr>
</tbody>
</table>
Table S1. (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_2(L_1)$</td>
<td>-0.0282</td>
<td>-0.0278</td>
<td>X</td>
<td>-0.0303</td>
<td>-0.1787</td>
</tr>
<tr>
<td>$A_2(L_2)$</td>
<td>0.9916</td>
<td>0.9086</td>
<td>X</td>
<td>0.9451</td>
<td>-0.0107</td>
</tr>
<tr>
<td>$B_2(L_3)$</td>
<td>X</td>
<td>-0.0197</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>$B_2(P_1, I_1)$</td>
<td>X</td>
<td>X</td>
<td>0.1172</td>
<td>0.0001</td>
<td>0.2144</td>
</tr>
<tr>
<td>$B_2(P_2, I_1)$</td>
<td>X</td>
<td>X</td>
<td>-0.2610</td>
<td>-0.0409</td>
<td>-0.2397</td>
</tr>
<tr>
<td>$B_2(P_2, I_2)$</td>
<td>X</td>
<td>X</td>
<td>0.1604</td>
<td>0.0196</td>
<td>0.2418</td>
</tr>
<tr>
<td>$B_2(P_2, I_3)$</td>
<td>X</td>
<td>X</td>
<td>0.4128</td>
<td>0.0540</td>
<td>0.3653</td>
</tr>
<tr>
<td>$B_2(P_1, I_4)$</td>
<td>X</td>
<td>X</td>
<td>-0.4850</td>
<td>0.0128</td>
<td>-0.4414</td>
</tr>
<tr>
<td>$B_2(P_2, I_4)$</td>
<td>X</td>
<td>X</td>
<td>0.0118</td>
<td>0.0275</td>
<td>-0.0358</td>
</tr>
<tr>
<td>$C_2(L_1, L_1, L_2)$</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0.0141</td>
</tr>
<tr>
<td>$C_2(L_2, L_2, L_2)$</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0.0048</td>
</tr>
<tr>
<td>σ_2</td>
<td>0.1330</td>
<td>0.1316</td>
<td>0.1590</td>
<td>0.1167</td>
<td>0.1573</td>
</tr>
<tr>
<td>κ_2</td>
<td>1.1779</td>
<td>1.2138</td>
<td>2.3206</td>
<td>23.612</td>
<td>46.400</td>
</tr>
<tr>
<td>$d(\varepsilon_2)$</td>
<td>0.8099</td>
<td>0.8277</td>
<td>0.5262</td>
<td>0.7512</td>
<td>0.5213</td>
</tr>
<tr>
<td>$d(\Delta\varepsilon_2)$</td>
<td>1.9709</td>
<td>1.9711</td>
<td>2.0206</td>
<td>2.2984</td>
<td>2.0615</td>
</tr>
<tr>
<td>$t_c(\varepsilon_2)/t_c(L_2)$</td>
<td>0.2270</td>
<td>0.2270</td>
<td>0.2220</td>
<td>0.2257</td>
<td>0.2159</td>
</tr>
</tbody>
</table>